397 lines
8.8 KiB
C
397 lines
8.8 KiB
C
/* $NetBSD: iomd_clock.c,v 1.1 1996/01/31 23:15:25 mark Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1994 Mark Brinicombe.
|
|
* Copyright (c) 1994 Brini.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software written for Brini by Mark Brinicombe
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Brini.
|
|
* 4. The name of the company nor the name of the author may be used to
|
|
* endorse or promote products derived from this software without specific
|
|
* prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY BRINI ``AS IS'' AND ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL BRINI OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* RiscBSD kernel project
|
|
*
|
|
* clock.c
|
|
*
|
|
* Timer related machine specific code
|
|
*
|
|
* Created : 29/09/94
|
|
* Last updated : 28/08/95
|
|
*
|
|
* $Id: iomd_clock.c,v 1.1 1996/01/31 23:15:25 mark Exp $
|
|
*/
|
|
|
|
/* Include header files */
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <machine/katelib.h>
|
|
#include <machine/iomd.h>
|
|
#include <machine/irqhandler.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/rtc.h>
|
|
|
|
#define TIMER0_COUNT 20000 /* 100Hz */
|
|
#define TIMER_FREQUENCY 20000000 /* 2MHz clock */
|
|
#define TICKS_PER_MICROSECOND (TIMER_FREQUENCY / 10000000)
|
|
|
|
static irqhandler_t clockirq;
|
|
static irqhandler_t statclockirq;
|
|
|
|
|
|
/*
|
|
* int clockhandler(struct clockframe *frame)
|
|
*
|
|
* Function called by timer 0 interrupts. This just calls
|
|
* hardclock(). Eventually the irqhandler can call hardclock() directly
|
|
* but for now we use this function so that we can debug IRQ's
|
|
*/
|
|
|
|
int
|
|
clockhandler(frame)
|
|
struct clockframe *frame;
|
|
{
|
|
hardclock(frame);
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* int statclockhandler(struct clockframe *frame)
|
|
*
|
|
* Function called by timer 1 interrupts. This just calls
|
|
* statclock(). Eventually the irqhandler can call statclock() directly
|
|
* but for now we use this function so that we can debug IRQ's
|
|
*/
|
|
|
|
int
|
|
statclockhandler(frame)
|
|
struct clockframe *frame;
|
|
{
|
|
|
|
statclock(frame);
|
|
return(1);
|
|
}
|
|
|
|
|
|
/*
|
|
* void setstatclockrate(int hz)
|
|
*
|
|
* Set the stat clock rate. The stat clock uses timer1
|
|
*/
|
|
|
|
void
|
|
setstatclockrate(hz)
|
|
int hz;
|
|
{
|
|
int count;
|
|
|
|
count = TIMER_FREQUENCY / hz;
|
|
|
|
printf("Setting statclock to %dHz (%d ticks)\n", hz, count);
|
|
|
|
WriteByte(IOMD_T1LOW, (count >> 0) & 0xff);
|
|
WriteByte(IOMD_T1HIGH, (count >> 8) & 0xff);
|
|
|
|
/* reload the counter */
|
|
|
|
WriteByte(IOMD_T1GO, 0);
|
|
}
|
|
|
|
|
|
/*
|
|
* void cpu_initclocks(void)
|
|
*
|
|
* Initialise the clocks.
|
|
* This sets up the two timers in the IOMD and installs the IRQ handlers
|
|
*
|
|
* NOTE: Currently only timer 0 is setup and the IRQ handler is not installed
|
|
*/
|
|
|
|
void
|
|
cpu_initclocks()
|
|
{
|
|
/*
|
|
* Load timer 0 with count down value
|
|
* This timer generates 100Hz interrupts for the system clock
|
|
*/
|
|
|
|
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
|
|
|
|
WriteByte(IOMD_T0LOW, (TIMER0_COUNT >> 0) & 0xff);
|
|
WriteByte(IOMD_T0HIGH, (TIMER0_COUNT >> 8) & 0xff);
|
|
|
|
/* reload the counter */
|
|
|
|
WriteByte(IOMD_T0GO, 0);
|
|
|
|
clockirq.ih_func = clockhandler;
|
|
clockirq.ih_arg = 0;
|
|
clockirq.ih_level = IPL_CLOCK;
|
|
if (irq_claim(IRQ_TIMER0, &clockirq) == -1)
|
|
panic("Cannot installer timer 0 IRQ handler\n");
|
|
|
|
if (stathz) {
|
|
setstatclockrate(stathz);
|
|
|
|
statclockirq.ih_func = statclockhandler;
|
|
statclockirq.ih_arg = 0;
|
|
statclockirq.ih_level = IPL_CLOCK;
|
|
if (irq_claim(IRQ_TIMER1, &clockirq) == -1)
|
|
panic("Cannot installer timer 1 IRQ handler\n");
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* void microtime(struct timeval *tvp)
|
|
*
|
|
* Fill in the specified timeval struct with the current time
|
|
* accurate to the microsecond.
|
|
*/
|
|
|
|
/* ALERT ! This routine is screwed ! */
|
|
|
|
/*
|
|
* It's not so screwed now .. I have fixed it but need to stare at it
|
|
* some more to make sure it is behaving as required.
|
|
*/
|
|
|
|
void
|
|
microtime(tvp)
|
|
struct timeval *tvp;
|
|
{
|
|
int s;
|
|
int tm;
|
|
int deltatm;
|
|
static int oldtm;
|
|
static struct timeval oldtv;
|
|
|
|
s = splhigh();
|
|
|
|
/*
|
|
* Latch the current value of the timer and then read it. This garentees
|
|
* an atmoic reading of the time.
|
|
*/
|
|
|
|
WriteByte(IOMD_T0LATCH, 0);
|
|
tm = ReadByte(IOMD_T0LOW) + (ReadByte(IOMD_T0HIGH) << 8);
|
|
deltatm = tm - oldtm;
|
|
if (deltatm < 0) deltatm += TIMER0_COUNT;
|
|
if (deltatm < 0) {
|
|
printf("opps deltatm < 0 tm=%d oldtm=%d deltatm=%d\n",
|
|
tm, oldtm, deltatm);
|
|
}
|
|
oldtm = tm;
|
|
|
|
/* Fill in the timeval struct */
|
|
|
|
*tvp = time;
|
|
tvp->tv_usec += (deltatm / TICKS_PER_MICROSECOND);
|
|
|
|
/* Make sure the micro seconds don't overflow. */
|
|
|
|
while (tvp->tv_usec > 1000000) {
|
|
tvp->tv_usec -= 1000000;
|
|
++tvp->tv_sec;
|
|
}
|
|
|
|
/* Make sure the time has advanced. */
|
|
|
|
if (tvp->tv_sec == oldtv.tv_sec &&
|
|
tvp->tv_usec <= oldtv.tv_usec) {
|
|
tvp->tv_usec = oldtv.tv_usec + 1;
|
|
if (tvp->tv_usec > 1000000) {
|
|
tvp->tv_usec -= 1000000;
|
|
++tvp->tv_sec;
|
|
}
|
|
}
|
|
|
|
|
|
oldtv = *tvp;
|
|
(void)splx(s);
|
|
}
|
|
|
|
|
|
void
|
|
need_proftick(p)
|
|
struct proc *p;
|
|
{
|
|
}
|
|
|
|
|
|
static inline int
|
|
yeartoday(year)
|
|
int year;
|
|
{
|
|
return((year % 4) ? 365 : 366);
|
|
}
|
|
|
|
|
|
static int month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
|
|
static int timeset = 0;
|
|
|
|
#define SECPERDAY (24*60*60)
|
|
#define SECPERNYEAR (365*SECPERDAY)
|
|
#define SECPER4YEARS (4*SECPERNYEAR+SECPERDAY)
|
|
#define EPOCHYEAR 1970
|
|
|
|
/*
|
|
* Write back the time of day to the rtc
|
|
*/
|
|
|
|
void
|
|
resettodr()
|
|
{
|
|
int s;
|
|
time_t year, mon, day, hour, min, sec;
|
|
rtc_t rtc;
|
|
|
|
if (!timeset)
|
|
return;
|
|
|
|
sec = time.tv_sec;
|
|
year = (sec / SECPER4YEARS) * 4;
|
|
sec %= SECPER4YEARS;
|
|
|
|
/* year now hold the number of years rounded down 4 */
|
|
while (sec > (yeartoday(EPOCHYEAR+year) * SECPERDAY)) {
|
|
sec -= yeartoday(EPOCHYEAR+year)*SECPERDAY;
|
|
year++;
|
|
}
|
|
|
|
/* year is now a correct offset from the EPOCHYEAR */
|
|
year+=EPOCHYEAR;
|
|
mon=0;
|
|
if (yeartoday(year) == 366)
|
|
month[1]=29;
|
|
else
|
|
month[1]=28;
|
|
while ((sec/SECPERDAY) > month[mon]) {
|
|
sec -= month[mon]*SECPERDAY;
|
|
mon++;
|
|
}
|
|
|
|
day = sec / SECPERDAY;
|
|
sec %= SECPERDAY;
|
|
hour = sec / 3600;
|
|
sec %= 3600;
|
|
min = sec / 60;
|
|
sec %= 60;
|
|
rtc.rtc_cen = year / 100;
|
|
rtc.rtc_year = year % 100;
|
|
rtc.rtc_mon = mon+1;
|
|
rtc.rtc_day = day+1;
|
|
rtc.rtc_hour = hour;
|
|
rtc.rtc_min = min;
|
|
rtc.rtc_sec = sec;
|
|
rtc.rtc_centi =
|
|
rtc.rtc_micro = 0;
|
|
|
|
/* printf("resettod: %d/%d/%d%d %d:%d:%d\n", rtc.rtc_day,
|
|
rtc.rtc_mon, rtc.rtc_cen, rtc.rtc_year, rtc.rtc_hour,
|
|
rtc.rtc_min, rtc.rtc_sec);*/
|
|
|
|
s = splclock();
|
|
rtc_write(&rtc);
|
|
(void)splx(s);
|
|
}
|
|
|
|
/*
|
|
* Initialise the time of day register, based on the time base which is, e.g.
|
|
* from a filesystem.
|
|
*/
|
|
|
|
void
|
|
inittodr(base)
|
|
time_t base;
|
|
{
|
|
time_t n;
|
|
int i, days = 0;
|
|
int s;
|
|
int year;
|
|
rtc_t rtc;
|
|
|
|
/*
|
|
* We ignore the suggested time for now and go for the RTC
|
|
* clock time stored in the CMOS RAM.
|
|
*/
|
|
|
|
s = splclock();
|
|
if (rtc_read(&rtc) == 0) {
|
|
(void)splx(s);
|
|
return;
|
|
}
|
|
|
|
(void)splx(s);
|
|
|
|
n = rtc.rtc_sec + 60 * rtc.rtc_min + 3600 * rtc.rtc_hour;
|
|
n += (rtc.rtc_day - 1) * 3600 * 24;
|
|
year = (rtc.rtc_year + rtc.rtc_cen * 100) - 1900;
|
|
|
|
if (yeartoday(year) == 366)
|
|
month[1] = 29;
|
|
for (i = rtc.rtc_mon - 2; i >= 0; i--)
|
|
days += month[i];
|
|
month[1] = 28;
|
|
|
|
for (i = 70; i < year; i++)
|
|
days += yeartoday(i);
|
|
|
|
n += days * 3600 * 24;
|
|
|
|
n += tz.tz_minuteswest * 60;
|
|
if (tz.tz_dsttime)
|
|
n -= 3600;
|
|
|
|
time.tv_sec = n;
|
|
time.tv_usec = 0;
|
|
|
|
/* timeset is used to ensure the time is valid before a resettodr() */
|
|
|
|
timeset = 1;
|
|
|
|
printf("inittodr: %02d:%02d:%02d.%02d%02d %02d/%02d/%02d%02d\n",
|
|
rtc.rtc_hour, rtc.rtc_min, rtc.rtc_sec, rtc.rtc_centi,
|
|
rtc.rtc_micro, rtc.rtc_day, rtc.rtc_mon, rtc.rtc_cen,
|
|
rtc.rtc_year);
|
|
|
|
if (n > base + 60) {
|
|
days = (n - base) / SECPERDAY;
|
|
printf("Clock has gained %d day%c %ld hours %ld minutes %ld secs\n",
|
|
days, ((days == 1) ? 0 : 's'), ((n - base) / 3600) % 24,
|
|
((n - base) / 60) % 60, (n - base) % 60);
|
|
}
|
|
}
|
|
|
|
/* End of clock.c */
|