NetBSD/sys/dev/usb/if_urtw.c
thorpej 7a9a30c5e7 Define and implement a locking protocol for the ifmedia / mii layers:
- MP-safe drivers provide a mutex to ifmedia that is used to serialize
  access to media-related structures / hardware regsiters.  Converted
  drivers use the new ifmedia_init_with_lock() function for this.  The
  new name is provided to ease the transition.
- Un-converted drivers continue to call ifmedia_init(), which will supply
  a compatibility lock to be used instead.  Several media-related entry
  points must be aware of this compatibility lock, and are able to acquire
  it recursively a limited number of times, if needed.  This is a SPIN
  mutex with priority IPL_NET.
- This same lock is used to serialize access to PHY registers and other
  MII-related data structures.

The PHY drivers are modified to acquire and release the lock, as needed,
and assert the lock is held as a diagnostic aid.

The "usbnet" framework has had an overhaul of its internal locking
protocols to fit in with the media / mii changes, and the drivers adapted.

USB wifi drivers have been changed to provide their own adaptive mutex
to the ifmedia later via a new ieee80211_media_init_with_lock() function.
This is required because the USB drivers need an adaptive mutex.

Besised "usbnet", a few other drivers are converted: vmx, wm, ixgbe / ixv.

mcx also now calls ifmedia_init_with_lock() because it needs to also use
an adaptive mutex.  The mcx driver still needs to be fully converted to
NET_MPSAFE.
2020-03-15 23:04:50 +00:00

4096 lines
105 KiB
C

/* $NetBSD: if_urtw.c,v 1.24 2020/03/15 23:04:51 thorpej Exp $ */
/* $OpenBSD: if_urtw.c,v 1.39 2011/07/03 15:47:17 matthew Exp $ */
/*-
* Copyright (c) 2009 Martynas Venckus <martynas@openbsd.org>
* Copyright (c) 2008 Weongyo Jeong <weongyo@FreeBSD.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_urtw.c,v 1.24 2020/03/15 23:04:51 thorpej Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/proc.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/if_inarp.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdevs.h>
#include "if_urtwreg.h"
#ifdef URTW_DEBUG
#define DPRINTF(x) do { if (urtw_debug) printf x; } while (0)
#define DPRINTFN(n, x) do { if (urtw_debug >= (n)) printf x; } while (0)
int urtw_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/*
* Recognized device vendors/products.
*/
static const struct urtw_type {
struct usb_devno dev;
uint8_t rev;
} urtw_devs[] = {
#define URTW_DEV_RTL8187(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, URTW_HWREV_8187 }
#define URTW_DEV_RTL8187B(v, p) \
{ { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, URTW_HWREV_8187B }
/* Realtek RTL8187 devices. */
URTW_DEV_RTL8187(ASUSTEK, P5B_WIFI),
URTW_DEV_RTL8187(DICKSMITH, RTL8187),
URTW_DEV_RTL8187(LINKSYS4, WUSB54GC_2),
URTW_DEV_RTL8187(LOGITEC, RTL8187),
URTW_DEV_RTL8187(NETGEAR, WG111V2),
URTW_DEV_RTL8187(REALTEK, RTL8187),
URTW_DEV_RTL8187(SITECOMEU, WL168V1),
URTW_DEV_RTL8187(SPHAIRON, RTL8187),
URTW_DEV_RTL8187(SURECOM, EP9001G2A),
/* Realtek RTL8187B devices. */
URTW_DEV_RTL8187B(BELKIN, F5D7050E),
URTW_DEV_RTL8187B(NETGEAR, WG111V3),
URTW_DEV_RTL8187B(REALTEK, RTL8187B_0),
URTW_DEV_RTL8187B(REALTEK, RTL8187B_1),
URTW_DEV_RTL8187B(REALTEK, RTL8187B_2),
URTW_DEV_RTL8187B(SITECOMEU, WL168V4)
#undef URTW_DEV_RTL8187
#undef URTW_DEV_RTL8187B
};
#define urtw_lookup(v, p) \
((const struct urtw_type *)usb_lookup(urtw_devs, v, p))
/*
* Helper read/write macros.
*/
#define urtw_read8_m(sc, val, data) do { \
error = urtw_read8_c(sc, val, data, 0); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_read8_idx_m(sc, val, data, idx) do { \
error = urtw_read8_c(sc, val, data, idx); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_write8_m(sc, val, data) do { \
error = urtw_write8_c(sc, val, data, 0); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_write8_idx_m(sc, val, data, idx) do { \
error = urtw_write8_c(sc, val, data, idx); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_read16_m(sc, val, data) do { \
error = urtw_read16_c(sc, val, data, 0); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_read16_idx_m(sc, val, data, idx) do { \
error = urtw_read16_c(sc, val, data, idx); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_write16_m(sc, val, data) do { \
error = urtw_write16_c(sc, val, data, 0); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_write16_idx_m(sc, val, data, idx) do { \
error = urtw_write16_c(sc, val, data, idx); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_read32_m(sc, val, data) do { \
error = urtw_read32_c(sc, val, data, 0); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_read32_idx_m(sc, val, data, idx) do { \
error = urtw_read32_c(sc, val, data, idx); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_write32_m(sc, val, data) do { \
error = urtw_write32_c(sc, val, data, 0); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_write32_idx_m(sc, val, data, idx) do { \
error = urtw_write32_c(sc, val, data, idx); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_8187_write_phy_ofdm(sc, val, data) do { \
error = urtw_8187_write_phy_ofdm_c(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_8187_write_phy_cck(sc, val, data) do { \
error = urtw_8187_write_phy_cck_c(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
#define urtw_8225_write(sc, val, data) do { \
error = urtw_8225_write_c(sc, val, data); \
if (error != 0) \
goto fail; \
} while (0)
struct urtw_pair {
uint32_t reg;
uint32_t val;
};
struct urtw_pair_idx {
uint8_t reg;
uint8_t val;
uint8_t idx;
};
static struct urtw_pair_idx urtw_8187b_regtbl[] = {
{ 0xf0, 0x32, 0 }, { 0xf1, 0x32, 0 }, { 0xf2, 0x00, 0 },
{ 0xf3, 0x00, 0 }, { 0xf4, 0x32, 0 }, { 0xf5, 0x43, 0 },
{ 0xf6, 0x00, 0 }, { 0xf7, 0x00, 0 }, { 0xf8, 0x46, 0 },
{ 0xf9, 0xa4, 0 }, { 0xfa, 0x00, 0 }, { 0xfb, 0x00, 0 },
{ 0xfc, 0x96, 0 }, { 0xfd, 0xa4, 0 }, { 0xfe, 0x00, 0 },
{ 0xff, 0x00, 0 },
{ 0x58, 0x4b, 1 }, { 0x59, 0x00, 1 }, { 0x5a, 0x4b, 1 },
{ 0x5b, 0x00, 1 }, { 0x60, 0x4b, 1 }, { 0x61, 0x09, 1 },
{ 0x62, 0x4b, 1 }, { 0x63, 0x09, 1 }, { 0xce, 0x0f, 1 },
{ 0xcf, 0x00, 1 }, { 0xe0, 0xff, 1 }, { 0xe1, 0x0f, 1 },
{ 0xe2, 0x00, 1 }, { 0xf0, 0x4e, 1 }, { 0xf1, 0x01, 1 },
{ 0xf2, 0x02, 1 }, { 0xf3, 0x03, 1 }, { 0xf4, 0x04, 1 },
{ 0xf5, 0x05, 1 }, { 0xf6, 0x06, 1 }, { 0xf7, 0x07, 1 },
{ 0xf8, 0x08, 1 },
{ 0x4e, 0x00, 2 }, { 0x0c, 0x04, 2 }, { 0x21, 0x61, 2 },
{ 0x22, 0x68, 2 }, { 0x23, 0x6f, 2 }, { 0x24, 0x76, 2 },
{ 0x25, 0x7d, 2 }, { 0x26, 0x84, 2 }, { 0x27, 0x8d, 2 },
{ 0x4d, 0x08, 2 }, { 0x50, 0x05, 2 }, { 0x51, 0xf5, 2 },
{ 0x52, 0x04, 2 }, { 0x53, 0xa0, 2 }, { 0x54, 0x1f, 2 },
{ 0x55, 0x23, 2 }, { 0x56, 0x45, 2 }, { 0x57, 0x67, 2 },
{ 0x58, 0x08, 2 }, { 0x59, 0x08, 2 }, { 0x5a, 0x08, 2 },
{ 0x5b, 0x08, 2 }, { 0x60, 0x08, 2 }, { 0x61, 0x08, 2 },
{ 0x62, 0x08, 2 }, { 0x63, 0x08, 2 }, { 0x64, 0xcf, 2 },
{ 0x72, 0x56, 2 }, { 0x73, 0x9a, 2 },
{ 0x34, 0xf0, 0 }, { 0x35, 0x0f, 0 }, { 0x5b, 0x40, 0 },
{ 0x84, 0x88, 0 }, { 0x85, 0x24, 0 }, { 0x88, 0x54, 0 },
{ 0x8b, 0xb8, 0 }, { 0x8c, 0x07, 0 }, { 0x8d, 0x00, 0 },
{ 0x94, 0x1b, 0 }, { 0x95, 0x12, 0 }, { 0x96, 0x00, 0 },
{ 0x97, 0x06, 0 }, { 0x9d, 0x1a, 0 }, { 0x9f, 0x10, 0 },
{ 0xb4, 0x22, 0 }, { 0xbe, 0x80, 0 }, { 0xdb, 0x00, 0 },
{ 0xee, 0x00, 0 }, { 0x91, 0x03, 0 },
{ 0x4c, 0x00, 2 }, { 0x9f, 0x00, 3 }, { 0x8c, 0x01, 0 },
{ 0x8d, 0x10, 0 }, { 0x8e, 0x08, 0 }, { 0x8f, 0x00, 0 }
};
static uint8_t urtw_8225_agc[] = {
0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9e, 0x9d, 0x9c, 0x9b,
0x9a, 0x99, 0x98, 0x97, 0x96, 0x95, 0x94, 0x93, 0x92, 0x91, 0x90,
0x8f, 0x8e, 0x8d, 0x8c, 0x8b, 0x8a, 0x89, 0x88, 0x87, 0x86, 0x85,
0x84, 0x83, 0x82, 0x81, 0x80, 0x3f, 0x3e, 0x3d, 0x3c, 0x3b, 0x3a,
0x39, 0x38, 0x37, 0x36, 0x35, 0x34, 0x33, 0x32, 0x31, 0x30, 0x2f,
0x2e, 0x2d, 0x2c, 0x2b, 0x2a, 0x29, 0x28, 0x27, 0x26, 0x25, 0x24,
0x23, 0x22, 0x21, 0x20, 0x1f, 0x1e, 0x1d, 0x1c, 0x1b, 0x1a, 0x19,
0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e,
0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08, 0x07, 0x06, 0x05, 0x04, 0x03,
0x02, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01
};
static uint32_t urtw_8225_channel[] = {
0x0000, /* dummy channel 0 */
0x085c, /* 1 */
0x08dc, /* 2 */
0x095c, /* 3 */
0x09dc, /* 4 */
0x0a5c, /* 5 */
0x0adc, /* 6 */
0x0b5c, /* 7 */
0x0bdc, /* 8 */
0x0c5c, /* 9 */
0x0cdc, /* 10 */
0x0d5c, /* 11 */
0x0ddc, /* 12 */
0x0e5c, /* 13 */
0x0f72, /* 14 */
};
static uint8_t urtw_8225_gain[] = {
0x23, 0x88, 0x7c, 0xa5, /* -82dbm */
0x23, 0x88, 0x7c, 0xb5, /* -82dbm */
0x23, 0x88, 0x7c, 0xc5, /* -82dbm */
0x33, 0x80, 0x79, 0xc5, /* -78dbm */
0x43, 0x78, 0x76, 0xc5, /* -74dbm */
0x53, 0x60, 0x73, 0xc5, /* -70dbm */
0x63, 0x58, 0x70, 0xc5, /* -66dbm */
};
static struct urtw_pair urtw_8225_rf_part1[] = {
{ 0x00, 0x0067 }, { 0x01, 0x0fe0 }, { 0x02, 0x044d }, { 0x03, 0x0441 },
{ 0x04, 0x0486 }, { 0x05, 0x0bc0 }, { 0x06, 0x0ae6 }, { 0x07, 0x082a },
{ 0x08, 0x001f }, { 0x09, 0x0334 }, { 0x0a, 0x0fd4 }, { 0x0b, 0x0391 },
{ 0x0c, 0x0050 }, { 0x0d, 0x06db }, { 0x0e, 0x0029 }, { 0x0f, 0x0914 }
};
static struct urtw_pair urtw_8225_rf_part2[] = {
{ 0x00, 0x01 }, { 0x01, 0x02 }, { 0x02, 0x42 }, { 0x03, 0x00 },
{ 0x04, 0x00 }, { 0x05, 0x00 }, { 0x06, 0x40 }, { 0x07, 0x00 },
{ 0x08, 0x40 }, { 0x09, 0xfe }, { 0x0a, 0x09 }, { 0x0b, 0x80 },
{ 0x0c, 0x01 }, { 0x0e, 0xd3 }, { 0x0f, 0x38 }, { 0x10, 0x84 },
{ 0x11, 0x06 }, { 0x12, 0x20 }, { 0x13, 0x20 }, { 0x14, 0x00 },
{ 0x15, 0x40 }, { 0x16, 0x00 }, { 0x17, 0x40 }, { 0x18, 0xef },
{ 0x19, 0x19 }, { 0x1a, 0x20 }, { 0x1b, 0x76 }, { 0x1c, 0x04 },
{ 0x1e, 0x95 }, { 0x1f, 0x75 }, { 0x20, 0x1f }, { 0x21, 0x27 },
{ 0x22, 0x16 }, { 0x24, 0x46 }, { 0x25, 0x20 }, { 0x26, 0x90 },
{ 0x27, 0x88 }
};
static struct urtw_pair urtw_8225_rf_part3[] = {
{ 0x00, 0x98 }, { 0x03, 0x20 }, { 0x04, 0x7e }, { 0x05, 0x12 },
{ 0x06, 0xfc }, { 0x07, 0x78 }, { 0x08, 0x2e }, { 0x10, 0x9b },
{ 0x11, 0x88 }, { 0x12, 0x47 }, { 0x13, 0xd0 }, { 0x19, 0x00 },
{ 0x1a, 0xa0 }, { 0x1b, 0x08 }, { 0x40, 0x86 }, { 0x41, 0x8d },
{ 0x42, 0x15 }, { 0x43, 0x18 }, { 0x44, 0x1f }, { 0x45, 0x1e },
{ 0x46, 0x1a }, { 0x47, 0x15 }, { 0x48, 0x10 }, { 0x49, 0x0a },
{ 0x4a, 0x05 }, { 0x4b, 0x02 }, { 0x4c, 0x05 }
};
static uint16_t urtw_8225_rxgain[] = {
0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0408, 0x0409,
0x040a, 0x040b, 0x0502, 0x0503, 0x0504, 0x0505, 0x0540, 0x0541,
0x0542, 0x0543, 0x0544, 0x0545, 0x0580, 0x0581, 0x0582, 0x0583,
0x0584, 0x0585, 0x0588, 0x0589, 0x058a, 0x058b, 0x0643, 0x0644,
0x0645, 0x0680, 0x0681, 0x0682, 0x0683, 0x0684, 0x0685, 0x0688,
0x0689, 0x068a, 0x068b, 0x068c, 0x0742, 0x0743, 0x0744, 0x0745,
0x0780, 0x0781, 0x0782, 0x0783, 0x0784, 0x0785, 0x0788, 0x0789,
0x078a, 0x078b, 0x078c, 0x078d, 0x0790, 0x0791, 0x0792, 0x0793,
0x0794, 0x0795, 0x0798, 0x0799, 0x079a, 0x079b, 0x079c, 0x079d,
0x07a0, 0x07a1, 0x07a2, 0x07a3, 0x07a4, 0x07a5, 0x07a8, 0x07a9,
0x07aa, 0x07ab, 0x07ac, 0x07ad, 0x07b0, 0x07b1, 0x07b2, 0x07b3,
0x07b4, 0x07b5, 0x07b8, 0x07b9, 0x07ba, 0x07bb, 0x07bb
};
static uint8_t urtw_8225_threshold[] = {
0x8d, 0x8d, 0x8d, 0x8d, 0x9d, 0xad, 0xbd
};
static uint8_t urtw_8225_tx_gain_cck_ofdm[] = {
0x02, 0x06, 0x0e, 0x1e, 0x3e, 0x7e
};
static uint8_t urtw_8225_txpwr_cck[] = {
0x18, 0x17, 0x15, 0x11, 0x0c, 0x08, 0x04, 0x02,
0x1b, 0x1a, 0x17, 0x13, 0x0e, 0x09, 0x04, 0x02,
0x1f, 0x1e, 0x1a, 0x15, 0x10, 0x0a, 0x05, 0x02,
0x22, 0x21, 0x1d, 0x18, 0x11, 0x0b, 0x06, 0x02,
0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03,
0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03
};
static uint8_t urtw_8225_txpwr_cck_ch14[] = {
0x18, 0x17, 0x15, 0x0c, 0x00, 0x00, 0x00, 0x00,
0x1b, 0x1a, 0x17, 0x0e, 0x00, 0x00, 0x00, 0x00,
0x1f, 0x1e, 0x1a, 0x0f, 0x00, 0x00, 0x00, 0x00,
0x22, 0x21, 0x1d, 0x11, 0x00, 0x00, 0x00, 0x00,
0x26, 0x25, 0x21, 0x13, 0x00, 0x00, 0x00, 0x00,
0x2b, 0x2a, 0x25, 0x15, 0x00, 0x00, 0x00, 0x00
};
static uint8_t urtw_8225_txpwr_ofdm[] = {
0x80, 0x90, 0xa2, 0xb5, 0xcb, 0xe4
};
static uint8_t urtw_8225v2_agc[] = {
0x5e, 0x5e, 0x5e, 0x5e, 0x5d, 0x5b, 0x59, 0x57,
0x55, 0x53, 0x51, 0x4f, 0x4d, 0x4b, 0x49, 0x47,
0x45, 0x43, 0x41, 0x3f, 0x3d, 0x3b, 0x39, 0x37,
0x35, 0x33, 0x31, 0x2f, 0x2d, 0x2b, 0x29, 0x27,
0x25, 0x23, 0x21, 0x1f, 0x1d, 0x1b, 0x19, 0x17,
0x15, 0x13, 0x11, 0x0f, 0x0d, 0x0b, 0x09, 0x07,
0x05, 0x03, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01,
0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19, 0x19,
0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26,
0x26, 0x27, 0x27, 0x28, 0x28, 0x29, 0x2a, 0x2a,
0x2a, 0x2b, 0x2b, 0x2b, 0x2c, 0x2c, 0x2c, 0x2d,
0x2d, 0x2d, 0x2d, 0x2e, 0x2e, 0x2e, 0x2e, 0x2f,
0x2f, 0x2f, 0x30, 0x30, 0x31, 0x31, 0x31, 0x31,
0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31,
0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31, 0x31
};
static uint8_t urtw_8225v2_ofdm[] = {
0x10, 0x0d, 0x01, 0x00, 0x14, 0xfb, 0xfb, 0x60,
0x00, 0x60, 0x00, 0x00, 0x00, 0x5c, 0x00, 0x00,
0x40, 0x00, 0x40, 0x00, 0x00, 0x00, 0xa8, 0x26,
0x32, 0x33, 0x07, 0xa5, 0x6f, 0x55, 0xc8, 0xb3,
0x0a, 0xe1, 0x2c, 0x8a, 0x86, 0x83, 0x34, 0x0f,
0x4f, 0x24, 0x6f, 0xc2, 0x6b, 0x40, 0x80, 0x00,
0xc0, 0xc1, 0x58, 0xf1, 0x00, 0xe4, 0x90, 0x3e,
0x6d, 0x3c, 0xfb, 0x07
};
static uint8_t urtw_8225v2_gain_bg[] = {
0x23, 0x15, 0xa5, /* -82-1dbm */
0x23, 0x15, 0xb5, /* -82-2dbm */
0x23, 0x15, 0xc5, /* -82-3dbm */
0x33, 0x15, 0xc5, /* -78dbm */
0x43, 0x15, 0xc5, /* -74dbm */
0x53, 0x15, 0xc5, /* -70dbm */
0x63, 0x15, 0xc5, /* -66dbm */
};
static struct urtw_pair urtw_8225v2_rf_part1[] = {
{ 0x00, 0x02bf }, { 0x01, 0x0ee0 }, { 0x02, 0x044d }, { 0x03, 0x0441 },
{ 0x04, 0x08c3 }, { 0x05, 0x0c72 }, { 0x06, 0x00e6 }, { 0x07, 0x082a },
{ 0x08, 0x003f }, { 0x09, 0x0335 }, { 0x0a, 0x09d4 }, { 0x0b, 0x07bb },
{ 0x0c, 0x0850 }, { 0x0d, 0x0cdf }, { 0x0e, 0x002b }, { 0x0f, 0x0114 }
};
static struct urtw_pair urtw_8225v2_rf_part2[] = {
{ 0x00, 0x01 }, { 0x01, 0x02 }, { 0x02, 0x42 }, { 0x03, 0x00 },
{ 0x04, 0x00 }, { 0x05, 0x00 }, { 0x06, 0x40 }, { 0x07, 0x00 },
{ 0x08, 0x40 }, { 0x09, 0xfe }, { 0x0a, 0x08 }, { 0x0b, 0x80 },
{ 0x0c, 0x01 }, { 0x0d, 0x43 }, { 0x0e, 0xd3 }, { 0x0f, 0x38 },
{ 0x10, 0x84 }, { 0x11, 0x07 }, { 0x12, 0x20 }, { 0x13, 0x20 },
{ 0x14, 0x00 }, { 0x15, 0x40 }, { 0x16, 0x00 }, { 0x17, 0x40 },
{ 0x18, 0xef }, { 0x19, 0x19 }, { 0x1a, 0x20 }, { 0x1b, 0x15 },
{ 0x1c, 0x04 }, { 0x1d, 0xc5 }, { 0x1e, 0x95 }, { 0x1f, 0x75 },
{ 0x20, 0x1f }, { 0x21, 0x17 }, { 0x22, 0x16 }, { 0x23, 0x80 },
{ 0x24, 0x46 }, { 0x25, 0x00 }, { 0x26, 0x90 }, { 0x27, 0x88 }
};
static struct urtw_pair urtw_8225v2_rf_part3[] = {
{ 0x00, 0x98 }, { 0x03, 0x20 }, { 0x04, 0x7e }, { 0x05, 0x12 },
{ 0x06, 0xfc }, { 0x07, 0x78 }, { 0x08, 0x2e }, { 0x09, 0x11 },
{ 0x0a, 0x17 }, { 0x0b, 0x11 }, { 0x10, 0x9b }, { 0x11, 0x88 },
{ 0x12, 0x47 }, { 0x13, 0xd0 }, { 0x19, 0x00 }, { 0x1a, 0xa0 },
{ 0x1b, 0x08 }, { 0x1d, 0x00 }, { 0x40, 0x86 }, { 0x41, 0x9d },
{ 0x42, 0x15 }, { 0x43, 0x18 }, { 0x44, 0x36 }, { 0x45, 0x35 },
{ 0x46, 0x2e }, { 0x47, 0x25 }, { 0x48, 0x1c }, { 0x49, 0x12 },
{ 0x4a, 0x09 }, { 0x4b, 0x04 }, { 0x4c, 0x05 }
};
static uint16_t urtw_8225v2_rxgain[] = {
0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0408, 0x0409,
0x040a, 0x040b, 0x0502, 0x0503, 0x0504, 0x0505, 0x0540, 0x0541,
0x0542, 0x0543, 0x0544, 0x0545, 0x0580, 0x0581, 0x0582, 0x0583,
0x0584, 0x0585, 0x0588, 0x0589, 0x058a, 0x058b, 0x0643, 0x0644,
0x0645, 0x0680, 0x0681, 0x0682, 0x0683, 0x0684, 0x0685, 0x0688,
0x0689, 0x068a, 0x068b, 0x068c, 0x0742, 0x0743, 0x0744, 0x0745,
0x0780, 0x0781, 0x0782, 0x0783, 0x0784, 0x0785, 0x0788, 0x0789,
0x078a, 0x078b, 0x078c, 0x078d, 0x0790, 0x0791, 0x0792, 0x0793,
0x0794, 0x0795, 0x0798, 0x0799, 0x079a, 0x079b, 0x079c, 0x079d,
0x07a0, 0x07a1, 0x07a2, 0x07a3, 0x07a4, 0x07a5, 0x07a8, 0x07a9,
0x03aa, 0x03ab, 0x03ac, 0x03ad, 0x03b0, 0x03b1, 0x03b2, 0x03b3,
0x03b4, 0x03b5, 0x03b8, 0x03b9, 0x03ba, 0x03bb, 0x03bb
};
static uint8_t urtw_8225v2_tx_gain_cck_ofdm[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b,
0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d,
0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23
};
static uint8_t urtw_8225v2_txpwr_cck[] = {
0x36, 0x35, 0x2e, 0x25, 0x1c, 0x12, 0x09, 0x04,
0x30, 0x2f, 0x29, 0x21, 0x19, 0x10, 0x08, 0x03,
0x2b, 0x2a, 0x25, 0x1e, 0x16, 0x0e, 0x07, 0x03,
0x26, 0x25, 0x21, 0x1b, 0x14, 0x0d, 0x06, 0x03
};
static uint8_t urtw_8225v2_txpwr_cck_ch14[] = {
0x36, 0x35, 0x2e, 0x1b, 0x00, 0x00, 0x00, 0x00,
0x30, 0x2f, 0x29, 0x15, 0x00, 0x00, 0x00, 0x00,
0x30, 0x2f, 0x29, 0x15, 0x00, 0x00, 0x00, 0x00,
0x30, 0x2f, 0x29, 0x15, 0x00, 0x00, 0x00, 0x00
};
static struct urtw_pair urtw_8225v2_b_rf[] = {
{ 0x00, 0x00b7 }, { 0x01, 0x0ee0 }, { 0x02, 0x044d }, { 0x03, 0x0441 },
{ 0x04, 0x08c3 }, { 0x05, 0x0c72 }, { 0x06, 0x00e6 }, { 0x07, 0x082a },
{ 0x08, 0x003f }, { 0x09, 0x0335 }, { 0x0a, 0x09d4 }, { 0x0b, 0x07bb },
{ 0x0c, 0x0850 }, { 0x0d, 0x0cdf }, { 0x0e, 0x002b }, { 0x0f, 0x0114 },
{ 0x00, 0x01b7 }
};
static struct urtw_pair urtw_ratetable[] = {
{ 2, 0 }, { 4, 1 }, { 11, 2 }, { 12, 4 }, { 18, 5 },
{ 22, 3 }, { 24, 6 }, { 36, 7 }, { 48, 8 }, { 72, 9 },
{ 96, 10 }, { 108, 11 }
};
static int urtw_init(struct ifnet *);
static void urtw_stop(struct ifnet *, int);
static int urtw_ioctl(struct ifnet *, u_long, void *);
static void urtw_start(struct ifnet *);
static int urtw_alloc_rx_data_list(struct urtw_softc *);
static void urtw_free_rx_data_list(struct urtw_softc *);
static int urtw_alloc_tx_data_list(struct urtw_softc *);
static void urtw_free_tx_data_list(struct urtw_softc *);
static void urtw_rxeof(struct usbd_xfer *, void *,
usbd_status);
static int urtw_tx_start(struct urtw_softc *,
struct ieee80211_node *, struct mbuf *, int);
static void urtw_txeof_low(struct usbd_xfer *, void *,
usbd_status);
static void urtw_txeof_normal(struct usbd_xfer *, void *,
usbd_status);
static void urtw_next_scan(void *);
static void urtw_task(void *);
static void urtw_ledusbtask(void *);
static void urtw_ledtask(void *);
static int urtw_media_change(struct ifnet *);
static int urtw_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void urtw_watchdog(struct ifnet *);
static void urtw_set_chan(struct urtw_softc *, struct ieee80211_channel *);
static int urtw_isbmode(uint16_t);
static uint16_t urtw_rate2rtl(int);
static uint16_t urtw_rtl2rate(int);
static usbd_status urtw_set_rate(struct urtw_softc *);
static usbd_status urtw_update_msr(struct urtw_softc *);
static usbd_status urtw_read8_c(struct urtw_softc *, int, uint8_t *, uint8_t);
static usbd_status urtw_read16_c(struct urtw_softc *, int, uint16_t *, uint8_t);
static usbd_status urtw_read32_c(struct urtw_softc *, int, uint32_t *, uint8_t);
static usbd_status urtw_write8_c(struct urtw_softc *, int, uint8_t, uint8_t);
static usbd_status urtw_write16_c(struct urtw_softc *, int, uint16_t, uint8_t);
static usbd_status urtw_write32_c(struct urtw_softc *, int, uint32_t, uint8_t);
static usbd_status urtw_eprom_cs(struct urtw_softc *, int);
static usbd_status urtw_eprom_ck(struct urtw_softc *);
static usbd_status urtw_eprom_sendbits(struct urtw_softc *, int16_t *,
int);
static usbd_status urtw_eprom_read32(struct urtw_softc *, uint32_t,
uint32_t *);
static usbd_status urtw_eprom_readbit(struct urtw_softc *, int16_t *);
static usbd_status urtw_eprom_writebit(struct urtw_softc *, int16_t);
static usbd_status urtw_get_macaddr(struct urtw_softc *);
static usbd_status urtw_get_txpwr(struct urtw_softc *);
static usbd_status urtw_get_rfchip(struct urtw_softc *);
static usbd_status urtw_led_init(struct urtw_softc *);
static usbd_status urtw_8185_rf_pins_enable(struct urtw_softc *);
static usbd_status urtw_8185_tx_antenna(struct urtw_softc *, uint8_t);
static usbd_status urtw_8187_write_phy(struct urtw_softc *, uint8_t, uint32_t);
static usbd_status urtw_8187_write_phy_ofdm_c(struct urtw_softc *, uint8_t,
uint32_t);
static usbd_status urtw_8187_write_phy_cck_c(struct urtw_softc *, uint8_t,
uint32_t);
static usbd_status urtw_8225_setgain(struct urtw_softc *, int16_t);
static usbd_status urtw_8225_usb_init(struct urtw_softc *);
static usbd_status urtw_8225_write_c(struct urtw_softc *, uint8_t, uint16_t);
static usbd_status urtw_8225_write_s16(struct urtw_softc *, uint8_t, int,
uint16_t);
static usbd_status urtw_8225_read(struct urtw_softc *, uint8_t, uint32_t *);
static usbd_status urtw_8225_rf_init(struct urtw_rf *);
static usbd_status urtw_8225_rf_set_chan(struct urtw_rf *, int);
static usbd_status urtw_8225_rf_set_sens(struct urtw_rf *);
static usbd_status urtw_8225_set_txpwrlvl(struct urtw_softc *, int);
static usbd_status urtw_8225v2_rf_init(struct urtw_rf *);
static usbd_status urtw_8225v2_rf_set_chan(struct urtw_rf *, int);
static usbd_status urtw_8225v2_set_txpwrlvl(struct urtw_softc *, int);
static usbd_status urtw_8225v2_setgain(struct urtw_softc *, int16_t);
static usbd_status urtw_8225_isv2(struct urtw_softc *, int *);
static usbd_status urtw_read8e(struct urtw_softc *, int, uint8_t *);
static usbd_status urtw_write8e(struct urtw_softc *, int, uint8_t);
static usbd_status urtw_8180_set_anaparam(struct urtw_softc *, uint32_t);
static usbd_status urtw_8185_set_anaparam2(struct urtw_softc *, uint32_t);
static usbd_status urtw_open_pipes(struct urtw_softc *);
static usbd_status urtw_close_pipes(struct urtw_softc *);
static usbd_status urtw_intr_enable(struct urtw_softc *);
static usbd_status urtw_intr_disable(struct urtw_softc *);
static usbd_status urtw_reset(struct urtw_softc *);
static usbd_status urtw_led_on(struct urtw_softc *, int);
static usbd_status urtw_led_ctl(struct urtw_softc *, int);
static usbd_status urtw_led_blink(struct urtw_softc *);
static usbd_status urtw_led_mode0(struct urtw_softc *, int);
static usbd_status urtw_led_mode1(struct urtw_softc *, int);
static usbd_status urtw_led_mode2(struct urtw_softc *, int);
static usbd_status urtw_led_mode3(struct urtw_softc *, int);
static usbd_status urtw_rx_setconf(struct urtw_softc *);
static usbd_status urtw_rx_enable(struct urtw_softc *);
static usbd_status urtw_tx_enable(struct urtw_softc *);
static usbd_status urtw_8187b_update_wmm(struct urtw_softc *);
static usbd_status urtw_8187b_reset(struct urtw_softc *);
static int urtw_8187b_init(struct ifnet *);
static usbd_status urtw_8225v2_b_config_mac(struct urtw_softc *);
static usbd_status urtw_8225v2_b_init_rfe(struct urtw_softc *);
static usbd_status urtw_8225v2_b_update_chan(struct urtw_softc *);
static usbd_status urtw_8225v2_b_rf_init(struct urtw_rf *);
static usbd_status urtw_8225v2_b_rf_set_chan(struct urtw_rf *, int);
static usbd_status urtw_8225v2_b_set_txpwrlvl(struct urtw_softc *, int);
static int urtw_set_bssid(struct urtw_softc *, const uint8_t *);
static int urtw_set_macaddr(struct urtw_softc *, const uint8_t *);
static int urtw_match(device_t, cfdata_t, void *);
static void urtw_attach(device_t, device_t, void *);
static int urtw_detach(device_t, int);
static int urtw_activate(device_t, enum devact);
CFATTACH_DECL_NEW(urtw, sizeof(struct urtw_softc),
urtw_match,
urtw_attach,
urtw_detach,
urtw_activate
);
static int
urtw_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return urtw_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
static void
urtw_attach(device_t parent, device_t self, void *aux)
{
struct urtw_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usbd_status error;
uint8_t data8;
uint32_t data;
int i;
sc->sc_dev = self;
sc->sc_udev = uaa->uaa_device;
sc->sc_hwrev = urtw_lookup(uaa->uaa_vendor, uaa->uaa_product)->rev;
sc->sc_init_state = URTW_INIT_NONE;
aprint_naive("\n");
aprint_normal(": ");
if (sc->sc_hwrev & URTW_HWREV_8187) {
urtw_read32_m(sc, URTW_TX_CONF, &data);
data &= URTW_TX_HWREV_MASK;
switch (data) {
case URTW_TX_HWREV_8187_D:
sc->sc_hwrev |= URTW_HWREV_8187_D;
aprint_normal("RTL8187 rev D");
break;
case URTW_TX_HWREV_8187B_D:
/*
* Detect Realtek RTL8187B devices that use
* USB IDs of RTL8187.
*/
sc->sc_hwrev = URTW_HWREV_8187B | URTW_HWREV_8187B_B;
aprint_normal("RTL8187B rev B (early)");
break;
default:
sc->sc_hwrev |= URTW_HWREV_8187_B;
aprint_normal("RTL8187 rev 0x%02x", data >> 25);
break;
}
} else {
/* RTL8187B hwrev register. */
urtw_read8_m(sc, URTW_8187B_HWREV, &data8);
switch (data8) {
case URTW_8187B_HWREV_8187B_B:
sc->sc_hwrev |= URTW_HWREV_8187B_B;
aprint_normal("RTL8187B rev B");
break;
case URTW_8187B_HWREV_8187B_D:
sc->sc_hwrev |= URTW_HWREV_8187B_D;
aprint_normal("RTL8187B rev D");
break;
case URTW_8187B_HWREV_8187B_E:
sc->sc_hwrev |= URTW_HWREV_8187B_E;
aprint_normal("RTL8187B rev E");
break;
default:
sc->sc_hwrev |= URTW_HWREV_8187B_B;
aprint_normal("RTL8187B rev 0x%02x", data8);
break;
}
}
urtw_read32_m(sc, URTW_RX, &data);
sc->sc_epromtype = (data & URTW_RX_9356SEL) ? URTW_EEPROM_93C56 :
URTW_EEPROM_93C46;
error = urtw_get_rfchip(sc);
if (error != 0)
goto fail;
error = urtw_get_macaddr(sc);
if (error != 0)
goto fail;
error = urtw_get_txpwr(sc);
if (error != 0)
goto fail;
error = urtw_led_init(sc); /* XXX incompleted */
if (error != 0)
goto fail;
sc->sc_rts_retry = URTW_DEFAULT_RTS_RETRY;
sc->sc_tx_retry = URTW_DEFAULT_TX_RETRY;
sc->sc_currate = 3;
/* XXX for what? */
sc->sc_preamble_mode = 2;
usb_init_task(&sc->sc_task, urtw_task, sc, 0);
usb_init_task(&sc->sc_ledtask, urtw_ledusbtask, sc, 0);
callout_init(&sc->scan_to, 0);
callout_setfunc(&sc->scan_to, urtw_next_scan, sc);
callout_init(&sc->sc_led_ch, 0);
callout_setfunc(&sc->sc_led_ch, urtw_ledtask, sc);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WEP | /* s/w WEP */
IEEE80211_C_WPA; /* WPA/RSN */
/* set supported .11b and .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
/* set supported .11b and .11g channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
if (sc->sc_hwrev & URTW_HWREV_8187) {
ifp->if_init = urtw_init;
} else {
ifp->if_init = urtw_8187b_init;
}
ifp->if_ioctl = urtw_ioctl;
ifp->if_start = urtw_start;
ifp->if_watchdog = urtw_watchdog;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = urtw_newstate;
/* XXX media locking needs revisiting */
mutex_init(&sc->sc_media_mtx, MUTEX_DEFAULT, IPL_SOFTUSB);
ieee80211_media_init_with_lock(ic,
urtw_media_change, ieee80211_media_status, &sc->sc_media_mtx);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(URTW_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(URTW_TX_RADIOTAP_PRESENT);
aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
ieee80211_announce(ic);
sc->sc_init_state = URTW_INIT_INITED;
return;
fail:
aprint_error(": %s failed!\n", __func__);
sc->sc_dying = true;
}
static int
urtw_detach(device_t self, int flags)
{
struct urtw_softc *sc = device_private(self);
struct ifnet *ifp = &sc->sc_if;
int s;
s = splusb();
sc->sc_dying = true;
if (sc->sc_init_state < URTW_INIT_INITED)
goto out;
callout_halt(&sc->scan_to, NULL);
callout_halt(&sc->sc_led_ch, NULL);
callout_destroy(&sc->scan_to);
callout_destroy(&sc->sc_led_ch);
usb_rem_task_wait(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER, NULL);
usb_rem_task_wait(sc->sc_udev, &sc->sc_ledtask, USB_TASKQ_DRIVER,
NULL);
if (ifp->if_softc != NULL) {
bpf_detach(ifp);
ieee80211_ifdetach(&sc->sc_ic); /* free all nodes */
if_detach(ifp);
}
/* abort and free xfers */
urtw_free_tx_data_list(sc);
urtw_free_rx_data_list(sc);
urtw_close_pipes(sc);
out:
splx(s);
return 0;
}
static int
urtw_activate(device_t self, enum devact act)
{
struct urtw_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = true;
break;
}
return 0;
}
static usbd_status
urtw_close_pipes(struct urtw_softc *sc)
{
usbd_status error = 0;
if (sc->sc_rxpipe != NULL) {
error = usbd_close_pipe(sc->sc_rxpipe);
if (error != 0)
goto fail;
sc->sc_rxpipe = NULL;
}
if (sc->sc_txpipe_low != NULL) {
error = usbd_close_pipe(sc->sc_txpipe_low);
if (error != 0)
goto fail;
sc->sc_txpipe_low = NULL;
}
if (sc->sc_txpipe_normal != NULL) {
error = usbd_close_pipe(sc->sc_txpipe_normal);
if (error != 0)
goto fail;
sc->sc_txpipe_normal = NULL;
}
fail:
return error;
}
static usbd_status
urtw_open_pipes(struct urtw_softc *sc)
{
usbd_status error;
/*
* NB: there is no way to distinguish each pipes so we need to hardcode
* pipe numbers
*/
/* tx pipe - low priority packets */
if (sc->sc_hwrev & URTW_HWREV_8187)
error = usbd_open_pipe(sc->sc_iface, 0x2,
USBD_EXCLUSIVE_USE, &sc->sc_txpipe_low);
else
error = usbd_open_pipe(sc->sc_iface, 0x6,
USBD_EXCLUSIVE_USE, &sc->sc_txpipe_low);
if (error != 0) {
printf("%s: could not open Tx low pipe: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* tx pipe - normal priority packets */
if (sc->sc_hwrev & URTW_HWREV_8187)
error = usbd_open_pipe(sc->sc_iface, 0x3,
USBD_EXCLUSIVE_USE, &sc->sc_txpipe_normal);
else
error = usbd_open_pipe(sc->sc_iface, 0x7,
USBD_EXCLUSIVE_USE, &sc->sc_txpipe_normal);
if (error != 0) {
printf("%s: could not open Tx normal pipe: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
/* rx pipe */
if (sc->sc_hwrev & URTW_HWREV_8187)
error = usbd_open_pipe(sc->sc_iface, 0x81,
USBD_EXCLUSIVE_USE, &sc->sc_rxpipe);
else
error = usbd_open_pipe(sc->sc_iface, 0x83,
USBD_EXCLUSIVE_USE, &sc->sc_rxpipe);
if (error != 0) {
printf("%s: could not open Rx pipe: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
goto fail;
}
return 0;
fail:
(void)urtw_close_pipes(sc);
return error;
}
static int
urtw_alloc_rx_data_list(struct urtw_softc *sc)
{
int i, error;
for (i = 0; i < URTW_RX_DATA_LIST_COUNT; i++) {
struct urtw_rx_data *data = &sc->sc_rx_data[i];
data->sc = sc;
error = usbd_create_xfer(sc->sc_rxpipe, MCLBYTES,
0, 0, &data->xfer);
if (error) {
printf("%s: could not allocate rx xfer\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
printf("%s: could not allocate rx mbuf\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
device_xname(sc->sc_dev));
error = ENOMEM;
goto fail;
}
data->buf = mtod(data->m, uint8_t *);
}
return 0;
fail:
urtw_free_rx_data_list(sc);
return error;
}
static void
urtw_free_rx_data_list(struct urtw_softc *sc)
{
int i;
/* Make sure no transfers are pending. */
if (sc->sc_rxpipe != NULL)
usbd_abort_pipe(sc->sc_rxpipe);
for (i = 0; i < URTW_RX_DATA_LIST_COUNT; i++) {
struct urtw_rx_data *data = &sc->sc_rx_data[i];
if (data->xfer != NULL) {
usbd_destroy_xfer(data->xfer);
data->xfer = NULL;
}
if (data->m != NULL) {
m_freem(data->m);
data->m = NULL;
}
}
}
static int
urtw_alloc_tx_data_list(struct urtw_softc *sc)
{
int i, error;
for (size_t j = 0; j < URTW_PRIORITY_MAX; j++) {
for (i = 0; i < URTW_TX_DATA_LIST_COUNT; i++) {
struct urtw_tx_data *data = &sc->sc_tx_data[j][i];
data->sc = sc;
data->ni = NULL;
error = usbd_create_xfer((j == URTW_PRIORITY_LOW) ?
sc->sc_txpipe_low : sc->sc_txpipe_normal,
URTW_TX_MAXSIZE, USBD_FORCE_SHORT_XFER, 0,
&data->xfer);
if (error) {
printf("%s: could not allocate tx xfer\n",
device_xname(sc->sc_dev));
goto fail;
}
data->buf = usbd_get_buffer(data->xfer);
if (((unsigned long)data->buf) % 4)
printf("%s: warn: unaligned buffer %p\n",
device_xname(sc->sc_dev), data->buf);
}
}
return 0;
fail:
urtw_free_tx_data_list(sc);
return error;
}
static void
urtw_free_tx_data_list(struct urtw_softc *sc)
{
int i;
/* Make sure no transfers are pending. */
if (sc->sc_txpipe_low != NULL)
usbd_abort_pipe(sc->sc_txpipe_low);
if (sc->sc_txpipe_normal != NULL)
usbd_abort_pipe(sc->sc_txpipe_normal);
for (size_t j = 0; j < URTW_PRIORITY_MAX; j++) {
for (i = 0; i < URTW_TX_DATA_LIST_COUNT; i++) {
struct urtw_tx_data *data = &sc->sc_tx_data[j][i];
if (data->xfer != NULL) {
usbd_destroy_xfer(data->xfer);
data->xfer = NULL;
}
if (data->ni != NULL) {
ieee80211_free_node(data->ni);
data->ni = NULL;
}
}
}
}
static int
urtw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
ifp->if_init(ifp);
return 0;
}
static int
urtw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct urtw_softc *sc = ic->ic_ifp->if_softc;
/*
* XXXSMP: This does not wait for the task, if it is in flight,
* to complete. If this code works at all, it must rely on the
* kernel lock to serialize with the USB task thread.
*/
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_stop(&sc->scan_to);
/* do it in a process context */
sc->sc_state = nstate;
sc->sc_arg = arg;
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
return 0;
}
static usbd_status
urtw_led_init(struct urtw_softc *sc)
{
uint32_t rev;
usbd_status error;
urtw_read8_m(sc, URTW_PSR, &sc->sc_psr);
error = urtw_eprom_read32(sc, URTW_EPROM_SWREV, &rev);
if (error != 0)
goto fail;
switch (rev & URTW_EPROM_CID_MASK) {
case URTW_EPROM_CID_ALPHA0:
sc->sc_strategy = URTW_SW_LED_MODE1;
break;
case URTW_EPROM_CID_SERCOMM_PS:
sc->sc_strategy = URTW_SW_LED_MODE3;
break;
case URTW_EPROM_CID_HW_LED:
sc->sc_strategy = URTW_HW_LED;
break;
case URTW_EPROM_CID_RSVD0:
case URTW_EPROM_CID_RSVD1:
default:
sc->sc_strategy = URTW_SW_LED_MODE0;
break;
}
sc->sc_gpio_ledpin = URTW_LED_PIN_GPIO0;
fail:
return error;
}
static usbd_status
urtw_8225_write_s16(struct urtw_softc *sc, uint8_t addr, int index,
uint16_t data)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = URTW_8187_SETREGS_REQ;
USETW(req.wValue, addr);
USETW(req.wIndex, index);
USETW(req.wLength, sizeof(uint16_t));
return usbd_do_request(sc->sc_udev, &req, &data);
}
static usbd_status
urtw_8225_read(struct urtw_softc *sc, uint8_t addr, uint32_t *data)
{
int i;
int16_t bit;
uint8_t rlen = 12, wlen = 6;
uint16_t o1, o2, o3, tmp;
uint32_t d2w = ((uint32_t)(addr & 0x1f)) << 27;
uint32_t mask = 0x80000000, value = 0;
usbd_status error;
urtw_read16_m(sc, URTW_RF_PINS_OUTPUT, &o1);
urtw_read16_m(sc, URTW_RF_PINS_ENABLE, &o2);
urtw_read16_m(sc, URTW_RF_PINS_SELECT, &o3);
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, o2 | 0xf);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, o3 | 0xf);
o1 &= ~0xf;
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_EN);
DELAY(5);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1);
DELAY(5);
for (i = 0; i < (wlen / 2); i++, mask = mask >> 1) {
bit = ((d2w & mask) != 0) ? 1 : 0;
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 |
URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 |
URTW_BB_HOST_BANG_CLK);
DELAY(2);
mask = mask >> 1;
if (i == 2)
break;
bit = ((d2w & mask) != 0) ? 1 : 0;
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 |
URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 |
URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1);
DELAY(1);
}
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_RW |
URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, bit | o1 | URTW_BB_HOST_BANG_RW);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_RW);
DELAY(2);
mask = 0x800;
for (i = 0; i < rlen; i++, mask = mask >> 1) {
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT,
o1 | URTW_BB_HOST_BANG_RW);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT,
o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT,
o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT,
o1 | URTW_BB_HOST_BANG_RW | URTW_BB_HOST_BANG_CLK);
DELAY(2);
urtw_read16_m(sc, URTW_RF_PINS_INPUT, &tmp);
value |= ((tmp & URTW_BB_HOST_BANG_CLK) ? mask : 0);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT,
o1 | URTW_BB_HOST_BANG_RW);
DELAY(2);
}
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, o1 | URTW_BB_HOST_BANG_EN |
URTW_BB_HOST_BANG_RW);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, o2);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, o3);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, 0x3a0);
if (data != NULL)
*data = value;
fail:
return error;
}
static usbd_status
urtw_8225_write_c(struct urtw_softc *sc, uint8_t addr, uint16_t data)
{
uint16_t d80, d82, d84;
usbd_status error;
urtw_read16_m(sc, URTW_RF_PINS_OUTPUT, &d80);
d80 &= 0xfff3;
urtw_read16_m(sc, URTW_RF_PINS_ENABLE, &d82);
urtw_read16_m(sc, URTW_RF_PINS_SELECT, &d84);
d84 &= 0xfff0;
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, d82 | 0x0007);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, d84 | 0x0007);
DELAY(10);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80 | URTW_BB_HOST_BANG_EN);
DELAY(2);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80);
DELAY(10);
error = urtw_8225_write_s16(sc, addr, 0x8225, data);
if (error != 0)
goto fail;
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80 | URTW_BB_HOST_BANG_EN);
DELAY(10);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, d80 | URTW_BB_HOST_BANG_EN);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, d84);
usbd_delay_ms(sc->sc_udev, 2);
fail:
return error;
}
static usbd_status
urtw_8225_isv2(struct urtw_softc *sc, int *ret)
{
uint32_t data;
usbd_status error;
*ret = 1;
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, 0x0080);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, 0x0080);
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x0080);
usbd_delay_ms(sc->sc_udev, 500);
urtw_8225_write(sc, 0x0, 0x1b7);
error = urtw_8225_read(sc, 0x8, &data);
if (error != 0)
goto fail;
if (data != 0x588)
*ret = 0;
else {
error = urtw_8225_read(sc, 0x9, &data);
if (error != 0)
goto fail;
if (data != 0x700)
*ret = 0;
}
urtw_8225_write(sc, 0x0, 0xb7);
fail:
return error;
}
static usbd_status
urtw_get_rfchip(struct urtw_softc *sc)
{
struct urtw_rf *rf = &sc->sc_rf;
int ret;
uint32_t data;
usbd_status error;
rf->rf_sc = sc;
if (sc->sc_hwrev & URTW_HWREV_8187) {
error = urtw_eprom_read32(sc, URTW_EPROM_RFCHIPID, &data);
if (error != 0)
return error;
switch (data & 0xff) {
case URTW_EPROM_RFCHIPID_RTL8225U:
error = urtw_8225_isv2(sc, &ret);
if (error != 0)
goto fail;
if (ret == 0) {
rf->init = urtw_8225_rf_init;
rf->set_chan = urtw_8225_rf_set_chan;
rf->set_sens = urtw_8225_rf_set_sens;
printf(", RFv1");
} else {
rf->init = urtw_8225v2_rf_init;
rf->set_chan = urtw_8225v2_rf_set_chan;
rf->set_sens = NULL;
printf(", RFv2");
}
break;
default:
goto fail;
}
} else {
rf->init = urtw_8225v2_b_rf_init;
rf->set_chan = urtw_8225v2_b_rf_set_chan;
rf->set_sens = NULL;
}
rf->max_sens = URTW_8225_RF_MAX_SENS;
rf->sens = URTW_8225_RF_DEF_SENS;
return 0;
fail:
aprint_error(": unsupported RF chip %d", data & 0xff);
return USBD_INVAL;
}
static usbd_status
urtw_get_txpwr(struct urtw_softc *sc)
{
int i, j;
uint32_t data;
usbd_status error;
error = urtw_eprom_read32(sc, URTW_EPROM_TXPW_BASE, &data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck_base = data & 0xf;
sc->sc_txpwr_ofdm_base = (data >> 4) & 0xf;
for (i = 1, j = 0; i < 6; i += 2, j++) {
error = urtw_eprom_read32(sc, URTW_EPROM_TXPW0 + j, &data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck[i] = data & 0xf;
sc->sc_txpwr_cck[i + 1] = (data & 0xf00) >> 8;
sc->sc_txpwr_ofdm[i] = (data & 0xf0) >> 4;
sc->sc_txpwr_ofdm[i + 1] = (data & 0xf000) >> 12;
}
for (i = 1, j = 0; i < 4; i += 2, j++) {
error = urtw_eprom_read32(sc, URTW_EPROM_TXPW1 + j, &data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck[i + 6] = data & 0xf;
sc->sc_txpwr_cck[i + 6 + 1] = (data & 0xf00) >> 8;
sc->sc_txpwr_ofdm[i + 6] = (data & 0xf0) >> 4;
sc->sc_txpwr_ofdm[i + 6 + 1] = (data & 0xf000) >> 12;
}
if (sc->sc_hwrev & URTW_HWREV_8187) {
for (i = 1, j = 0; i < 4; i += 2, j++) {
error = urtw_eprom_read32(sc, URTW_EPROM_TXPW2 + j,
&data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck[i + 6 + 4] = data & 0xf;
sc->sc_txpwr_cck[i + 6 + 4 + 1] = (data & 0xf00) >> 8;
sc->sc_txpwr_ofdm[i + 6 + 4] = (data & 0xf0) >> 4;
sc->sc_txpwr_ofdm[i + 6 + 4 + 1] =
(data & 0xf000) >> 12;
}
} else {
/* Channel 11. */
error = urtw_eprom_read32(sc, 0x1b, &data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck[11] = data & 0xf;
sc->sc_txpwr_ofdm[11] = (data & 0xf0) >> 4;
/* Channel 12. */
error = urtw_eprom_read32(sc, 0xa, &data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck[12] = data & 0xf;
sc->sc_txpwr_ofdm[12] = (data & 0xf0) >> 4;
/* Channel 13, 14. */
error = urtw_eprom_read32(sc, 0x1c, &data);
if (error != 0)
goto fail;
sc->sc_txpwr_cck[13] = data & 0xf;
sc->sc_txpwr_ofdm[13] = (data & 0xf0) >> 4;
sc->sc_txpwr_cck[14] = (data & 0xf00) >> 8;
sc->sc_txpwr_ofdm[14] = (data & 0xf000) >> 12;
}
fail:
return error;
}
static usbd_status
urtw_get_macaddr(struct urtw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
usbd_status error;
uint32_t data;
error = urtw_eprom_read32(sc, URTW_EPROM_MACADDR, &data);
if (error != 0)
goto fail;
ic->ic_myaddr[0] = data & 0xff;
ic->ic_myaddr[1] = (data & 0xff00) >> 8;
error = urtw_eprom_read32(sc, URTW_EPROM_MACADDR + 1, &data);
if (error != 0)
goto fail;
ic->ic_myaddr[2] = data & 0xff;
ic->ic_myaddr[3] = (data & 0xff00) >> 8;
error = urtw_eprom_read32(sc, URTW_EPROM_MACADDR + 2, &data);
if (error != 0)
goto fail;
ic->ic_myaddr[4] = data & 0xff;
ic->ic_myaddr[5] = (data & 0xff00) >> 8;
fail:
return error;
}
static usbd_status
urtw_eprom_read32(struct urtw_softc *sc, uint32_t addr, uint32_t *data)
{
#define URTW_READCMD_LEN 3
int addrlen, i;
int16_t addrstr[8], data16, readcmd[] = { 1, 1, 0 };
usbd_status error;
/* NB: make sure the buffer is initialized */
*data = 0;
/* enable EPROM programming */
urtw_write8_m(sc, URTW_EPROM_CMD, URTW_EPROM_CMD_PROGRAM_MODE);
DELAY(URTW_EPROM_DELAY);
error = urtw_eprom_cs(sc, URTW_EPROM_ENABLE);
if (error != 0)
goto fail;
error = urtw_eprom_ck(sc);
if (error != 0)
goto fail;
error = urtw_eprom_sendbits(sc, readcmd, URTW_READCMD_LEN);
if (error != 0)
goto fail;
if (sc->sc_epromtype == URTW_EEPROM_93C56) {
addrlen = 8;
addrstr[0] = addr & (1 << 7);
addrstr[1] = addr & (1 << 6);
addrstr[2] = addr & (1 << 5);
addrstr[3] = addr & (1 << 4);
addrstr[4] = addr & (1 << 3);
addrstr[5] = addr & (1 << 2);
addrstr[6] = addr & (1 << 1);
addrstr[7] = addr & (1 << 0);
} else {
addrlen=6;
addrstr[0] = addr & (1 << 5);
addrstr[1] = addr & (1 << 4);
addrstr[2] = addr & (1 << 3);
addrstr[3] = addr & (1 << 2);
addrstr[4] = addr & (1 << 1);
addrstr[5] = addr & (1 << 0);
}
error = urtw_eprom_sendbits(sc, addrstr, addrlen);
if (error != 0)
goto fail;
error = urtw_eprom_writebit(sc, 0);
if (error != 0)
goto fail;
for (i = 0; i < 16; i++) {
error = urtw_eprom_ck(sc);
if (error != 0)
goto fail;
error = urtw_eprom_readbit(sc, &data16);
if (error != 0)
goto fail;
(*data) |= (data16 << (15 - i));
}
error = urtw_eprom_cs(sc, URTW_EPROM_DISABLE);
if (error != 0)
goto fail;
error = urtw_eprom_ck(sc);
if (error != 0)
goto fail;
/* now disable EPROM programming */
urtw_write8_m(sc, URTW_EPROM_CMD, URTW_EPROM_CMD_NORMAL_MODE);
fail:
return error;
#undef URTW_READCMD_LEN
}
static usbd_status
urtw_eprom_readbit(struct urtw_softc *sc, int16_t *data)
{
uint8_t data8;
usbd_status error;
urtw_read8_m(sc, URTW_EPROM_CMD, &data8);
*data = (data8 & URTW_EPROM_READBIT) ? 1 : 0;
DELAY(URTW_EPROM_DELAY);
fail:
return error;
}
static usbd_status
urtw_eprom_sendbits(struct urtw_softc *sc, int16_t *buf, int buflen)
{
int i = 0;
usbd_status error = 0;
for (i = 0; i < buflen; i++) {
error = urtw_eprom_writebit(sc, buf[i]);
if (error != 0)
goto fail;
error = urtw_eprom_ck(sc);
if (error != 0)
goto fail;
}
fail:
return error;
}
static usbd_status
urtw_eprom_writebit(struct urtw_softc *sc, int16_t bit)
{
uint8_t data;
usbd_status error;
urtw_read8_m(sc, URTW_EPROM_CMD, &data);
if (bit != 0)
urtw_write8_m(sc, URTW_EPROM_CMD, data | URTW_EPROM_WRITEBIT);
else
urtw_write8_m(sc, URTW_EPROM_CMD, data & ~URTW_EPROM_WRITEBIT);
DELAY(URTW_EPROM_DELAY);
fail:
return error;
}
static usbd_status
urtw_eprom_ck(struct urtw_softc *sc)
{
uint8_t data;
usbd_status error;
/* masking */
urtw_read8_m(sc, URTW_EPROM_CMD, &data);
urtw_write8_m(sc, URTW_EPROM_CMD, data | URTW_EPROM_CK);
DELAY(URTW_EPROM_DELAY);
/* unmasking */
urtw_read8_m(sc, URTW_EPROM_CMD, &data);
urtw_write8_m(sc, URTW_EPROM_CMD, data & ~URTW_EPROM_CK);
DELAY(URTW_EPROM_DELAY);
fail:
return error;
}
static usbd_status
urtw_eprom_cs(struct urtw_softc *sc, int able)
{
uint8_t data;
usbd_status error;
urtw_read8_m(sc, URTW_EPROM_CMD, &data);
if (able == URTW_EPROM_ENABLE)
urtw_write8_m(sc, URTW_EPROM_CMD, data | URTW_EPROM_CS);
else
urtw_write8_m(sc, URTW_EPROM_CMD, data & ~URTW_EPROM_CS);
DELAY(URTW_EPROM_DELAY);
fail:
return error;
}
static usbd_status
urtw_read8_c(struct urtw_softc *sc, int val, uint8_t *data, uint8_t idx)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = URTW_8187_GETREGS_REQ;
USETW(req.wValue, val | 0xff00);
USETW(req.wIndex, idx & 0x03);
USETW(req.wLength, sizeof(uint8_t));
error = usbd_do_request(sc->sc_udev, &req, data);
return error;
}
static usbd_status
urtw_read8e(struct urtw_softc *sc, int val, uint8_t *data)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = URTW_8187_GETREGS_REQ;
USETW(req.wValue, val | 0xfe00);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(uint8_t));
error = usbd_do_request(sc->sc_udev, &req, data);
return error;
}
static usbd_status
urtw_read16_c(struct urtw_softc *sc, int val, uint16_t *data, uint8_t idx)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = URTW_8187_GETREGS_REQ;
USETW(req.wValue, val | 0xff00);
USETW(req.wIndex, idx & 0x03);
USETW(req.wLength, sizeof(uint16_t));
error = usbd_do_request(sc->sc_udev, &req, data);
return error;
}
static usbd_status
urtw_read32_c(struct urtw_softc *sc, int val, uint32_t *data, uint8_t idx)
{
usb_device_request_t req;
usbd_status error;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = URTW_8187_GETREGS_REQ;
USETW(req.wValue, val | 0xff00);
USETW(req.wIndex, idx & 0x03);
USETW(req.wLength, sizeof(uint32_t));
error = usbd_do_request(sc->sc_udev, &req, data);
return error;
}
static usbd_status
urtw_write8_c(struct urtw_softc *sc, int val, uint8_t data, uint8_t idx)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = URTW_8187_SETREGS_REQ;
USETW(req.wValue, val | 0xff00);
USETW(req.wIndex, idx & 0x03);
USETW(req.wLength, sizeof(uint8_t));
return usbd_do_request(sc->sc_udev, &req, &data);
}
static usbd_status
urtw_write8e(struct urtw_softc *sc, int val, uint8_t data)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = URTW_8187_SETREGS_REQ;
USETW(req.wValue, val | 0xfe00);
USETW(req.wIndex, 0);
USETW(req.wLength, sizeof(uint8_t));
return usbd_do_request(sc->sc_udev, &req, &data);
}
static usbd_status
urtw_write16_c(struct urtw_softc *sc, int val, uint16_t data, uint8_t idx)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = URTW_8187_SETREGS_REQ;
USETW(req.wValue, val | 0xff00);
USETW(req.wIndex, idx & 0x03);
USETW(req.wLength, sizeof(uint16_t));
return usbd_do_request(sc->sc_udev, &req, &data);
}
static usbd_status
urtw_write32_c(struct urtw_softc *sc, int val, uint32_t data, uint8_t idx)
{
usb_device_request_t req;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = URTW_8187_SETREGS_REQ;
USETW(req.wValue, val | 0xff00);
USETW(req.wIndex, idx & 0x03);
USETW(req.wLength, sizeof(uint32_t));
return usbd_do_request(sc->sc_udev, &req, &data);
}
static usbd_status
urtw_set_mode(struct urtw_softc *sc, uint32_t mode)
{
uint8_t data;
usbd_status error;
urtw_read8_m(sc, URTW_EPROM_CMD, &data);
data = (data & ~URTW_EPROM_CMD_MASK) | (mode << URTW_EPROM_CMD_SHIFT);
data = data & ~(URTW_EPROM_CS | URTW_EPROM_CK);
urtw_write8_m(sc, URTW_EPROM_CMD, data);
fail:
return error;
}
static usbd_status
urtw_8180_set_anaparam(struct urtw_softc *sc, uint32_t val)
{
uint8_t data;
usbd_status error;
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE);
urtw_write32_m(sc, URTW_ANAPARAM, val);
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data & ~URTW_CONFIG3_ANAPARAM_WRITE);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
fail:
return error;
}
static usbd_status
urtw_8185_set_anaparam2(struct urtw_softc *sc, uint32_t val)
{
uint8_t data;
usbd_status error;
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE);
urtw_write32_m(sc, URTW_ANAPARAM2, val);
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data & ~URTW_CONFIG3_ANAPARAM_WRITE);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
fail:
return error;
}
static usbd_status
urtw_intr_disable(struct urtw_softc *sc)
{
usbd_status error;
urtw_write16_m(sc, URTW_INTR_MASK, 0);
fail:
return error;
}
static usbd_status
urtw_reset(struct urtw_softc *sc)
{
uint8_t data;
usbd_status error;
error = urtw_8180_set_anaparam(sc, URTW_8187_8225_ANAPARAM_ON);
if (error)
goto fail;
error = urtw_8185_set_anaparam2(sc, URTW_8187_8225_ANAPARAM2_ON);
if (error)
goto fail;
error = urtw_intr_disable(sc);
if (error)
goto fail;
usbd_delay_ms(sc->sc_udev, 100);
error = urtw_write8e(sc, 0x18, 0x10);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x18, 0x11);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x18, 0x00);
if (error != 0)
goto fail;
usbd_delay_ms(sc->sc_udev, 100);
urtw_read8_m(sc, URTW_CMD, &data);
data = (data & 2) | URTW_CMD_RST;
urtw_write8_m(sc, URTW_CMD, data);
usbd_delay_ms(sc->sc_udev, 100);
urtw_read8_m(sc, URTW_CMD, &data);
if (data & URTW_CMD_RST) {
printf("%s: reset timeout\n", device_xname(sc->sc_dev));
goto fail;
}
error = urtw_set_mode(sc, URTW_EPROM_CMD_LOAD);
if (error)
goto fail;
usbd_delay_ms(sc->sc_udev, 100);
error = urtw_8180_set_anaparam(sc, URTW_8187_8225_ANAPARAM_ON);
if (error)
goto fail;
error = urtw_8185_set_anaparam2(sc, URTW_8187_8225_ANAPARAM2_ON);
if (error)
goto fail;
fail:
return error;
}
static usbd_status
urtw_led_on(struct urtw_softc *sc, int type)
{
usbd_status error;
if (type == URTW_LED_GPIO) {
switch (sc->sc_gpio_ledpin) {
case URTW_LED_PIN_GPIO0:
urtw_write8_m(sc, URTW_GPIO, 0x01);
urtw_write8_m(sc, URTW_GP_ENABLE, 0x00);
break;
default:
panic("unsupported LED PIN type %#x",
sc->sc_gpio_ledpin);
/* NOTREACHED */
}
} else {
panic("unsupported LED type %#x", type);
/* NOTREACHED */
}
sc->sc_gpio_ledon = 1;
fail:
return error;
}
static usbd_status
urtw_led_off(struct urtw_softc *sc, int type)
{
usbd_status error;
if (type == URTW_LED_GPIO) {
switch (sc->sc_gpio_ledpin) {
case URTW_LED_PIN_GPIO0:
urtw_write8_m(sc, URTW_GPIO, 0x01);
urtw_write8_m(sc, URTW_GP_ENABLE, 0x01);
break;
default:
panic("unsupported LED PIN type %#x",
sc->sc_gpio_ledpin);
/* NOTREACHED */
}
} else {
panic("unsupported LED type %#x", type);
/* NOTREACHED */
}
sc->sc_gpio_ledon = 0;
fail:
return error;
}
static usbd_status
urtw_led_mode0(struct urtw_softc *sc, int mode)
{
switch (mode) {
case URTW_LED_CTL_POWER_ON:
sc->sc_gpio_ledstate = URTW_LED_POWER_ON_BLINK;
break;
case URTW_LED_CTL_TX:
if (sc->sc_gpio_ledinprogress == 1)
return 0;
sc->sc_gpio_ledstate = URTW_LED_BLINK_NORMAL;
sc->sc_gpio_blinktime = 2;
break;
case URTW_LED_CTL_LINK:
sc->sc_gpio_ledstate = URTW_LED_ON;
break;
default:
panic("unsupported LED mode %#x", mode);
/* NOTREACHED */
}
switch (sc->sc_gpio_ledstate) {
case URTW_LED_ON:
if (sc->sc_gpio_ledinprogress != 0)
break;
urtw_led_on(sc, URTW_LED_GPIO);
break;
case URTW_LED_BLINK_NORMAL:
if (sc->sc_gpio_ledinprogress != 0)
break;
sc->sc_gpio_ledinprogress = 1;
sc->sc_gpio_blinkstate = (sc->sc_gpio_ledon != 0) ?
URTW_LED_OFF : URTW_LED_ON;
if (!sc->sc_dying)
callout_schedule(&sc->sc_led_ch, mstohz(100));
break;
case URTW_LED_POWER_ON_BLINK:
urtw_led_on(sc, URTW_LED_GPIO);
usbd_delay_ms(sc->sc_udev, 100);
urtw_led_off(sc, URTW_LED_GPIO);
break;
default:
panic("unknown LED status %#x", sc->sc_gpio_ledstate);
/* NOTREACHED */
}
return 0;
}
static usbd_status
urtw_led_mode1(struct urtw_softc *sc, int mode)
{
return USBD_INVAL;
}
static usbd_status
urtw_led_mode2(struct urtw_softc *sc, int mode)
{
return USBD_INVAL;
}
static usbd_status
urtw_led_mode3(struct urtw_softc *sc, int mode)
{
return USBD_INVAL;
}
static void
urtw_ledusbtask(void *arg)
{
struct urtw_softc *sc = arg;
if (sc->sc_strategy != URTW_SW_LED_MODE0)
panic("could not process a LED strategy %#x", sc->sc_strategy);
urtw_led_blink(sc);
}
static void
urtw_ledtask(void *arg)
{
struct urtw_softc *sc = arg;
/*
* NB: to change a status of the led we need at least a sleep so we
* can't do it here
*/
usb_add_task(sc->sc_udev, &sc->sc_ledtask, USB_TASKQ_DRIVER);
}
static usbd_status
urtw_led_ctl(struct urtw_softc *sc, int mode)
{
usbd_status error = 0;
switch (sc->sc_strategy) {
case URTW_SW_LED_MODE0:
error = urtw_led_mode0(sc, mode);
break;
case URTW_SW_LED_MODE1:
error = urtw_led_mode1(sc, mode);
break;
case URTW_SW_LED_MODE2:
error = urtw_led_mode2(sc, mode);
break;
case URTW_SW_LED_MODE3:
error = urtw_led_mode3(sc, mode);
break;
default:
panic("unsupported LED mode %d", sc->sc_strategy);
/* NOTREACHED */
}
return error;
}
static usbd_status
urtw_led_blink(struct urtw_softc *sc)
{
uint8_t ing = 0;
if (sc->sc_gpio_blinkstate == URTW_LED_ON)
(void)urtw_led_on(sc, URTW_LED_GPIO);
else
(void)urtw_led_off(sc, URTW_LED_GPIO);
sc->sc_gpio_blinktime--;
if (sc->sc_gpio_blinktime == 0)
ing = 1;
else {
if (sc->sc_gpio_ledstate != URTW_LED_BLINK_NORMAL &&
sc->sc_gpio_ledstate != URTW_LED_BLINK_SLOWLY &&
sc->sc_gpio_ledstate != URTW_LED_BLINK_CM3)
ing = 1;
}
if (ing == 1) {
if (sc->sc_gpio_ledstate == URTW_LED_ON &&
sc->sc_gpio_ledon == 0)
(void)urtw_led_on(sc, URTW_LED_GPIO);
else if (sc->sc_gpio_ledstate == URTW_LED_OFF &&
sc->sc_gpio_ledon == 1)
(void)urtw_led_off(sc, URTW_LED_GPIO);
sc->sc_gpio_blinktime = 0;
sc->sc_gpio_ledinprogress = 0;
return 0;
}
sc->sc_gpio_blinkstate = (sc->sc_gpio_blinkstate != URTW_LED_ON) ?
URTW_LED_ON : URTW_LED_OFF;
switch (sc->sc_gpio_ledstate) {
case URTW_LED_BLINK_NORMAL:
if (!sc->sc_dying)
callout_schedule(&sc->sc_led_ch, mstohz(100));
break;
default:
panic("unknown LED status %#x", sc->sc_gpio_ledstate);
/* NOTREACHED */
}
return 0;
}
static usbd_status
urtw_update_msr(struct urtw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t data;
usbd_status error;
urtw_read8_m(sc, URTW_MSR, &data);
data &= ~URTW_MSR_LINK_MASK;
/* Should always be set. */
if (sc->sc_hwrev & URTW_HWREV_8187B)
data |= URTW_MSR_LINK_ENEDCA;
if (sc->sc_state == IEEE80211_S_RUN) {
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_MONITOR:
data |= URTW_MSR_LINK_STA;
break;
default:
panic("unsupported operation mode %#x",
ic->ic_opmode);
/* NOTREACHED */
}
} else
data |= URTW_MSR_LINK_NONE;
urtw_write8_m(sc, URTW_MSR, data);
fail:
return error;
}
static uint16_t
urtw_rate2rtl(int rate)
{
unsigned int i;
for (i = 0; i < __arraycount(urtw_ratetable); i++) {
if (rate == urtw_ratetable[i].reg)
return urtw_ratetable[i].val;
}
return 3;
}
static uint16_t
urtw_rtl2rate(int rate)
{
unsigned int i;
for (i = 0; i < __arraycount(urtw_ratetable); i++) {
if (rate == urtw_ratetable[i].val)
return urtw_ratetable[i].reg;
}
return 0;
}
static usbd_status
urtw_set_rate(struct urtw_softc *sc)
{
int i, basic_rate, min_rr_rate, max_rr_rate;
uint16_t data;
usbd_status error;
basic_rate = urtw_rate2rtl(48);
min_rr_rate = urtw_rate2rtl(12);
max_rr_rate = urtw_rate2rtl(48);
urtw_write8_m(sc, URTW_RESP_RATE,
max_rr_rate << URTW_RESP_MAX_RATE_SHIFT |
min_rr_rate << URTW_RESP_MIN_RATE_SHIFT);
urtw_read16_m(sc, URTW_8187_BRSR, &data);
data &= ~URTW_BRSR_MBR_8185;
for (i = 0; i <= basic_rate; i++)
data |= (1 << i);
urtw_write16_m(sc, URTW_8187_BRSR, data);
fail:
return error;
}
static usbd_status
urtw_intr_enable(struct urtw_softc *sc)
{
usbd_status error;
urtw_write16_m(sc, URTW_INTR_MASK, 0xffff);
fail:
return error;
}
static usbd_status
urtw_rx_setconf(struct urtw_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t data;
usbd_status error;
urtw_read32_m(sc, URTW_RX, &data);
data = data &~ URTW_RX_FILTER_MASK;
#if 0
data = data | URTW_RX_FILTER_CTL;
#endif
data = data | URTW_RX_FILTER_MNG | URTW_RX_FILTER_DATA;
data = data | URTW_RX_FILTER_BCAST | URTW_RX_FILTER_MCAST;
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
data = data | URTW_RX_FILTER_ICVERR;
data = data | URTW_RX_FILTER_PWR;
}
if (sc->sc_crcmon == 1 && ic->ic_opmode == IEEE80211_M_MONITOR)
data = data | URTW_RX_FILTER_CRCERR;
if (ic->ic_opmode == IEEE80211_M_MONITOR ||
(ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC))) {
data = data | URTW_RX_FILTER_ALLMAC;
} else {
data = data | URTW_RX_FILTER_NICMAC;
data = data | URTW_RX_CHECK_BSSID;
}
data = data &~ URTW_RX_FIFO_THRESHOLD_MASK;
data = data | URTW_RX_FIFO_THRESHOLD_NONE | URTW_RX_AUTORESETPHY;
data = data &~ URTW_MAX_RX_DMA_MASK;
data = data | URTW_MAX_RX_DMA_2048 | URTW_RCR_ONLYERLPKT;
urtw_write32_m(sc, URTW_RX, data);
fail:
return error;
}
static usbd_status
urtw_rx_enable(struct urtw_softc *sc)
{
int i;
struct urtw_rx_data *rx_data;
uint8_t data;
usbd_status error;
/*
* Start up the receive pipe.
*/
for (i = 0; i < URTW_RX_DATA_LIST_COUNT; i++) {
rx_data = &sc->sc_rx_data[i];
usbd_setup_xfer(rx_data->xfer, rx_data, rx_data->buf, MCLBYTES,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, urtw_rxeof);
error = usbd_transfer(rx_data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
printf("%s: could not queue Rx transfer\n",
device_xname(sc->sc_dev));
goto fail;
}
}
error = urtw_rx_setconf(sc);
if (error != 0)
goto fail;
urtw_read8_m(sc, URTW_CMD, &data);
urtw_write8_m(sc, URTW_CMD, data | URTW_CMD_RX_ENABLE);
fail:
return error;
}
static usbd_status
urtw_tx_enable(struct urtw_softc *sc)
{
uint8_t data8;
uint32_t data;
usbd_status error;
if (sc->sc_hwrev & URTW_HWREV_8187) {
urtw_read8_m(sc, URTW_CW_CONF, &data8);
data8 &= ~(URTW_CW_CONF_PERPACKET_CW |
URTW_CW_CONF_PERPACKET_RETRY);
urtw_write8_m(sc, URTW_CW_CONF, data8);
urtw_read8_m(sc, URTW_TX_AGC_CTL, &data8);
data8 &= ~URTW_TX_AGC_CTL_PERPACKET_GAIN;
data8 &= ~URTW_TX_AGC_CTL_PERPACKET_ANTSEL;
data8 &= ~URTW_TX_AGC_CTL_FEEDBACK_ANT;
urtw_write8_m(sc, URTW_TX_AGC_CTL, data8);
urtw_read32_m(sc, URTW_TX_CONF, &data);
data &= ~URTW_TX_LOOPBACK_MASK;
data |= URTW_TX_LOOPBACK_NONE;
data &= ~(URTW_TX_DPRETRY_MASK | URTW_TX_RTSRETRY_MASK);
data |= sc->sc_tx_retry << URTW_TX_DPRETRY_SHIFT;
data |= sc->sc_rts_retry << URTW_TX_RTSRETRY_SHIFT;
data &= ~(URTW_TX_NOCRC | URTW_TX_MXDMA_MASK);
data |= URTW_TX_MXDMA_2048 | URTW_TX_CWMIN | URTW_TX_DISCW;
data &= ~URTW_TX_SWPLCPLEN;
data |= URTW_TX_NOICV;
urtw_write32_m(sc, URTW_TX_CONF, data);
} else {
data = URTW_TX_DURPROCMODE | URTW_TX_DISREQQSIZE |
URTW_TX_MXDMA_2048 | URTW_TX_SHORTRETRY |
URTW_TX_LONGRETRY;
urtw_write32_m(sc, URTW_TX_CONF, data);
}
urtw_read8_m(sc, URTW_CMD, &data8);
urtw_write8_m(sc, URTW_CMD, data8 | URTW_CMD_TX_ENABLE);
fail:
return error;
}
static int
urtw_init(struct ifnet *ifp)
{
struct urtw_softc *sc = ifp->if_softc;
struct urtw_rf *rf = &sc->sc_rf;
struct ieee80211com *ic = &sc->sc_ic;
usbd_status error;
urtw_stop(ifp, 0);
error = urtw_reset(sc);
if (error)
goto fail;
urtw_write8_m(sc, 0x85, 0);
urtw_write8_m(sc, URTW_GPIO, 0);
/* for led */
urtw_write8_m(sc, 0x85, 4);
error = urtw_led_ctl(sc, URTW_LED_CTL_POWER_ON);
if (error != 0)
goto fail;
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
/* applying MAC address again. */
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
error = urtw_set_macaddr(sc, ic->ic_myaddr);
if (error)
goto fail;
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
error = urtw_update_msr(sc);
if (error)
goto fail;
urtw_write32_m(sc, URTW_INT_TIMEOUT, 0);
urtw_write8_m(sc, URTW_WPA_CONFIG, 0);
urtw_write8_m(sc, URTW_RATE_FALLBACK, 0x81);
error = urtw_set_rate(sc);
if (error != 0)
goto fail;
error = rf->init(rf);
if (error != 0)
goto fail;
if (rf->set_sens != NULL)
rf->set_sens(rf);
urtw_write16_m(sc, 0x5e, 1);
urtw_write16_m(sc, 0xfe, 0x10);
urtw_write8_m(sc, URTW_TALLY_SEL, 0x80);
urtw_write8_m(sc, 0xff, 0x60);
urtw_write16_m(sc, 0x5e, 0);
urtw_write8_m(sc, 0x85, 4);
error = urtw_intr_enable(sc);
if (error != 0)
goto fail;
/* reset softc variables */
for (size_t j = 0; j < URTW_PRIORITY_MAX; j++) {
sc->sc_txidx[j] = sc->sc_tx_queued[j] = 0;
}
sc->sc_txtimer = 0;
if (!(sc->sc_flags & URTW_INIT_ONCE)) {
error = usbd_set_config_no(sc->sc_udev, URTW_CONFIG_NO, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
goto fail;
}
/* get the first interface handle */
error = usbd_device2interface_handle(sc->sc_udev,
URTW_IFACE_INDEX, &sc->sc_iface);
if (error != 0) {
printf("%s: could not get interface handle\n",
device_xname(sc->sc_dev));
goto fail;
}
error = urtw_open_pipes(sc);
if (error != 0)
goto fail;
error = urtw_alloc_rx_data_list(sc);
if (error != 0)
goto fail;
error = urtw_alloc_tx_data_list(sc);
if (error != 0)
goto fail;
sc->sc_flags |= URTW_INIT_ONCE;
}
error = urtw_rx_enable(sc);
if (error != 0)
goto fail;
error = urtw_tx_enable(sc);
if (error != 0)
goto fail;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
return 0;
fail:
return error;
}
static int
urtw_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
#define IS_RUNNING(ifp) \
(((ifp)->if_flags & IFF_UP) && ((ifp)->if_flags & IFF_RUNNING))
struct urtw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
if (sc->sc_dying)
return ENXIO;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
case IFF_UP|IFF_RUNNING:
break;
case IFF_UP:
ifp->if_init(ifp);
break;
case IFF_RUNNING:
urtw_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET)
error = 0;
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
if (IS_RUNNING(ifp) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
ifp->if_init(ifp);
error = 0;
}
splx(s);
return error;
#undef IS_RUNNING
}
static void
urtw_start(struct ifnet *ifp)
{
struct urtw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m0;
/*
* net80211 may still try to send management frames even if the
* IFF_RUNNING flag is not set...
*/
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->sc_tx_queued[URTW_PRIORITY_NORMAL] >=
URTW_TX_DATA_LIST_COUNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = M_GETCTX(m0, struct ieee80211_node *);
M_CLEARCTX(m0);
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (urtw_tx_start(sc, ni, m0, URTW_PRIORITY_NORMAL)
!= 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->sc_tx_queued[URTW_PRIORITY_NORMAL] >=
URTW_TX_DATA_LIST_COUNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
if (m0->m_len < sizeof(struct ether_header) &&
!(m0 = m_pullup(m0, sizeof(struct ether_header))))
continue;
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
continue;
}
bpf_mtap(ifp, m0, BPF_D_OUT);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
continue;
}
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (urtw_tx_start(sc, ni, m0, URTW_PRIORITY_NORMAL)
!= 0) {
ieee80211_free_node(ni);
if_statinc(ifp, if_oerrors);
break;
}
}
sc->sc_txtimer = 5;
ifp->if_timer = 1;
}
}
static void
urtw_watchdog(struct ifnet *ifp)
{
struct urtw_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_txtimer > 0) {
if (--sc->sc_txtimer == 0) {
printf("%s: device timeout\n", device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static void
urtw_txeof_low(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct urtw_tx_data *data = priv;
struct urtw_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
int s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_txpipe_low);
if_statinc(ifp, if_oerrors);
return;
}
s = splnet();
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->sc_txtimer = 0;
if_statinc(ifp, if_opackets);
sc->sc_tx_queued[URTW_PRIORITY_LOW]--;
ifp->if_flags &= ~IFF_OACTIVE;
urtw_start(ifp);
splx(s);
}
static void
urtw_txeof_normal(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct urtw_tx_data *data = priv;
struct urtw_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
int s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
printf("%s: could not transmit buffer: %s\n",
device_xname(sc->sc_dev), usbd_errstr(status));
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_txpipe_normal);
if_statinc(ifp, if_oerrors);
return;
}
s = splnet();
ieee80211_free_node(data->ni);
data->ni = NULL;
sc->sc_txtimer = 0;
if_statinc(ifp, if_opackets);
sc->sc_tx_queued[URTW_PRIORITY_NORMAL]--;
ifp->if_flags &= ~IFF_OACTIVE;
urtw_start(ifp);
splx(s);
}
static int
urtw_tx_start(struct urtw_softc *sc, struct ieee80211_node *ni, struct mbuf *m0,
int prior)
{
struct ieee80211com *ic = &sc->sc_ic;
struct urtw_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
usbd_status error;
int xferlen;
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (sc->sc_drvbpf != NULL) {
struct urtw_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = 0;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
}
if (sc->sc_hwrev & URTW_HWREV_8187)
xferlen = m0->m_pkthdr.len + 4 * 3;
else
xferlen = m0->m_pkthdr.len + 4 * 8;
if ((0 == xferlen % 64) || (0 == xferlen % 512))
xferlen += 1;
data = &sc->sc_tx_data[prior][sc->sc_txidx[prior]];
sc->sc_txidx[prior] =
(sc->sc_txidx[prior] + 1) % URTW_TX_DATA_LIST_COUNT;
memset(data->buf, 0, URTW_TX_MAXSIZE);
data->buf[0] = m0->m_pkthdr.len & 0xff;
data->buf[1] = (m0->m_pkthdr.len & 0x0f00) >> 8;
data->buf[1] |= (1 << 7);
/* XXX sc_preamble_mode is always 2. */
if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
(ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE) &&
(sc->sc_preamble_mode == 1) && (sc->sc_currate != 0))
data->buf[2] |= 1;
if ((m0->m_pkthdr.len > ic->ic_rtsthreshold) &&
prior == URTW_PRIORITY_LOW)
panic("TODO tx.");
if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG)
data->buf[2] |= (1 << 1);
/* RTS rate - 10 means we use a basic rate. */
data->buf[2] |= (urtw_rate2rtl(2) << 3);
/*
* XXX currently TX rate control depends on the rate value of
* RX descriptor because I don't know how to we can control TX rate
* in more smart way. Please fix me you find a thing.
*/
data->buf[3] = sc->sc_currate;
if (prior == URTW_PRIORITY_NORMAL) {
if (IEEE80211_IS_MULTICAST(wh->i_addr1))
data->buf[3] = urtw_rate2rtl(ni->ni_rates.rs_rates[0]);
else if (ic->ic_fixed_rate != -1)
data->buf[3] = urtw_rate2rtl(ic->ic_fixed_rate);
}
if (sc->sc_hwrev & URTW_HWREV_8187) {
data->buf[8] = 3; /* CW minimum */
data->buf[8] |= (7 << 4); /* CW maximum */
data->buf[9] |= 11; /* retry limitation */
m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)&data->buf[12]);
} else {
data->buf[21] |= 11; /* retry limitation */
m_copydata(m0, 0, m0->m_pkthdr.len, (uint8_t *)&data->buf[32]);
}
data->ni = ni;
/* mbuf is no longer needed. */
m_freem(m0);
usbd_setup_xfer(data->xfer, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER, URTW_DATA_TIMEOUT,
(prior == URTW_PRIORITY_LOW) ? urtw_txeof_low : urtw_txeof_normal);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != USBD_NORMAL_COMPLETION) {
printf("%s: could not send frame: %s\n",
device_xname(sc->sc_dev), usbd_errstr(error));
return EIO;
}
error = urtw_led_ctl(sc, URTW_LED_CTL_TX);
if (error != 0)
printf("%s: could not control LED (%d)\n",
device_xname(sc->sc_dev), error);
sc->sc_tx_queued[prior]++;
return 0;
}
static usbd_status
urtw_8225_usb_init(struct urtw_softc *sc)
{
uint8_t data;
usbd_status error;
urtw_write8_m(sc, URTW_RF_PINS_SELECT + 1, 0);
urtw_write8_m(sc, URTW_GPIO, 0);
error = urtw_read8e(sc, 0x53, &data);
if (error)
goto fail;
error = urtw_write8e(sc, 0x53, data | (1 << 7));
if (error)
goto fail;
urtw_write8_m(sc, URTW_RF_PINS_SELECT + 1, 4);
urtw_write8_m(sc, URTW_GPIO, 0x20);
urtw_write8_m(sc, URTW_GP_ENABLE, 0);
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, 0x80);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, 0x80);
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x80);
usbd_delay_ms(sc->sc_udev, 500);
fail:
return error;
}
static usbd_status
urtw_8185_rf_pins_enable(struct urtw_softc *sc)
{
usbd_status error = 0;
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x1ff7);
fail:
return error;
}
static usbd_status
urtw_8187_write_phy(struct urtw_softc *sc, uint8_t addr, uint32_t data)
{
uint32_t phyw;
usbd_status error;
phyw = ((data << 8) | (addr | 0x80));
urtw_write8_m(sc, 0x7f, ((phyw & 0xff000000) >> 24));
urtw_write8_m(sc, 0x7e, ((phyw & 0x00ff0000) >> 16));
urtw_write8_m(sc, 0x7d, ((phyw & 0x0000ff00) >> 8));
urtw_write8_m(sc, 0x7c, ((phyw & 0x000000ff)));
/*
* Delay removed from 8185 to 8187.
* usbd_delay_ms(sc->sc_udev, 1);
*/
fail:
return error;
}
static usbd_status
urtw_8187_write_phy_ofdm_c(struct urtw_softc *sc, uint8_t addr, uint32_t data)
{
data = data & 0xff;
return urtw_8187_write_phy(sc, addr, data);
}
static usbd_status
urtw_8187_write_phy_cck_c(struct urtw_softc *sc, uint8_t addr, uint32_t data)
{
data = data & 0xff;
return urtw_8187_write_phy(sc, addr, data | 0x10000);
}
static usbd_status
urtw_8225_setgain(struct urtw_softc *sc, int16_t gain)
{
usbd_status error;
urtw_8187_write_phy_ofdm(sc, 0x0d, urtw_8225_gain[gain * 4]);
urtw_8187_write_phy_ofdm(sc, 0x1b, urtw_8225_gain[gain * 4 + 2]);
urtw_8187_write_phy_ofdm(sc, 0x1d, urtw_8225_gain[gain * 4 + 3]);
urtw_8187_write_phy_ofdm(sc, 0x23, urtw_8225_gain[gain * 4 + 1]);
fail:
return error;
}
static usbd_status
urtw_8225_set_txpwrlvl(struct urtw_softc *sc, int chan)
{
int i, idx, set;
uint8_t *cck_pwltable;
uint8_t cck_pwrlvl_max, ofdm_pwrlvl_min, ofdm_pwrlvl_max;
uint8_t cck_pwrlvl = sc->sc_txpwr_cck[chan] & 0xff;
uint8_t ofdm_pwrlvl = sc->sc_txpwr_ofdm[chan] & 0xff;
usbd_status error;
cck_pwrlvl_max = 11;
ofdm_pwrlvl_max = 25; /* 12 -> 25 */
ofdm_pwrlvl_min = 10;
/* CCK power setting */
cck_pwrlvl = (cck_pwrlvl > cck_pwrlvl_max) ? cck_pwrlvl_max : cck_pwrlvl;
idx = cck_pwrlvl % 6;
set = cck_pwrlvl / 6;
cck_pwltable = (chan == 14) ? urtw_8225_txpwr_cck_ch14 :
urtw_8225_txpwr_cck;
urtw_write8_m(sc, URTW_TX_GAIN_CCK,
urtw_8225_tx_gain_cck_ofdm[set] >> 1);
for (i = 0; i < 8; i++) {
urtw_8187_write_phy_cck(sc, 0x44 + i,
cck_pwltable[idx * 8 + i]);
}
usbd_delay_ms(sc->sc_udev, 1);
/* OFDM power setting */
ofdm_pwrlvl = (ofdm_pwrlvl > (ofdm_pwrlvl_max - ofdm_pwrlvl_min)) ?
ofdm_pwrlvl_max : ofdm_pwrlvl + ofdm_pwrlvl_min;
ofdm_pwrlvl = (ofdm_pwrlvl > 35) ? 35 : ofdm_pwrlvl;
idx = ofdm_pwrlvl % 6;
set = ofdm_pwrlvl / 6;
error = urtw_8185_set_anaparam2(sc, URTW_8187_8225_ANAPARAM2_ON);
if (error)
goto fail;
urtw_8187_write_phy_ofdm(sc, 2, 0x42);
urtw_8187_write_phy_ofdm(sc, 6, 0);
urtw_8187_write_phy_ofdm(sc, 8, 0);
urtw_write8_m(sc, URTW_TX_GAIN_OFDM,
urtw_8225_tx_gain_cck_ofdm[set] >> 1);
urtw_8187_write_phy_ofdm(sc, 0x5, urtw_8225_txpwr_ofdm[idx]);
urtw_8187_write_phy_ofdm(sc, 0x7, urtw_8225_txpwr_ofdm[idx]);
usbd_delay_ms(sc->sc_udev, 1);
fail:
return error;
}
static usbd_status
urtw_8185_tx_antenna(struct urtw_softc *sc, uint8_t ant)
{
usbd_status error;
urtw_write8_m(sc, URTW_TX_ANTENNA, ant);
usbd_delay_ms(sc->sc_udev, 1);
fail:
return error;
}
static usbd_status
urtw_8225_rf_init(struct urtw_rf *rf)
{
struct urtw_softc *sc = rf->rf_sc;
unsigned int i;
uint16_t data;
usbd_status error;
error = urtw_8180_set_anaparam(sc, URTW_8187_8225_ANAPARAM_ON);
if (error)
goto fail;
error = urtw_8225_usb_init(sc);
if (error)
goto fail;
urtw_write32_m(sc, URTW_RF_TIMING, 0x000a8008);
urtw_read16_m(sc, URTW_8187_BRSR, &data); /* XXX ??? */
urtw_write16_m(sc, URTW_8187_BRSR, 0xffff);
urtw_write32_m(sc, URTW_RF_PARA, 0x100044);
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_write8_m(sc, URTW_CONFIG3, 0x44);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
error = urtw_8185_rf_pins_enable(sc);
if (error)
goto fail;
usbd_delay_ms(sc->sc_udev, 500);
for (i = 0; i < __arraycount(urtw_8225_rf_part1); i++) {
urtw_8225_write(sc, urtw_8225_rf_part1[i].reg,
urtw_8225_rf_part1[i].val);
}
usbd_delay_ms(sc->sc_udev, 50);
urtw_8225_write(sc, 0x2, 0xc4d);
usbd_delay_ms(sc->sc_udev, 200);
urtw_8225_write(sc, 0x2, 0x44d);
usbd_delay_ms(sc->sc_udev, 200);
urtw_8225_write(sc, 0x0, 0x127);
for (i = 0; i < __arraycount(urtw_8225_rxgain); i++) {
urtw_8225_write(sc, 0x1, (uint8_t)(i + 1));
urtw_8225_write(sc, 0x2, urtw_8225_rxgain[i]);
}
urtw_8225_write(sc, 0x0, 0x27);
urtw_8225_write(sc, 0x0, 0x22f);
for (i = 0; i < __arraycount(urtw_8225_agc); i++) {
urtw_8187_write_phy_ofdm(sc, 0xb, urtw_8225_agc[i]);
urtw_8187_write_phy_ofdm(sc, 0xa, (uint8_t)i + 0x80);
}
for (i = 0; i < __arraycount(urtw_8225_rf_part2); i++) {
urtw_8187_write_phy_ofdm(sc, urtw_8225_rf_part2[i].reg,
urtw_8225_rf_part2[i].val);
usbd_delay_ms(sc->sc_udev, 1);
}
error = urtw_8225_setgain(sc, 4);
if (error)
goto fail;
for (i = 0; i < __arraycount(urtw_8225_rf_part3); i++) {
urtw_8187_write_phy_cck(sc, urtw_8225_rf_part3[i].reg,
urtw_8225_rf_part3[i].val);
usbd_delay_ms(sc->sc_udev, 1);
}
urtw_write8_m(sc, 0x5b, 0x0d);
error = urtw_8225_set_txpwrlvl(sc, 1);
if (error)
goto fail;
urtw_8187_write_phy_cck(sc, 0x10, 0x9b);
usbd_delay_ms(sc->sc_udev, 1);
urtw_8187_write_phy_ofdm(sc, 0x26, 0x90);
usbd_delay_ms(sc->sc_udev, 1);
/* TX ant A, 0x0 for B */
error = urtw_8185_tx_antenna(sc, 0x3);
if (error)
goto fail;
urtw_write32_m(sc, 0x94, 0x3dc00002);
error = urtw_8225_rf_set_chan(rf, 1);
fail:
return error;
}
static usbd_status
urtw_8225_rf_set_chan(struct urtw_rf *rf, int chan)
{
struct urtw_softc *sc = rf->rf_sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_ibss_chan;
usbd_status error;
error = urtw_8225_set_txpwrlvl(sc, chan);
if (error)
goto fail;
urtw_8225_write(sc, 0x7, urtw_8225_channel[chan]);
usbd_delay_ms(sc->sc_udev, 10);
urtw_write8_m(sc, URTW_SIFS, 0x22);
if (sc->sc_state == IEEE80211_S_ASSOC &&
ic->ic_flags & IEEE80211_F_SHSLOT)
urtw_write8_m(sc, URTW_SLOT, 0x9);
else
urtw_write8_m(sc, URTW_SLOT, 0x14);
if (IEEE80211_IS_CHAN_G(c)) {
urtw_write8_m(sc, URTW_DIFS, 0x14);
urtw_write8_m(sc, URTW_8187_EIFS, 0x5b - 0x14);
urtw_write8_m(sc, URTW_CW_VAL, 0x73);
} else {
urtw_write8_m(sc, URTW_DIFS, 0x24);
urtw_write8_m(sc, URTW_8187_EIFS, 0x5b - 0x24);
urtw_write8_m(sc, URTW_CW_VAL, 0xa5);
}
fail:
return error;
}
static usbd_status
urtw_8225_rf_set_sens(struct urtw_rf *rf)
{
struct urtw_softc *sc = rf->rf_sc;
usbd_status error;
if (rf->sens > 6)
return -1;
if (rf->sens > 4)
urtw_8225_write(sc, 0x0c, 0x850);
else
urtw_8225_write(sc, 0x0c, 0x50);
rf->sens = 6 - rf->sens;
error = urtw_8225_setgain(sc, rf->sens);
if (error)
goto fail;
urtw_8187_write_phy_cck(sc, 0x41, urtw_8225_threshold[rf->sens]);
fail:
return error;
}
static void
urtw_stop(struct ifnet *ifp, int disable)
{
struct urtw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t data;
usbd_status error;
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
sc->sc_txtimer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_stop(&sc->scan_to);
callout_stop(&sc->sc_led_ch);
urtw_intr_disable(sc);
urtw_read8_m(sc, URTW_CMD, &data);
data &= ~URTW_CMD_TX_ENABLE;
data &= ~URTW_CMD_RX_ENABLE;
urtw_write8_m(sc, URTW_CMD, data);
if (sc->sc_rxpipe != NULL)
usbd_abort_pipe(sc->sc_rxpipe);
if (sc->sc_txpipe_low != NULL)
usbd_abort_pipe(sc->sc_txpipe_low);
if (sc->sc_txpipe_normal != NULL)
usbd_abort_pipe(sc->sc_txpipe_normal);
fail:
return;
}
static int
urtw_isbmode(uint16_t rate)
{
rate = urtw_rtl2rate(rate);
return ((rate <= 22 && rate != 12 && rate != 18) ||
rate == 44) ? 1 : 0;
}
static void
urtw_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status)
{
struct urtw_rx_data *data = priv;
struct urtw_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *mnew;
uint8_t *desc, quality, rate;
int actlen, flen, len, rssi, s;
if (status != USBD_NORMAL_COMPLETION) {
if (status == USBD_NOT_STARTED || status == USBD_CANCELLED)
return;
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_rxpipe);
if_statinc(ifp, if_ierrors);
goto skip;
}
usbd_get_xfer_status(xfer, NULL, NULL, &actlen, NULL);
if (actlen < URTW_MIN_RXBUFSZ) {
if_statinc(ifp, if_ierrors);
goto skip;
}
if (sc->sc_hwrev & URTW_HWREV_8187)
/* 4 dword and 4 byte CRC */
len = actlen - (4 * 4);
else
/* 5 dword and 4 byte CRC */
len = actlen - (4 * 5);
desc = data->buf + len;
flen = ((desc[1] & 0x0f) << 8) + (desc[0] & 0xff);
if (flen > actlen) {
if_statinc(ifp, if_ierrors);
goto skip;
}
rate = (desc[2] & 0xf0) >> 4;
if (sc->sc_hwrev & URTW_HWREV_8187) {
quality = desc[4] & 0xff;
rssi = (desc[6] & 0xfe) >> 1;
/* XXX correct? */
if (!urtw_isbmode(rate)) {
rssi = (rssi > 90) ? 90 : ((rssi < 25) ? 25 : rssi);
rssi = ((90 - rssi) * 100) / 65;
} else {
rssi = (rssi > 90) ? 95 : ((rssi < 30) ? 30 : rssi);
rssi = ((95 - rssi) * 100) / 65;
}
} else {
quality = desc[12];
rssi = 14 - desc[14] / 2;
}
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
printf("%s: could not allocate rx mbuf\n",
device_xname(sc->sc_dev));
if_statinc(ifp, if_ierrors);
goto skip;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
printf("%s: could not allocate rx mbuf cluster\n",
device_xname(sc->sc_dev));
m_freem(mnew);
if_statinc(ifp, if_ierrors);
goto skip;
}
m = data->m;
data->m = mnew;
data->buf = mtod(mnew, uint8_t *);
/* finalize mbuf */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = flen - 4;
s = splnet();
if (sc->sc_drvbpf != NULL) {
struct urtw_rx_radiotap_header *tap = &sc->sc_rxtap;
/* XXX Are variables correct? */
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wr_dbm_antsignal = (int8_t)rssi;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
}
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == IEEE80211_FC0_TYPE_DATA)
sc->sc_currate = (rate > 0) ? rate : sc->sc_currate;
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* XXX correct? */
if (!urtw_isbmode(rate)) {
if (quality > 127)
quality = 0;
else if (quality < 27)
quality = 100;
else
quality = 127 - quality;
} else
quality = (quality > 64) ? 0 : ((64 - quality) * 100) / 64;
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
splx(s);
skip: /* setup a new transfer */
usbd_setup_xfer(xfer, data, data->buf, MCLBYTES,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, urtw_rxeof);
(void)usbd_transfer(xfer);
}
static usbd_status
urtw_8225v2_setgain(struct urtw_softc *sc, int16_t gain)
{
uint8_t *gainp;
usbd_status error;
/* XXX for A? */
gainp = urtw_8225v2_gain_bg;
urtw_8187_write_phy_ofdm(sc, 0x0d, gainp[gain * 3]);
usbd_delay_ms(sc->sc_udev, 1);
urtw_8187_write_phy_ofdm(sc, 0x1b, gainp[gain * 3 + 1]);
usbd_delay_ms(sc->sc_udev, 1);
urtw_8187_write_phy_ofdm(sc, 0x1d, gainp[gain * 3 + 2]);
usbd_delay_ms(sc->sc_udev, 1);
urtw_8187_write_phy_ofdm(sc, 0x21, 0x17);
usbd_delay_ms(sc->sc_udev, 1);
fail:
return error;
}
static usbd_status
urtw_8225v2_set_txpwrlvl(struct urtw_softc *sc, int chan)
{
int i;
uint8_t *cck_pwrtable;
uint8_t cck_pwrlvl_max = 15, ofdm_pwrlvl_max = 25, ofdm_pwrlvl_min = 10;
uint8_t cck_pwrlvl = sc->sc_txpwr_cck[chan] & 0xff;
uint8_t ofdm_pwrlvl = sc->sc_txpwr_ofdm[chan] & 0xff;
usbd_status error;
/* CCK power setting */
cck_pwrlvl = (cck_pwrlvl > cck_pwrlvl_max) ? cck_pwrlvl_max : cck_pwrlvl;
cck_pwrlvl += sc->sc_txpwr_cck_base;
cck_pwrlvl = (cck_pwrlvl > 35) ? 35 : cck_pwrlvl;
cck_pwrtable = (chan == 14) ? urtw_8225v2_txpwr_cck_ch14 :
urtw_8225v2_txpwr_cck;
for (i = 0; i < 8; i++) {
urtw_8187_write_phy_cck(sc, 0x44 + i, cck_pwrtable[i]);
}
urtw_write8_m(sc, URTW_TX_GAIN_CCK,
urtw_8225v2_tx_gain_cck_ofdm[cck_pwrlvl]);
usbd_delay_ms(sc->sc_udev, 1);
/* OFDM power setting */
ofdm_pwrlvl = (ofdm_pwrlvl > (ofdm_pwrlvl_max - ofdm_pwrlvl_min)) ?
ofdm_pwrlvl_max : ofdm_pwrlvl + ofdm_pwrlvl_min;
ofdm_pwrlvl += sc->sc_txpwr_ofdm_base;
ofdm_pwrlvl = (ofdm_pwrlvl > 35) ? 35 : ofdm_pwrlvl;
error = urtw_8185_set_anaparam2(sc, URTW_8187_8225_ANAPARAM2_ON);
if (error)
goto fail;
urtw_8187_write_phy_ofdm(sc, 2, 0x42);
urtw_8187_write_phy_ofdm(sc, 5, 0x0);
urtw_8187_write_phy_ofdm(sc, 6, 0x40);
urtw_8187_write_phy_ofdm(sc, 7, 0x0);
urtw_8187_write_phy_ofdm(sc, 8, 0x40);
urtw_write8_m(sc, URTW_TX_GAIN_OFDM,
urtw_8225v2_tx_gain_cck_ofdm[ofdm_pwrlvl]);
usbd_delay_ms(sc->sc_udev, 1);
fail:
return error;
}
static usbd_status
urtw_8225v2_rf_init(struct urtw_rf *rf)
{
struct urtw_softc *sc = rf->rf_sc;
int i;
uint16_t data;
uint32_t data32;
usbd_status error;
error = urtw_8180_set_anaparam(sc, URTW_8187_8225_ANAPARAM_ON);
if (error)
goto fail;
error = urtw_8225_usb_init(sc);
if (error)
goto fail;
urtw_write32_m(sc, URTW_RF_TIMING, 0x000a8008);
urtw_read16_m(sc, URTW_8187_BRSR, &data); /* XXX ??? */
urtw_write16_m(sc, URTW_8187_BRSR, 0xffff);
urtw_write32_m(sc, URTW_RF_PARA, 0x100044);
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_write8_m(sc, URTW_CONFIG3, 0x44);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
error = urtw_8185_rf_pins_enable(sc);
if (error)
goto fail;
usbd_delay_ms(sc->sc_udev, 1000);
for (i = 0; i < __arraycount(urtw_8225v2_rf_part1); i++) {
urtw_8225_write(sc, urtw_8225v2_rf_part1[i].reg,
urtw_8225v2_rf_part1[i].val);
usbd_delay_ms(sc->sc_udev, 1);
}
usbd_delay_ms(sc->sc_udev, 50);
urtw_8225_write(sc, 0x0, 0x1b7);
for (i = 0; i < __arraycount(urtw_8225v2_rxgain); i++) {
urtw_8225_write(sc, 0x1, (uint8_t)(i + 1));
urtw_8225_write(sc, 0x2, urtw_8225v2_rxgain[i]);
}
urtw_8225_write(sc, 0x3, 0x2);
urtw_8225_write(sc, 0x5, 0x4);
urtw_8225_write(sc, 0x0, 0xb7);
urtw_8225_write(sc, 0x2, 0xc4d);
usbd_delay_ms(sc->sc_udev, 100);
urtw_8225_write(sc, 0x2, 0x44d);
usbd_delay_ms(sc->sc_udev, 100);
error = urtw_8225_read(sc, 0x6, &data32);
if (error != 0)
goto fail;
if (data32 != 0xe6)
printf("%s: expect 0xe6!! (%#x)\n", device_xname(sc->sc_dev),
data32);
if (!(data32 & 0x80)) {
urtw_8225_write(sc, 0x02, 0x0c4d);
usbd_delay_ms(sc->sc_udev, 200);
urtw_8225_write(sc, 0x02, 0x044d);
usbd_delay_ms(sc->sc_udev, 100);
error = urtw_8225_read(sc, 0x6, &data32);
if (error != 0)
goto fail;
if (!(data32 & 0x80))
printf("%s: RF calibration failed\n",
device_xname(sc->sc_dev));
}
usbd_delay_ms(sc->sc_udev, 100);
urtw_8225_write(sc, 0x0, 0x2bf);
for (i = 0; i < __arraycount(urtw_8225_agc); i++) {
urtw_8187_write_phy_ofdm(sc, 0xb, urtw_8225_agc[i]);
urtw_8187_write_phy_ofdm(sc, 0xa, (uint8_t)i + 0x80);
}
for (i = 0; i < __arraycount(urtw_8225v2_rf_part2); i++) {
urtw_8187_write_phy_ofdm(sc, urtw_8225v2_rf_part2[i].reg,
urtw_8225v2_rf_part2[i].val);
}
error = urtw_8225v2_setgain(sc, 4);
if (error)
goto fail;
for (i = 0; i < __arraycount(urtw_8225v2_rf_part3); i++) {
urtw_8187_write_phy_cck(sc, urtw_8225v2_rf_part3[i].reg,
urtw_8225v2_rf_part3[i].val);
}
urtw_write8_m(sc, 0x5b, 0x0d);
error = urtw_8225v2_set_txpwrlvl(sc, 1);
if (error)
goto fail;
urtw_8187_write_phy_cck(sc, 0x10, 0x9b);
urtw_8187_write_phy_ofdm(sc, 0x26, 0x90);
/* TX ant A, 0x0 for B */
error = urtw_8185_tx_antenna(sc, 0x3);
if (error)
goto fail;
urtw_write32_m(sc, 0x94, 0x3dc00002);
error = urtw_8225_rf_set_chan(rf, 1);
fail:
return error;
}
static usbd_status
urtw_8225v2_rf_set_chan(struct urtw_rf *rf, int chan)
{
struct urtw_softc *sc = rf->rf_sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_ibss_chan;
usbd_status error;
error = urtw_8225v2_set_txpwrlvl(sc, chan);
if (error)
goto fail;
urtw_8225_write(sc, 0x7, urtw_8225_channel[chan]);
usbd_delay_ms(sc->sc_udev, 10);
urtw_write8_m(sc, URTW_SIFS, 0x22);
if(sc->sc_state == IEEE80211_S_ASSOC &&
ic->ic_flags & IEEE80211_F_SHSLOT)
urtw_write8_m(sc, URTW_SLOT, 0x9);
else
urtw_write8_m(sc, URTW_SLOT, 0x14);
if (IEEE80211_IS_CHAN_G(c)) {
urtw_write8_m(sc, URTW_DIFS, 0x14);
urtw_write8_m(sc, URTW_8187_EIFS, 0x5b - 0x14);
urtw_write8_m(sc, URTW_CW_VAL, 0x73);
} else {
urtw_write8_m(sc, URTW_DIFS, 0x24);
urtw_write8_m(sc, URTW_8187_EIFS, 0x5b - 0x24);
urtw_write8_m(sc, URTW_CW_VAL, 0xa5);
}
fail:
return error;
}
static void
urtw_set_chan(struct urtw_softc *sc, struct ieee80211_channel *c)
{
struct urtw_rf *rf = &sc->sc_rf;
struct ieee80211com *ic = &sc->sc_ic;
usbd_status error = 0;
uint32_t data;
u_int chan;
chan = ieee80211_chan2ieee(ic, c);
if (chan == 0 || chan == IEEE80211_CHAN_ANY)
return;
/*
* During changing the channel we need to temporary disable
* TX.
*/
urtw_read32_m(sc, URTW_TX_CONF, &data);
data &= ~URTW_TX_LOOPBACK_MASK;
urtw_write32_m(sc, URTW_TX_CONF, data | URTW_TX_LOOPBACK_MAC);
error = rf->set_chan(rf, chan);
if (error != 0) {
printf("%s could not change the channel\n",
device_xname(sc->sc_dev));
return;
}
usbd_delay_ms(sc->sc_udev, 10);
urtw_write32_m(sc, URTW_TX_CONF, data | URTW_TX_LOOPBACK_NONE);
fail: return;
}
static void
urtw_next_scan(void *arg)
{
struct urtw_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
if (sc->sc_dying)
return;
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
splx(s);
}
static void
urtw_task(void *arg)
{
struct urtw_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
enum ieee80211_state ostate;
usbd_status error = 0;
if (sc->sc_dying)
return;
ostate = ic->ic_state;
switch (sc->sc_state) {
case IEEE80211_S_INIT:
if (ostate == IEEE80211_S_RUN) {
/* turn link LED off */
(void)urtw_led_off(sc, URTW_LED_GPIO);
}
break;
case IEEE80211_S_SCAN:
urtw_set_chan(sc, ic->ic_curchan);
if (!sc->sc_dying)
callout_schedule(&sc->scan_to, mstohz(200));
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
urtw_set_chan(sc, ic->ic_curchan);
break;
case IEEE80211_S_RUN:
ni = ic->ic_bss;
urtw_set_chan(sc, ic->ic_curchan);
/* setting bssid. */
error = urtw_set_bssid(sc, ni->ni_bssid);
if (error != 0)
goto fail;
urtw_update_msr(sc);
/* XXX maybe the below would be incorrect. */
urtw_write16_m(sc, URTW_ATIM_WND, 2);
urtw_write16_m(sc, URTW_ATIM_TR_ITV, 100);
urtw_write16_m(sc, URTW_BEACON_INTERVAL, 0x64);
urtw_write16_m(sc, URTW_BEACON_INTERVAL_TIME, 0x3ff);
error = urtw_led_ctl(sc, URTW_LED_CTL_LINK);
if (error != 0)
printf("%s: could not control LED (%d)\n",
device_xname(sc->sc_dev), error);
break;
}
sc->sc_newstate(ic, sc->sc_state, sc->sc_arg);
fail:
if (error != 0) {
DPRINTF(("%s: error duing processing RUN state.",
device_xname(sc->sc_dev)));
}
}
static usbd_status
urtw_8187b_update_wmm(struct urtw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_ibss_chan;
uint32_t data;
uint8_t aifs, sifs, slot, ecwmin, ecwmax;
usbd_status error;
sifs = 0xa;
if (IEEE80211_IS_CHAN_G(c))
slot = 0x9;
else
slot = 0x14;
aifs = (2 * slot) + sifs;
ecwmin = 3;
ecwmax = 7;
data = ((uint32_t)aifs << 0) | /* AIFS, offset 0 */
((uint32_t)ecwmin << 8) | /* ECW minimum, offset 8 */
((uint32_t)ecwmax << 12); /* ECW maximum, offset 16 */
urtw_write32_m(sc, URTW_AC_VO, data);
urtw_write32_m(sc, URTW_AC_VI, data);
urtw_write32_m(sc, URTW_AC_BE, data);
urtw_write32_m(sc, URTW_AC_BK, data);
fail:
return error;
}
static usbd_status
urtw_8187b_reset(struct urtw_softc *sc)
{
uint8_t data;
usbd_status error;
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE |
URTW_CONFIG3_GNT_SELECT);
urtw_write32_m(sc, URTW_ANAPARAM2, URTW_8187B_8225_ANAPARAM2_ON);
urtw_write32_m(sc, URTW_ANAPARAM, URTW_8187B_8225_ANAPARAM_ON);
urtw_write8_m(sc, URTW_ANAPARAM3, URTW_8187B_8225_ANAPARAM3_ON);
urtw_write8_m(sc, 0x61, 0x10);
urtw_read8_m(sc, 0x62, &data);
urtw_write8_m(sc, 0x62, data & ~(1 << 5));
urtw_write8_m(sc, 0x62, data | (1 << 5));
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data & ~URTW_CONFIG3_ANAPARAM_WRITE);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
urtw_read8_m(sc, URTW_CMD, &data);
data = (data & 2) | URTW_CMD_RST;
urtw_write8_m(sc, URTW_CMD, data);
usbd_delay_ms(sc->sc_udev, 100);
urtw_read8_m(sc, URTW_CMD, &data);
if (data & URTW_CMD_RST) {
printf("%s: reset timeout\n", device_xname(sc->sc_dev));
goto fail;
}
fail:
return error;
}
static int
urtw_8187b_init(struct ifnet *ifp)
{
struct urtw_softc *sc = ifp->if_softc;
struct urtw_rf *rf = &sc->sc_rf;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t data;
usbd_status error;
urtw_stop(ifp, 0);
error = urtw_8187b_update_wmm(sc);
if (error != 0)
goto fail;
error = urtw_8187b_reset(sc);
if (error)
goto fail;
/* Applying MAC address again. */
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
error = urtw_set_macaddr(sc, ic->ic_myaddr);
if (error)
goto fail;
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
error = urtw_update_msr(sc);
if (error)
goto fail;
error = rf->init(rf);
if (error != 0)
goto fail;
urtw_write8_m(sc, URTW_CMD, URTW_CMD_TX_ENABLE |
URTW_CMD_RX_ENABLE);
error = urtw_intr_enable(sc);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x41, 0xf4);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x40, 0x00);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x42, 0x00);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x42, 0x01);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x40, 0x0f);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x42, 0x00);
if (error != 0)
goto fail;
error = urtw_write8e(sc, 0x42, 0x01);
if (error != 0)
goto fail;
urtw_read8_m(sc, 0xdb, &data);
urtw_write8_m(sc, 0xdb, data | (1 << 2));
urtw_write16_idx_m(sc, 0x72, 0x59fa, 3);
urtw_write16_idx_m(sc, 0x74, 0x59d2, 3);
urtw_write16_idx_m(sc, 0x76, 0x59d2, 3);
urtw_write16_idx_m(sc, 0x78, 0x19fa, 3);
urtw_write16_idx_m(sc, 0x7a, 0x19fa, 3);
urtw_write16_idx_m(sc, 0x7c, 0x00d0, 3);
urtw_write8_m(sc, 0x61, 0);
urtw_write8_idx_m(sc, 0x80, 0x0f, 1);
urtw_write8_idx_m(sc, 0x83, 0x03, 1);
urtw_write8_m(sc, 0xda, 0x10);
urtw_write8_idx_m(sc, 0x4d, 0x08, 2);
urtw_write32_m(sc, URTW_HSSI_PARA, 0x0600321b);
urtw_write16_idx_m(sc, 0xec, 0x0800, 1);
urtw_write8_m(sc, URTW_ACM_CONTROL, 0);
/* Reset softc variables. */
for (size_t j = 0; j < URTW_PRIORITY_MAX; j++) {
sc->sc_txidx[j] = sc->sc_tx_queued[j] = 0;
}
sc->sc_txtimer = 0;
if (!(sc->sc_flags & URTW_INIT_ONCE)) {
error = usbd_set_config_no(sc->sc_udev, URTW_CONFIG_NO, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "failed to set configuration"
", err=%s\n", usbd_errstr(error));
goto fail;
}
/* Get the first interface handle. */
error = usbd_device2interface_handle(sc->sc_udev,
URTW_IFACE_INDEX, &sc->sc_iface);
if (error != 0) {
printf("%s: could not get interface handle\n",
device_xname(sc->sc_dev));
goto fail;
}
error = urtw_open_pipes(sc);
if (error != 0)
goto fail;
error = urtw_alloc_rx_data_list(sc);
if (error != 0)
goto fail;
error = urtw_alloc_tx_data_list(sc);
if (error != 0)
goto fail;
sc->sc_flags |= URTW_INIT_ONCE;
}
error = urtw_rx_enable(sc);
if (error != 0)
goto fail;
error = urtw_tx_enable(sc);
if (error != 0)
goto fail;
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
fail:
return error;
}
static usbd_status
urtw_8225v2_b_config_mac(struct urtw_softc *sc)
{
int i;
usbd_status error;
for (i = 0; i < __arraycount(urtw_8187b_regtbl); i++) {
urtw_write8_idx_m(sc, urtw_8187b_regtbl[i].reg,
urtw_8187b_regtbl[i].val, urtw_8187b_regtbl[i].idx);
}
urtw_write16_m(sc, URTW_TID_AC_MAP, 0xfa50);
urtw_write16_m(sc, URTW_INT_MIG, 0);
urtw_write32_idx_m(sc, 0xf0, 0, 1);
urtw_write32_idx_m(sc, 0xf4, 0, 1);
urtw_write8_idx_m(sc, 0xf8, 0, 1);
urtw_write32_m(sc, URTW_RF_TIMING, 0x00004001);
fail:
return error;
}
static usbd_status
urtw_8225v2_b_init_rfe(struct urtw_softc *sc)
{
usbd_status error;
urtw_write16_m(sc, URTW_RF_PINS_OUTPUT, 0x0480);
urtw_write16_m(sc, URTW_RF_PINS_SELECT, 0x2488);
urtw_write16_m(sc, URTW_RF_PINS_ENABLE, 0x1fff);
usbd_delay_ms(sc->sc_udev, 100);
fail:
return error;
}
static usbd_status
urtw_8225v2_b_update_chan(struct urtw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c = ic->ic_ibss_chan;
uint8_t aifs, difs, eifs, sifs, slot;
usbd_status error;
urtw_write8_m(sc, URTW_SIFS, 0x22);
sifs = 0xa;
if (IEEE80211_IS_CHAN_G(c)) {
slot = 0x9;
difs = 0x1c;
eifs = 0x5b;
} else {
slot = 0x14;
difs = 0x32;
eifs = 0x5b;
}
aifs = (2 * slot) + sifs;
urtw_write8_m(sc, URTW_SLOT, slot);
urtw_write8_m(sc, URTW_AC_VO, aifs);
urtw_write8_m(sc, URTW_AC_VI, aifs);
urtw_write8_m(sc, URTW_AC_BE, aifs);
urtw_write8_m(sc, URTW_AC_BK, aifs);
urtw_write8_m(sc, URTW_DIFS, difs);
urtw_write8_m(sc, URTW_8187B_EIFS, eifs);
fail:
return error;
}
static usbd_status
urtw_8225v2_b_rf_init(struct urtw_rf *rf)
{
struct urtw_softc *sc = rf->rf_sc;
unsigned int i;
uint8_t data;
usbd_status error;
/* Set up ACK rate, retry limit, TX AGC, TX antenna. */
urtw_write16_m(sc, URTW_8187B_BRSR, 0x0fff);
urtw_read8_m(sc, URTW_CW_CONF, &data);
urtw_write8_m(sc, URTW_CW_CONF, data |
URTW_CW_CONF_PERPACKET_RETRY);
urtw_read8_m(sc, URTW_TX_AGC_CTL, &data);
urtw_write8_m(sc, URTW_TX_AGC_CTL, data |
URTW_TX_AGC_CTL_PERPACKET_GAIN |
URTW_TX_AGC_CTL_PERPACKET_ANTSEL);
/* Auto rate fallback control. */
urtw_write16_idx_m(sc, URTW_ARFR, 0x0fff, 1); /* 1M ~ 54M */
urtw_read8_m(sc, URTW_RATE_FALLBACK, &data);
urtw_write8_m(sc, URTW_RATE_FALLBACK, data |
URTW_RATE_FALLBACK_ENABLE);
urtw_write16_m(sc, URTW_BEACON_INTERVAL, 100);
urtw_write16_m(sc, URTW_ATIM_WND, 2);
urtw_write16_idx_m(sc, URTW_FEMR, 0xffff, 1);
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_read8_m(sc, URTW_CONFIG1, &data);
urtw_write8_m(sc, URTW_CONFIG1, (data & 0x3f) | 0x80);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
urtw_write8_m(sc, URTW_WPA_CONFIG, 0);
urtw_8225v2_b_config_mac(sc);
urtw_write16_idx_m(sc, URTW_RFSW_CTRL, 0x569a, 2);
error = urtw_set_mode(sc, URTW_EPROM_CMD_CONFIG);
if (error)
goto fail;
urtw_read8_m(sc, URTW_CONFIG3, &data);
urtw_write8_m(sc, URTW_CONFIG3, data | URTW_CONFIG3_ANAPARAM_WRITE);
error = urtw_set_mode(sc, URTW_EPROM_CMD_NORMAL);
if (error)
goto fail;
urtw_8225v2_b_init_rfe(sc);
for (i = 0; i < __arraycount(urtw_8225v2_b_rf); i++) {
urtw_8225_write(sc, urtw_8225v2_b_rf[i].reg,
urtw_8225v2_b_rf[i].val);
}
for (i = 0; i < __arraycount(urtw_8225v2_rxgain); i++) {
urtw_8225_write(sc, 0x1, (uint8_t)(i + 1));
urtw_8225_write(sc, 0x2, urtw_8225v2_rxgain[i]);
}
urtw_8225_write(sc, 0x03, 0x080);
urtw_8225_write(sc, 0x05, 0x004);
urtw_8225_write(sc, 0x00, 0x0b7);
urtw_8225_write(sc, 0x02, 0xc4d);
urtw_8225_write(sc, 0x02, 0x44d);
urtw_8225_write(sc, 0x00, 0x2bf);
urtw_write8_m(sc, URTW_TX_GAIN_CCK, 0x03);
urtw_write8_m(sc, URTW_TX_GAIN_OFDM, 0x07);
urtw_write8_m(sc, URTW_TX_ANTENNA, 0x03);
urtw_8187_write_phy_ofdm(sc, 0x80, 0x12);
for (i = 0; i < __arraycount(urtw_8225v2_agc); i++) {
urtw_8187_write_phy_ofdm(sc, 0x0f, urtw_8225v2_agc[i]);
urtw_8187_write_phy_ofdm(sc, 0x0e, (uint8_t)i + 0x80);
urtw_8187_write_phy_ofdm(sc, 0x0e, 0);
}
urtw_8187_write_phy_ofdm(sc, 0x80, 0x10);
for (i = 0; i < __arraycount(urtw_8225v2_ofdm); i++)
urtw_8187_write_phy_ofdm(sc, i, urtw_8225v2_ofdm[i]);
urtw_8225v2_b_update_chan(sc);
urtw_8187_write_phy_ofdm(sc, 0x97, 0x46);
urtw_8187_write_phy_ofdm(sc, 0xa4, 0xb6);
urtw_8187_write_phy_ofdm(sc, 0x85, 0xfc);
urtw_8187_write_phy_cck(sc, 0xc1, 0x88);
error = urtw_8225v2_b_rf_set_chan(rf, 1);
fail:
return error;
}
static usbd_status
urtw_8225v2_b_rf_set_chan(struct urtw_rf *rf, int chan)
{
struct urtw_softc *sc = rf->rf_sc;
usbd_status error;
error = urtw_8225v2_b_set_txpwrlvl(sc, chan);
if (error)
goto fail;
urtw_8225_write(sc, 0x7, urtw_8225_channel[chan]);
/*
* Delay removed from 8185 to 8187.
* usbd_delay_ms(sc->sc_udev, 10);
*/
urtw_write16_m(sc, URTW_AC_VO, 0x5114);
urtw_write16_m(sc, URTW_AC_VI, 0x5114);
urtw_write16_m(sc, URTW_AC_BE, 0x5114);
urtw_write16_m(sc, URTW_AC_BK, 0x5114);
fail:
return error;
}
static usbd_status
urtw_8225v2_b_set_txpwrlvl(struct urtw_softc *sc, int chan)
{
int i;
uint8_t *cck_pwrtable;
uint8_t cck_pwrlvl_min, cck_pwrlvl_max, ofdm_pwrlvl_min,
ofdm_pwrlvl_max;
int8_t cck_pwrlvl = sc->sc_txpwr_cck[chan] & 0xff;
int8_t ofdm_pwrlvl = sc->sc_txpwr_ofdm[chan] & 0xff;
usbd_status error;
if (sc->sc_hwrev & URTW_HWREV_8187B_B) {
cck_pwrlvl_min = 0;
cck_pwrlvl_max = 15;
ofdm_pwrlvl_min = 2;
ofdm_pwrlvl_max = 17;
} else {
cck_pwrlvl_min = 7;
cck_pwrlvl_max = 22;
ofdm_pwrlvl_min = 10;
ofdm_pwrlvl_max = 25;
}
/* CCK power setting */
cck_pwrlvl = (cck_pwrlvl > (cck_pwrlvl_max - cck_pwrlvl_min)) ?
cck_pwrlvl_max : (cck_pwrlvl + cck_pwrlvl_min);
cck_pwrlvl += sc->sc_txpwr_cck_base;
cck_pwrlvl = (cck_pwrlvl > 35) ? 35 : cck_pwrlvl;
cck_pwrlvl = (cck_pwrlvl < 0) ? 0 : cck_pwrlvl;
cck_pwrtable = (chan == 14) ? urtw_8225v2_txpwr_cck_ch14 :
urtw_8225v2_txpwr_cck;
if (sc->sc_hwrev & URTW_HWREV_8187B_B) {
if (cck_pwrlvl <= 6)
; /* do nothing */
else if (cck_pwrlvl <= 11)
cck_pwrtable += 8;
else
cck_pwrtable += 16;
} else {
if (cck_pwrlvl <= 5)
; /* do nothing */
else if (cck_pwrlvl <= 11)
cck_pwrtable += 8;
else if (cck_pwrlvl <= 17)
cck_pwrtable += 16;
else
cck_pwrtable += 24;
}
for (i = 0; i < 8; i++) {
urtw_8187_write_phy_cck(sc, 0x44 + i, cck_pwrtable[i]);
}
urtw_write8_m(sc, URTW_TX_GAIN_CCK,
urtw_8225v2_tx_gain_cck_ofdm[cck_pwrlvl] << 1);
/*
* Delay removed from 8185 to 8187.
* usbd_delay_ms(sc->sc_udev, 1);
*/
/* OFDM power setting */
ofdm_pwrlvl = (ofdm_pwrlvl > (ofdm_pwrlvl_max - ofdm_pwrlvl_min)) ?
ofdm_pwrlvl_max : ofdm_pwrlvl + ofdm_pwrlvl_min;
ofdm_pwrlvl += sc->sc_txpwr_ofdm_base;
ofdm_pwrlvl = (ofdm_pwrlvl > 35) ? 35 : ofdm_pwrlvl;
ofdm_pwrlvl = (ofdm_pwrlvl < 0) ? 0 : ofdm_pwrlvl;
urtw_write8_m(sc, URTW_TX_GAIN_OFDM,
urtw_8225v2_tx_gain_cck_ofdm[ofdm_pwrlvl] << 1);
if (sc->sc_hwrev & URTW_HWREV_8187B_B) {
if (ofdm_pwrlvl <= 11) {
urtw_8187_write_phy_ofdm(sc, 0x87, 0x60);
urtw_8187_write_phy_ofdm(sc, 0x89, 0x60);
} else {
urtw_8187_write_phy_ofdm(sc, 0x87, 0x5c);
urtw_8187_write_phy_ofdm(sc, 0x89, 0x5c);
}
} else {
if (ofdm_pwrlvl <= 11) {
urtw_8187_write_phy_ofdm(sc, 0x87, 0x5c);
urtw_8187_write_phy_ofdm(sc, 0x89, 0x5c);
} else if (ofdm_pwrlvl <= 17) {
urtw_8187_write_phy_ofdm(sc, 0x87, 0x54);
urtw_8187_write_phy_ofdm(sc, 0x89, 0x54);
} else {
urtw_8187_write_phy_ofdm(sc, 0x87, 0x50);
urtw_8187_write_phy_ofdm(sc, 0x89, 0x50);
}
}
/*
* Delay removed from 8185 to 8187.
* usbd_delay_ms(sc->sc_udev, 1);
*/
fail:
return error;
}
static int
urtw_set_bssid(struct urtw_softc *sc, const uint8_t *bssid)
{
int error;
urtw_write32_m(sc, URTW_BSSID,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
urtw_write16_m(sc, URTW_BSSID + 4,
bssid[4] | bssid[5] << 8);
return 0;
fail:
return error;
}
static int
urtw_set_macaddr(struct urtw_softc *sc, const uint8_t *addr)
{
int error;
urtw_write32_m(sc, URTW_MAC0,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
urtw_write16_m(sc, URTW_MAC4,
addr[4] | addr[5] << 8);
return 0;
fail:
return error;
}
MODULE(MODULE_CLASS_DRIVER, if_urtw, NULL);
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
if_urtw_modcmd(modcmd_t cmd, void *aux)
{
int error = 0;
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
error = config_init_component(cfdriver_ioconf_urtw,
cfattach_ioconf_urtw, cfdata_ioconf_urtw);
#endif
return error;
case MODULE_CMD_FINI:
#ifdef _MODULE
error = config_fini_component(cfdriver_ioconf_urtw,
cfattach_ioconf_urtw, cfdata_ioconf_urtw);
#endif
return error;
default:
return ENOTTY;
}
}