NetBSD/sys/dev/usb/if_cue.c
thorpej 7a9a30c5e7 Define and implement a locking protocol for the ifmedia / mii layers:
- MP-safe drivers provide a mutex to ifmedia that is used to serialize
  access to media-related structures / hardware regsiters.  Converted
  drivers use the new ifmedia_init_with_lock() function for this.  The
  new name is provided to ease the transition.
- Un-converted drivers continue to call ifmedia_init(), which will supply
  a compatibility lock to be used instead.  Several media-related entry
  points must be aware of this compatibility lock, and are able to acquire
  it recursively a limited number of times, if needed.  This is a SPIN
  mutex with priority IPL_NET.
- This same lock is used to serialize access to PHY registers and other
  MII-related data structures.

The PHY drivers are modified to acquire and release the lock, as needed,
and assert the lock is held as a diagnostic aid.

The "usbnet" framework has had an overhaul of its internal locking
protocols to fit in with the media / mii changes, and the drivers adapted.

USB wifi drivers have been changed to provide their own adaptive mutex
to the ifmedia later via a new ieee80211_media_init_with_lock() function.
This is required because the USB drivers need an adaptive mutex.

Besised "usbnet", a few other drivers are converted: vmx, wm, ixgbe / ixv.

mcx also now calls ifmedia_init_with_lock() because it needs to also use
an adaptive mutex.  The mcx driver still needs to be fully converted to
NET_MPSAFE.
2020-03-15 23:04:50 +00:00

725 lines
17 KiB
C

/* $NetBSD: if_cue.c,v 1.91 2020/03/15 23:04:50 thorpej Exp $ */
/*
* Copyright (c) 1997, 1998, 1999, 2000
* Bill Paul <wpaul@ee.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: src/sys/dev/usb/if_cue.c,v 1.4 2000/01/16 22:45:06 wpaul Exp $
*/
/*
* CATC USB-EL1210A USB to ethernet driver. Used in the CATC Netmate
* adapters and others.
*
* Written by Bill Paul <wpaul@ee.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The CATC USB-EL1210A provides USB ethernet support at 10Mbps. The
* RX filter uses a 512-bit multicast hash table, single perfect entry
* for the station address, and promiscuous mode. Unlike the ADMtek
* and KLSI chips, the CATC ASIC supports read and write combining
* mode where multiple packets can be transferred using a single bulk
* transaction, which helps performance a great deal.
*/
/*
* Ported to NetBSD and somewhat rewritten by Lennart Augustsson.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_cue.c,v 1.91 2020/03/15 23:04:50 thorpej Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <dev/usb/usbnet.h>
#include <dev/usb/if_cuereg.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#ifdef CUE_DEBUG
#define DPRINTF(x) if (cuedebug) printf x
#define DPRINTFN(n, x) if (cuedebug >= (n)) printf x
int cuedebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
#define CUE_BUFSZ 1536
#define CUE_MIN_FRAMELEN 60
#define CUE_RX_FRAMES 1
#define CUE_TX_FRAMES 1
#define CUE_CONFIG_NO 1
#define CUE_IFACE_IDX 0
#define CUE_RX_LIST_CNT 1
#define CUE_TX_LIST_CNT 1
struct cue_type {
uint16_t cue_vid;
uint16_t cue_did;
};
struct cue_softc;
struct cue_chain {
struct cue_softc *cue_sc;
struct usbd_xfer *cue_xfer;
char *cue_buf;
struct mbuf *cue_mbuf;
int cue_idx;
};
struct cue_cdata {
struct cue_chain cue_tx_chain[CUE_TX_LIST_CNT];
struct cue_chain cue_rx_chain[CUE_RX_LIST_CNT];
int cue_tx_prod;
int cue_tx_cnt;
};
struct cue_softc {
struct usbnet cue_un;
uint8_t cue_mctab[CUE_MCAST_TABLE_LEN];
};
/*
* Various supported device vendors/products.
*/
static const struct usb_devno cue_devs[] = {
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE },
{ USB_VENDOR_CATC, USB_PRODUCT_CATC_NETMATE2 },
{ USB_VENDOR_SMARTBRIDGES, USB_PRODUCT_SMARTBRIDGES_SMARTLINK },
/* Belkin F5U111 adapter covered by NETMATE entry */
};
#define cue_lookup(v, p) (usb_lookup(cue_devs, v, p))
static int cue_match(device_t, cfdata_t, void *);
static void cue_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(cue, sizeof(struct cue_softc), cue_match, cue_attach,
usbnet_detach, usbnet_activate);
static unsigned cue_uno_tx_prepare(struct usbnet *, struct mbuf *,
struct usbnet_chain *);
static void cue_uno_rx_loop(struct usbnet *, struct usbnet_chain *, uint32_t);
static int cue_uno_ioctl(struct ifnet *, u_long, void *);
static void cue_uno_stop(struct ifnet *, int);
static int cue_uno_init(struct ifnet *);
static void cue_uno_tick(struct usbnet *);
static const struct usbnet_ops cue_ops = {
.uno_stop = cue_uno_stop,
.uno_ioctl = cue_uno_ioctl,
.uno_tx_prepare = cue_uno_tx_prepare,
.uno_rx_loop = cue_uno_rx_loop,
.uno_init = cue_uno_init,
.uno_tick = cue_uno_tick,
};
#ifdef CUE_DEBUG
static int
cue_csr_read_1(struct usbnet *un, int reg)
{
usb_device_request_t req;
usbd_status err;
uint8_t val = 0;
if (usbnet_isdying(un))
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 1);
err = usbd_do_request(un->un_udev, &req, &val);
if (err) {
DPRINTF(("%s: cue_csr_read_1: reg=%#x err=%s\n",
device_xname(un->un_dev), reg, usbd_errstr(err)));
return 0;
}
DPRINTFN(10,("%s: cue_csr_read_1 reg=%#x val=%#x\n",
device_xname(un->un_dev), reg, val));
return val;
}
#endif
static int
cue_csr_read_2(struct usbnet *un, int reg)
{
usb_device_request_t req;
usbd_status err;
uWord val;
if (usbnet_isdying(un))
return 0;
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_READREG;
USETW(req.wValue, 0);
USETW(req.wIndex, reg);
USETW(req.wLength, 2);
err = usbd_do_request(un->un_udev, &req, &val);
DPRINTFN(10,("%s: cue_csr_read_2 reg=%#x val=%#x\n",
device_xname(un->un_dev), reg, UGETW(val)));
if (err) {
DPRINTF(("%s: cue_csr_read_2: reg=%#x err=%s\n",
device_xname(un->un_dev), reg, usbd_errstr(err)));
return 0;
}
return UGETW(val);
}
static int
cue_csr_write_1(struct usbnet *un, int reg, int val)
{
usb_device_request_t req;
usbd_status err;
if (usbnet_isdying(un))
return 0;
DPRINTFN(10,("%s: cue_csr_write_1 reg=%#x val=%#x\n",
device_xname(un->un_dev), reg, val));
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request(un->un_udev, &req, NULL);
if (err) {
DPRINTF(("%s: cue_csr_write_1: reg=%#x err=%s\n",
device_xname(un->un_dev), reg, usbd_errstr(err)));
return -1;
}
DPRINTFN(20,("%s: cue_csr_write_1, after reg=%#x val=%#x\n",
device_xname(un->un_dev), reg, cue_csr_read_1(un, reg)));
return 0;
}
#if 0
static int
cue_csr_write_2(struct usbnet *un, int reg, int aval)
{
usb_device_request_t req;
usbd_status err;
uWord val;
int s;
if (usbnet_isdying(un))
return 0;
DPRINTFN(10,("%s: cue_csr_write_2 reg=%#x val=%#x\n",
device_xname(un->un_dev), reg, aval));
USETW(val, aval);
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_WRITEREG;
USETW(req.wValue, val);
USETW(req.wIndex, reg);
USETW(req.wLength, 0);
err = usbd_do_request(un->un_udev, &req, NULL);
if (err) {
DPRINTF(("%s: cue_csr_write_2: reg=%#x err=%s\n",
device_xname(un->un_dev), reg, usbd_errstr(err)));
return -1;
}
return 0;
}
#endif
static int
cue_mem(struct usbnet *un, int cmd, int addr, void *buf, int len)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(10,("%s: cue_mem cmd=%#x addr=%#x len=%d\n",
device_xname(un->un_dev), cmd, addr, len));
if (cmd == CUE_CMD_READSRAM)
req.bmRequestType = UT_READ_VENDOR_DEVICE;
else
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = cmd;
USETW(req.wValue, 0);
USETW(req.wIndex, addr);
USETW(req.wLength, len);
err = usbd_do_request(un->un_udev, &req, buf);
if (err) {
DPRINTF(("%s: cue_csr_mem: addr=%#x err=%s\n",
device_xname(un->un_dev), addr, usbd_errstr(err)));
return -1;
}
return 0;
}
static int
cue_getmac(struct usbnet *un)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(10,("%s: cue_getmac\n", device_xname(un->un_dev)));
req.bmRequestType = UT_READ_VENDOR_DEVICE;
req.bRequest = CUE_CMD_GET_MACADDR;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, ETHER_ADDR_LEN);
err = usbd_do_request(un->un_udev, &req, un->un_eaddr);
if (err) {
printf("%s: read MAC address failed\n",
device_xname(un->un_dev));
return -1;
}
return 0;
}
#define CUE_POLY 0xEDB88320
#define CUE_BITS 9
static uint32_t
cue_crc(const char *addr)
{
uint32_t idx, bit, data, crc;
/* Compute CRC for the address value. */
crc = 0xFFFFFFFF; /* initial value */
for (idx = 0; idx < 6; idx++) {
for (data = *addr++, bit = 0; bit < 8; bit++, data >>= 1)
crc = (crc >> 1) ^ (((crc ^ data) & 1) ? CUE_POLY : 0);
}
return crc & ((1 << CUE_BITS) - 1);
}
static void
cue_setiff_locked(struct usbnet *un)
{
struct cue_softc *sc = usbnet_softc(un);
struct ethercom *ec = usbnet_ec(un);
struct ifnet *ifp = usbnet_ifp(un);
struct ether_multi *enm;
struct ether_multistep step;
uint32_t h, i;
DPRINTFN(2,("%s: cue_setiff if_flags=%#x\n",
device_xname(un->un_dev), ifp->if_flags));
if (ifp->if_flags & IFF_PROMISC) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0xFF;
cue_mem(un, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
return;
}
/* first, zot all the existing hash bits */
for (i = 0; i < CUE_MCAST_TABLE_LEN; i++)
sc->cue_mctab[i] = 0;
/* now program new ones */
ETHER_LOCK(ec);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo,
enm->enm_addrhi, ETHER_ADDR_LEN) != 0) {
ETHER_UNLOCK(ec);
goto allmulti;
}
h = cue_crc(enm->enm_addrlo);
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
ETHER_NEXT_MULTI(step, enm);
}
ETHER_UNLOCK(ec);
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Also include the broadcast address in the filter
* so we can receive broadcast frames.
*/
if (ifp->if_flags & IFF_BROADCAST) {
h = cue_crc(etherbroadcastaddr);
sc->cue_mctab[h >> 3] |= 1 << (h & 0x7);
}
cue_mem(un, CUE_CMD_WRITESRAM, CUE_MCAST_TABLE_ADDR,
&sc->cue_mctab, CUE_MCAST_TABLE_LEN);
}
static void
cue_reset(struct usbnet *un)
{
usb_device_request_t req;
usbd_status err;
DPRINTFN(2,("%s: cue_reset\n", device_xname(un->un_dev)));
if (usbnet_isdying(un))
return;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = CUE_CMD_RESET;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
err = usbd_do_request(un->un_udev, &req, NULL);
if (err)
printf("%s: reset failed\n", device_xname(un->un_dev));
/* Wait a little while for the chip to get its brains in order. */
usbd_delay_ms(un->un_udev, 1);
}
/*
* Probe for a CATC chip.
*/
static int
cue_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
return cue_lookup(uaa->uaa_vendor, uaa->uaa_product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
/*
* Attach the interface. Allocate softc structures, do ifmedia
* setup and ethernet/BPF attach.
*/
static void
cue_attach(device_t parent, device_t self, void *aux)
{
struct cue_softc *sc = device_private(self);
struct usbnet * const un = &sc->cue_un;
struct usb_attach_arg *uaa = aux;
char *devinfop;
struct usbd_device * dev = uaa->uaa_device;
usbd_status err;
usb_interface_descriptor_t *id;
usb_endpoint_descriptor_t *ed;
int i;
KASSERT((void *)sc == un);
DPRINTFN(5,(" : cue_attach: sc=%p, dev=%p", sc, dev));
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(dev, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
err = usbd_set_config_no(dev, CUE_CONFIG_NO, 1);
if (err) {
aprint_error_dev(self, "failed to set configuration"
", err=%s\n", usbd_errstr(err));
return;
}
un->un_dev = self;
un->un_udev = dev;
un->un_sc = sc;
un->un_ops = &cue_ops;
un->un_rx_xfer_flags = USBD_SHORT_XFER_OK;
un->un_tx_xfer_flags = USBD_FORCE_SHORT_XFER;
un->un_rx_list_cnt = CUE_RX_LIST_CNT;
un->un_tx_list_cnt = CUE_TX_LIST_CNT;
un->un_rx_bufsz = CUE_BUFSZ;
un->un_tx_bufsz = CUE_BUFSZ;
err = usbd_device2interface_handle(dev, CUE_IFACE_IDX, &un->un_iface);
if (err) {
aprint_error_dev(self, "getting interface handle failed\n");
return;
}
id = usbd_get_interface_descriptor(un->un_iface);
/* Find endpoints. */
for (i = 0; i < id->bNumEndpoints; i++) {
ed = usbd_interface2endpoint_descriptor(un->un_iface, i);
if (ed == NULL) {
aprint_error_dev(self, "couldn't get ep %d\n", i);
return;
}
if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_RX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_OUT &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_BULK) {
un->un_ed[USBNET_ENDPT_TX] = ed->bEndpointAddress;
} else if (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN &&
UE_GET_XFERTYPE(ed->bmAttributes) == UE_INTERRUPT) {
un->un_ed[USBNET_ENDPT_INTR] = ed->bEndpointAddress;
}
}
/* First level attach. */
usbnet_attach(un, "cuedet");
#if 0
/* Reset the adapter. */
cue_reset(un);
#endif
/*
* Get station address.
*/
cue_getmac(un);
usbnet_attach_ifp(un, IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST,
0, NULL);
}
static void
cue_uno_tick(struct usbnet *un)
{
struct ifnet *ifp = usbnet_ifp(un);
usbnet_lock_core(un);
net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
if (cue_csr_read_2(un, CUE_RX_FRAMEERR))
if_statinc_ref(nsr, if_ierrors);
if_statadd_ref(nsr, if_collisions,
cue_csr_read_2(un, CUE_TX_SINGLECOLL));
if_statadd_ref(nsr, if_collisions,
cue_csr_read_2(un, CUE_TX_MULTICOLL));
if_statadd_ref(nsr, if_collisions,
cue_csr_read_2(un, CUE_TX_EXCESSCOLL));
IF_STAT_PUTREF(ifp);
usbnet_unlock_core(un);
}
static void
cue_uno_rx_loop(struct usbnet *un, struct usbnet_chain *c, uint32_t total_len)
{
struct ifnet *ifp = usbnet_ifp(un);
uint8_t *buf = c->unc_buf;
uint16_t len;
DPRINTFN(5,("%s: %s: total_len=%d len=%d\n",
device_xname(un->un_dev), __func__,
total_len, le16dec(buf)));
len = UGETW(buf);
if (total_len < 2 ||
len > total_len - 2 ||
len < sizeof(struct ether_header)) {
if_statinc(ifp, if_ierrors);
return;
}
/* No errors; receive the packet. */
usbnet_enqueue(un, buf + 2, len, 0, 0, 0);
}
static unsigned
cue_uno_tx_prepare(struct usbnet *un, struct mbuf *m, struct usbnet_chain *c)
{
unsigned total_len;
DPRINTFN(5,("%s: %s: mbuf len=%d\n",
device_xname(un->un_dev), __func__,
m->m_pkthdr.len));
if ((unsigned)m->m_pkthdr.len > un->un_tx_bufsz - 2)
return 0;
/*
* Copy the mbuf data into a contiguous buffer, leaving two
* bytes at the beginning to hold the frame length.
*/
m_copydata(m, 0, m->m_pkthdr.len, c->unc_buf + 2);
total_len = m->m_pkthdr.len + 2;
/* The first two bytes are the frame length */
c->unc_buf[0] = (uint8_t)m->m_pkthdr.len;
c->unc_buf[1] = (uint8_t)(m->m_pkthdr.len >> 8);
return total_len;
}
static int
cue_init_locked(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
int i, ctl;
const u_char *eaddr;
DPRINTFN(10,("%s: %s: enter\n", device_xname(un->un_dev),__func__));
if (usbnet_isdying(un))
return -1;
/* Cancel pending I/O */
usbnet_stop(un, ifp, 1);
/* Reset the interface. */
#if 1
cue_reset(un);
#endif
/* Set advanced operation modes. */
cue_csr_write_1(un, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN | 0x03); /* 1 wait state */
eaddr = CLLADDR(ifp->if_sadl);
/* Set MAC address */
for (i = 0; i < ETHER_ADDR_LEN; i++)
cue_csr_write_1(un, CUE_PAR0 - i, eaddr[i]);
/* Enable RX logic. */
ctl = CUE_ETHCTL_RX_ON | CUE_ETHCTL_MCAST_ON;
if (ifp->if_flags & IFF_PROMISC)
ctl |= CUE_ETHCTL_PROMISC;
cue_csr_write_1(un, CUE_ETHCTL, ctl);
/* Load the multicast filter. */
cue_setiff_locked(un);
/*
* Set the number of RX and TX buffers that we want
* to reserve inside the ASIC.
*/
cue_csr_write_1(un, CUE_RX_BUFPKTS, CUE_RX_FRAMES);
cue_csr_write_1(un, CUE_TX_BUFPKTS, CUE_TX_FRAMES);
/* Set advanced operation modes. */
cue_csr_write_1(un, CUE_ADVANCED_OPMODES,
CUE_AOP_EMBED_RXLEN | 0x01); /* 1 wait state */
/* Program the LED operation. */
cue_csr_write_1(un, CUE_LEDCTL, CUE_LEDCTL_FOLLOW_LINK);
return usbnet_init_rx_tx(un);
}
static int
cue_uno_init(struct ifnet *ifp)
{
struct usbnet * const un = ifp->if_softc;
int rv;
usbnet_lock_core(un);
usbnet_busy(un);
rv = cue_init_locked(ifp);
usbnet_unbusy(un);
usbnet_unlock_core(un);
return rv;
}
static int
cue_uno_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct usbnet * const un = ifp->if_softc;
usbnet_lock_core(un);
usbnet_busy(un);
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
cue_setiff_locked(un);
break;
default:
break;
}
usbnet_unbusy(un);
usbnet_unlock_core(un);
return 0;
}
/* Stop and reset the adapter. */
static void
cue_uno_stop(struct ifnet *ifp, int disable)
{
struct usbnet * const un = ifp->if_softc;
DPRINTFN(10,("%s: %s: enter\n", device_xname(un->un_dev), __func__));
cue_csr_write_1(un, CUE_ETHCTL, 0);
cue_reset(un);
}
#ifdef _MODULE
#include "ioconf.c"
#endif
USBNET_MODULE(cue)