NetBSD/sys/arch/arm32/ofw/ofwgencfg_clock.c

405 lines
8.6 KiB
C

/* $NetBSD: ofwgencfg_clock.c,v 1.2 1998/05/01 21:18:43 cgd Exp $ */
/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
* and retain this copyright notice and list of conditions as
* they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
* Digital Equipment Corporation. Neither the "Digital Equipment
* Corporation" name nor any trademark or logo of Digital Equipment
* Corporation may be used to endorse or promote products derived
* from this software without the prior written permission of
* Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
* warranties, including but not limited to, any implied warranties
* of merchantability, fitness for a particular purpose, or
* non-infringement are disclaimed. In no event shall DIGITAL be
* liable for any damages whatsoever, and in particular, DIGITAL
* shall not be liable for special, indirect, consequential, or
* incidental damages or damages for lost profits, loss of
* revenue or loss of use, whether such damages arise in contract,
* negligence, tort, under statute, in equity, at law or otherwise,
* even if advised of the possibility of such damage.
*/
/* Include header files */
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/time.h>
#include <machine/irqhandler.h>
#include <machine/cpu.h>
#include <machine/ofw.h>
/*
static irqhandler_t clockirq;
static irqhandler_t statclockirq;
*/
static void *clockirq;
static void *statclockirq;
/*
* int clockhandler(struct clockframe *frame)
*
* Function called by timer 0 interrupts. This just calls
* hardclock(). Eventually the irqhandler can call hardclock() directly
* but for now we use this function so that we can debug IRQ's
*/
int
clockhandler(frame)
struct clockframe *frame;
{
hardclock(frame);
return(0); /* Pass the interrupt on down the chain */
}
/*
* int statclockhandler(struct clockframe *frame)
*
* Function called by timer 1 interrupts. This just calls
* statclock(). Eventually the irqhandler can call statclock() directly
* but for now we use this function so that we can debug IRQ's
*/
int
statclockhandler(frame)
struct clockframe *frame;
{
statclock(frame);
return(0); /* Pass the interrupt on down the chain */
}
/*
* void setstatclockrate(int hz)
*
* Set the stat clock rate. The stat clock uses timer1
*/
void
setstatclockrate(hz)
int hz;
{
int count;
#ifdef OFWGENCFG
printf("Not setting statclock: OFW generic has only one clock.\n");
#endif
}
/*
* void cpu_initclocks(void)
*
* Initialise the clocks.
* This sets up the two timers in the IOMD and installs the IRQ handlers
*
* NOTE: Currently only timer 0 is setup and the IRQ handler is not installed
*/
void
cpu_initclocks()
{
/*
* Load timer 0 with count down value
* This timer generates 100Hz interrupts for the system clock
*/
printf("clock: hz=%d stathz = %d profhz = %d\n", hz, stathz, profhz);
/*
clockirq.ih_func = clockhandler;
clockirq.ih_arg = 0;
clockirq.ih_level = IPL_CLOCK;
clockirq.ih_name = "TMR0 hard clk";
if (irq_claim(IRQ_TIMER0, &clockirq) == -1)
panic("Cannot installer timer 0 IRQ handler\n");
*/
clockirq = intr_claim(IRQ_TIMER0, IPL_CLOCK, "tmr0 hard clk",
clockhandler, 0);
if (clockirq == NULL)
panic("Cannot installer timer 0 IRQ handler\n");
/* Notify callback handler that it can start processing ticks. */
ofw_handleticks = 1;
if (stathz) {
printf("Not installing statclock: OFW generic has only one clock.\n");
}
}
/*
* void microtime(struct timeval *tvp)
*
* Fill in the specified timeval struct with the current time
* accurate to the microsecond.
*/
void
microtime(tvp)
struct timeval *tvp;
{
int s;
static struct timeval oldtv;
s = splhigh();
/* Fill in the timeval struct */
*tvp = time;
/* Make sure the micro seconds don't overflow. */
while (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
/* Make sure the time has advanced. */
if (tvp->tv_sec == oldtv.tv_sec &&
tvp->tv_usec <= oldtv.tv_usec) {
tvp->tv_usec = oldtv.tv_usec + 1;
if (tvp->tv_usec > 1000000) {
tvp->tv_usec -= 1000000;
++tvp->tv_sec;
}
}
oldtv = *tvp;
(void)splx(s);
}
void
need_proftick(p)
struct proc *p;
{
}
/*
* Time-of-day clock
*
* Cribbed from dev/todclock.c
* Need to integrate with that code!
*/
#include <machine/rtc.h>
static rtc_t fake_rtc = {0, 0, 0, 0, 0, 11, 3, 97, 19}; /* March 11, 1997, 00:00:00 */
static int
fake_rtc_write(rtc)
rtc_t *rtc;
{
fake_rtc = *rtc;
return(1);
}
static int
fake_rtc_read(rtc)
rtc_t *rtc;
{
*rtc = fake_rtc;
return(1);
}
static __inline int
yeartoday(year)
int year;
{
return((year % 4) ? 365 : 366);
}
static int month[12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
static int timeset = 0;
#define SECPERDAY (24*60*60)
#define SECPERNYEAR (365*SECPERDAY)
#define SECPER4YEARS (4*SECPERNYEAR+SECPERDAY)
#define EPOCHYEAR 1970
/*
* Globally visable functions
*
* These functions are used from other parts of the kernel.
* These functions use the functions defined in the tod_sc
* to actually read and write the rtc.
*
* The first todclock to be attached will be used for handling
* the time of day.
*/
/*
* Write back the time of day to the rtc
*/
void
resettodr()
{
int s;
time_t year, mon, day, hour, min, sec;
rtc_t rtc;
/* Have we set the system time in inittodr() */
if (!timeset)
return;
sec = time.tv_sec;
sec -= rtc_offset * 60;
year = (sec / SECPER4YEARS) * 4;
sec %= SECPER4YEARS;
/* year now hold the number of years rounded down 4 */
while (sec > (yeartoday(EPOCHYEAR+year) * SECPERDAY)) {
sec -= yeartoday(EPOCHYEAR+year)*SECPERDAY;
year++;
}
/* year is now a correct offset from the EPOCHYEAR */
year+=EPOCHYEAR;
mon=0;
if (yeartoday(year) == 366)
month[1]=29;
else
month[1]=28;
while ((sec/SECPERDAY) > month[mon]) {
sec -= month[mon]*SECPERDAY;
mon++;
}
day = sec / SECPERDAY;
sec %= SECPERDAY;
hour = sec / 3600;
sec %= 3600;
min = sec / 60;
sec %= 60;
rtc.rtc_cen = year / 100;
rtc.rtc_year = year % 100;
rtc.rtc_mon = mon+1;
rtc.rtc_day = day+1;
rtc.rtc_hour = hour;
rtc.rtc_min = min;
rtc.rtc_sec = sec;
rtc.rtc_centi =
rtc.rtc_micro = 0;
/*
printf("resettod: %d/%d/%d%d %d:%d:%d\n", rtc.rtc_day,
rtc.rtc_mon, rtc.rtc_cen, rtc.rtc_year, rtc.rtc_hour,
rtc.rtc_min, rtc.rtc_sec);
*/
s = splclock();
/*
if (!todclock_sc)
panic("resettod: No todclock device attached\n");
todclock_sc->sc_rtc_write(&rtc);
*/
fake_rtc_write(&rtc);
(void)splx(s);
}
/*
* Initialise the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
void
inittodr(base)
time_t base;
{
time_t n;
int i, days = 0;
int s;
int year;
rtc_t rtc;
/*
* We ignore the suggested time for now and go for the RTC
* clock time stored in the CMOS RAM.
*/
/*
if (!todclock_sc)
panic("resettod: No todclock device attached\n");
*/
s = splclock();
/*
if (todclock_sc->sc_rtc_read(&rtc) == 0) {
(void)splx(s);
return;
}
*/
(void)fake_rtc_read(&rtc);
(void)splx(s);
n = rtc.rtc_sec + 60 * rtc.rtc_min + 3600 * rtc.rtc_hour;
n += (rtc.rtc_day - 1) * 3600 * 24;
year = (rtc.rtc_year + rtc.rtc_cen * 100) - 1900;
if (yeartoday(year) == 366)
month[1] = 29;
for (i = rtc.rtc_mon - 2; i >= 0; i--)
days += month[i];
month[1] = 28;
for (i = 70; i < year; i++)
days += yeartoday(i);
n += days * 3600 * 24;
n += rtc_offset * 60;
time.tv_sec = n;
time.tv_usec = 0;
/* timeset is used to ensure the time is valid before a resettodr() */
timeset = 1;
/* If the base was 0 then keep quiet */
if (base) {
printf("inittodr: %02d:%02d:%02d.%02d%02d %02d/%02d/%02d%02d\n",
rtc.rtc_hour, rtc.rtc_min, rtc.rtc_sec, rtc.rtc_centi,
rtc.rtc_micro, rtc.rtc_day, rtc.rtc_mon, rtc.rtc_cen,
rtc.rtc_year);
if (n > base + 60) {
days = (n - base) / SECPERDAY;
printf("Clock has gained %d day%c %ld hours %ld minutes %ld secs\n",
days, ((days == 1) ? 0 : 's'), ((n - base) / 3600) % 24,
((n - base) / 60) % 60, (n - base) % 60);
}
}
}