NetBSD/sys/arch/x68k/dev/fd.c
mrg fb81c7d694 fix PR 6724 - convert m68k options to defflag's. this means that
M680[12346] are now available from opt_m68k_arch.h.  FPSP meantioned
in the PR has already been fixed, and i could not find any more.

i built these kernels to ensure i did not break their builds:

amiga: GENERIC DRACO
atari: HADES FALCON MILAN-PCIIDE
mac68k: GENERIC
sun2: GENERIC
sun3: GENERIC GENERIC3X
cesfic: attempted GENERIC, does not build due to lack of machine/bus.h
hp300: GENERIC
luna68k: GENERIC
mvme68k: GENERIC
news68k: GENERIC
next68k: GENERIC
x68k: GENERIC
2010-06-06 04:51:33 +00:00

1656 lines
42 KiB
C

/* $NetBSD: fd.c,v 1.93 2010/06/06 04:52:01 mrg Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum and Minoura Makoto.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fd.c 7.4 (Berkeley) 5/25/91
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fd.c,v 1.93 2010/06/06 04:52:01 mrg Exp $");
#include "rnd.h"
#include "opt_ddb.h"
#include "opt_m68k_arch.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/conf.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/uio.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <sys/fdio.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <uvm/uvm_extern.h>
#include <dev/cons.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <arch/x68k/dev/intiovar.h>
#include <arch/x68k/dev/dmacvar.h>
#include <arch/x68k/dev/fdreg.h>
#include <arch/x68k/dev/opmvar.h> /* for CT1 access */
#include "locators.h"
#ifdef FDDEBUG
#define DPRINTF(x) if (fddebug) printf x
int fddebug = 0;
#else
#define DPRINTF(x)
#endif
#define FDUNIT(dev) (minor(dev) / 8)
#define FDTYPE(dev) (minor(dev) % 8)
enum fdc_state {
DEVIDLE = 0,
MOTORWAIT,
DOSEEK,
SEEKWAIT,
SEEKTIMEDOUT,
SEEKCOMPLETE,
DOIO,
IOCOMPLETE,
IOTIMEDOUT,
DORESET,
RESETCOMPLETE,
RESETTIMEDOUT,
DORECAL,
RECALWAIT,
RECALTIMEDOUT,
RECALCOMPLETE,
DOCOPY,
DOIOHALF,
COPYCOMPLETE,
};
/* software state, per controller */
struct fdc_softc {
bus_space_tag_t sc_iot; /* intio i/o space identifier */
bus_space_handle_t sc_ioh; /* intio io handle */
struct callout sc_timo_ch; /* timeout callout */
struct callout sc_intr_ch; /* pseudo-intr callout */
bus_dma_tag_t sc_dmat; /* intio DMA tag */
bus_dmamap_t sc_dmamap; /* DMA map */
u_int8_t *sc_addr; /* physical address */
struct dmac_channel_stat *sc_dmachan; /* intio DMA channel */
struct dmac_dma_xfer *sc_xfer; /* DMA transfer */
struct fd_softc *sc_fd[4]; /* pointers to children */
TAILQ_HEAD(drivehead, fd_softc) sc_drives;
enum fdc_state sc_state;
int sc_errors; /* number of retries so far */
u_char sc_status[7]; /* copy of registers */
} fdc_softc;
int fdcintr(void *);
void fdcreset(struct fdc_softc *);
/* controller driver configuration */
int fdcprobe(device_t, cfdata_t, void *);
void fdcattach(device_t, device_t, void *);
int fdprint(void *, const char *);
CFATTACH_DECL_NEW(fdc, sizeof(struct fdc_softc),
fdcprobe, fdcattach, NULL, NULL);
extern struct cfdriver fdc_cd;
/*
* Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how
* we tell them apart.
*/
struct fd_type {
int sectrac; /* sectors per track */
int heads; /* number of heads */
int seccyl; /* sectors per cylinder */
int secsize; /* size code for sectors */
int datalen; /* data len when secsize = 0 */
int steprate; /* step rate and head unload time */
int gap1; /* gap len between sectors */
int gap2; /* formatting gap */
int cyls; /* total num of cylinders */
int size; /* size of disk in sectors */
int step; /* steps per cylinder */
int rate; /* transfer speed code */
const char *name;
};
/* The order of entries in the following table is important -- BEWARE! */
struct fd_type fd_types[] = {
{ 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS, "1.2MB/[1024bytes/sector]" }, /* 1.2 MB japanese format */
{ 18,2,36,2,0xff,0xcf,0x1b,0x6c,80,2880,1,FDC_500KBPS,"1.44MB" }, /* 1.44MB diskette */
{ 15,2,30,2,0xff,0xdf,0x1b,0x54,80,2400,1,FDC_500KBPS, "1.2MB" }, /* 1.2 MB AT-diskettes */
{ 9,2,18,2,0xff,0xdf,0x23,0x50,40, 720,2,FDC_300KBPS, "360KB/AT" }, /* 360kB in 1.2MB drive */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,1,FDC_250KBPS, "360KB/PC" }, /* 360kB PC diskettes */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS, "720KB" }, /* 3.5" 720kB diskette */
{ 9,2,18,2,0xff,0xdf,0x23,0x50,80,1440,1,FDC_300KBPS, "720KB/x" }, /* 720kB in 1.2MB drive */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS, "360KB/x" }, /* 360kB in 720kB drive */
};
/* software state, per disk (with up to 4 disks per ctlr) */
struct fd_softc {
device_t sc_dev;
struct disk sc_dk;
struct fd_type *sc_deftype; /* default type descriptor */
struct fd_type *sc_type; /* current type descriptor */
struct callout sc_motoron_ch;
struct callout sc_motoroff_ch;
daddr_t sc_blkno; /* starting block number */
int sc_bcount; /* byte count left */
int sc_opts; /* user-set options */
int sc_skip; /* bytes already transferred */
int sc_nblks; /* number of blocks currently transferring */
int sc_nbytes; /* number of bytes currently transferring */
int sc_drive; /* physical unit number */
int sc_flags;
#define FD_BOPEN 0x01 /* it's open */
#define FD_COPEN 0x02 /* it's open */
#define FD_OPEN (FD_BOPEN|FD_COPEN) /* it's open */
#define FD_MOTOR 0x04 /* motor should be on */
#define FD_MOTOR_WAIT 0x08 /* motor coming up */
#define FD_ALIVE 0x10 /* alive */
int sc_cylin; /* where we think the head is */
TAILQ_ENTRY(fd_softc) sc_drivechain;
int sc_ops; /* I/O ops since last switch */
struct bufq_state *sc_q;/* pending I/O requests */
int sc_active; /* number of active I/O operations */
u_char *sc_copybuf; /* for secsize >=3 */
u_char sc_part; /* for secsize >=3 */
#define SEC_P10 0x02 /* first part */
#define SEC_P01 0x01 /* second part */
#define SEC_P11 0x03 /* both part */
#if NRND > 0
rndsource_element_t rnd_source;
#endif
};
/* floppy driver configuration */
int fdprobe(device_t, cfdata_t, void *);
void fdattach(device_t, device_t, void *);
CFATTACH_DECL_NEW(fd, sizeof(struct fd_softc),
fdprobe, fdattach, NULL, NULL);
extern struct cfdriver fd_cd;
dev_type_open(fdopen);
dev_type_close(fdclose);
dev_type_read(fdread);
dev_type_write(fdwrite);
dev_type_ioctl(fdioctl);
dev_type_strategy(fdstrategy);
const struct bdevsw fd_bdevsw = {
fdopen, fdclose, fdstrategy, fdioctl, nodump, nosize, D_DISK
};
const struct cdevsw fd_cdevsw = {
fdopen, fdclose, fdread, fdwrite, fdioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_DISK
};
void fdstart(struct fd_softc *);
struct dkdriver fddkdriver = { fdstrategy };
void fd_set_motor(struct fdc_softc *, int);
void fd_motor_off(void *);
void fd_motor_on(void *);
int fdcresult(struct fdc_softc *);
int out_fdc(bus_space_tag_t, bus_space_handle_t, u_char);
void fdcstart(struct fdc_softc *);
void fdcstatus(device_t, int, const char *);
void fdctimeout(void *);
void fdcpseudointr(void *);
void fdcretry(struct fdc_softc *);
void fdfinish(struct fd_softc *, struct buf *);
inline struct fd_type *fd_dev_to_type(struct fd_softc *, dev_t);
static int fdcpoll(struct fdc_softc *);
static int fdgetdisklabel(struct fd_softc *, dev_t);
static void fd_do_eject(struct fdc_softc *, int);
void fd_mountroot_hook(device_t);
/* DMA transfer routines */
inline static void fdc_dmastart(struct fdc_softc *, int, void *, vsize_t);
static int fdcdmaintr(void *);
static int fdcdmaerrintr(void *);
inline static void
fdc_dmastart(struct fdc_softc *fdc, int read, void *addr, vsize_t count)
{
int error;
DPRINTF(("fdc_dmastart: %s, addr = %p, count = %ld\n",
read ? "read" : "write", (void *) addr, count));
error = bus_dmamap_load(fdc->sc_dmat, fdc->sc_dmamap, addr, count,
0, BUS_DMA_NOWAIT);
if (error) {
panic ("fdc_dmastart: cannot load dmamap");
}
bus_dmamap_sync(fdc->sc_dmat, fdc->sc_dmamap, 0, count,
read?BUS_DMASYNC_PREREAD:BUS_DMASYNC_PREWRITE);
fdc->sc_xfer = dmac_prepare_xfer(fdc->sc_dmachan, fdc->sc_dmat,
fdc->sc_dmamap,
(read?
DMAC_OCR_DIR_DTM:DMAC_OCR_DIR_MTD),
(DMAC_SCR_MAC_COUNT_UP|
DMAC_SCR_DAC_NO_COUNT),
(u_int8_t*) (fdc->sc_addr +
fddata)); /* XXX */
dmac_start_xfer(fdc->sc_dmachan->ch_softc, fdc->sc_xfer);
}
static int
fdcdmaintr(void *arg)
{
struct fdc_softc *fdc = arg;
bus_dmamap_unload(fdc->sc_dmat, fdc->sc_dmamap);
return 0;
}
static int
fdcdmaerrintr(void *dummy)
{
DPRINTF(("fdcdmaerrintr\n"));
return 0;
}
/* ARGSUSED */
int
fdcprobe(device_t parent, cfdata_t cf, void *aux)
{
struct intio_attach_args *ia = aux;
if (strcmp(ia->ia_name, "fdc") != 0)
return 0;
if (ia->ia_addr == INTIOCF_ADDR_DEFAULT)
ia->ia_addr = FDC_ADDR;
if (ia->ia_intr == INTIOCF_INTR_DEFAULT)
ia->ia_intr = FDC_INTR;
if (ia->ia_dma == INTIOCF_DMA_DEFAULT)
ia->ia_dma = FDC_DMA;
if (ia->ia_dmaintr == INTIOCF_DMAINTR_DEFAULT)
ia->ia_dmaintr = FDC_DMAINTR;
if ((ia->ia_intr & 0x03) != 0)
return 0;
ia->ia_size = 0x2000;
if (intio_map_allocate_region (parent, ia, INTIO_MAP_TESTONLY))
return 0;
/* builtin device; always there */
return 1;
}
/*
* Arguments passed between fdcattach and fdprobe.
*/
struct fdc_attach_args {
int fa_drive;
struct fd_type *fa_deftype;
};
/*
* Print the location of a disk drive (called just before attaching the
* the drive). If `fdc' is not NULL, the drive was found but was not
* in the system config file; print the drive name as well.
* Return QUIET (config_find ignores this if the device was configured) to
* avoid printing `fdN not configured' messages.
*/
int
fdprint(void *aux, const char *fdc)
{
struct fdc_attach_args *fa = aux;
if (!fdc)
aprint_normal(" drive %d", fa->fa_drive);
return QUIET;
}
void
fdcattach(device_t parent, device_t self, void *aux)
{
struct fdc_softc *fdc = device_private(self);
bus_space_tag_t iot;
bus_space_handle_t ioh;
struct intio_attach_args *ia = aux;
struct fdc_attach_args fa;
iot = ia->ia_bst;
aprint_normal("\n");
callout_init(&fdc->sc_timo_ch, 0);
callout_init(&fdc->sc_intr_ch, 0);
/* Re-map the I/O space. */
bus_space_map(iot, ia->ia_addr, 0x2000, BUS_SPACE_MAP_SHIFTED, &ioh);
fdc->sc_iot = iot;
fdc->sc_ioh = ioh;
fdc->sc_addr = (void *)ia->ia_addr;
fdc->sc_dmat = ia->ia_dmat;
fdc->sc_state = DEVIDLE;
TAILQ_INIT(&fdc->sc_drives);
/* Initialize DMAC channel */
fdc->sc_dmachan = dmac_alloc_channel(parent, ia->ia_dma, "fdc",
ia->ia_dmaintr, fdcdmaintr, fdc,
ia->ia_dmaintr+1, fdcdmaerrintr,
fdc);
if (bus_dmamap_create(fdc->sc_dmat, FDC_MAXIOSIZE, 1, DMAC_MAXSEGSZ,
0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
&fdc->sc_dmamap)) {
aprint_error_dev(self, "can't set up intio DMA map\n");
return;
}
if (intio_intr_establish(ia->ia_intr, "fdc", fdcintr, fdc))
panic ("Could not establish interrupt (duplicated vector?).");
intio_set_ivec(ia->ia_intr);
/* reset */
intio_disable_intr(SICILIAN_INTR_FDD);
intio_enable_intr(SICILIAN_INTR_FDC);
fdcresult(fdc);
fdcreset(fdc);
aprint_normal_dev(self, "uPD72065 FDC\n");
out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */
out_fdc(iot, ioh, 0xd0);
out_fdc(iot, ioh, 0x10);
/* physical limit: four drives per controller. */
for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) {
(void)config_found(self, (void *)&fa, fdprint);
}
intio_enable_intr(SICILIAN_INTR_FDC);
}
void
fdcreset(struct fdc_softc *fdc)
{
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdsts, NE7CMD_RESET);
}
static int
fdcpoll(struct fdc_softc *fdc)
{
int i = 25000, n;
while (--i > 0) {
if ((intio_get_sicilian_intr() & SICILIAN_STAT_FDC)) {
out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI);
n = fdcresult(fdc);
break;
}
DELAY(100);
}
return i;
}
int
fdprobe(device_t parent, cfdata_t cf, void *aux)
{
struct fdc_softc *fdc = device_private(parent);
struct fd_type *type;
struct fdc_attach_args *fa = aux;
int drive = fa->fa_drive;
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
int n = 0;
int found = 0;
int i;
if (cf->cf_loc[FDCCF_UNIT] != FDCCF_UNIT_DEFAULT &&
cf->cf_loc[FDCCF_UNIT] != drive)
return 0;
type = &fd_types[0]; /* XXX 1.2MB */
intio_disable_intr(SICILIAN_INTR_FDC);
/* select drive and turn on motor */
bus_space_write_1(iot, ioh, fdctl, 0x80 | (type->rate << 4)| drive);
fdc_force_ready(FDCRDY);
fdcpoll(fdc);
retry:
out_fdc(iot, ioh, NE7CMD_RECAL);
out_fdc(iot, ioh, drive);
i = 25000;
while (--i > 0) {
if ((intio_get_sicilian_intr() & SICILIAN_STAT_FDC)) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
n = fdcresult(fdc);
break;
}
DELAY(100);
}
#ifdef FDDEBUG
{
int _i;
DPRINTF(("fdprobe: status"));
for (_i = 0; _i < n; _i++)
DPRINTF((" %x", fdc->sc_status[_i]));
DPRINTF(("\n"));
}
#endif
if (n == 2) {
if ((fdc->sc_status[0] & 0xf0) == 0x20)
found = 1;
else if ((fdc->sc_status[0] & 0xf0) == 0xc0)
goto retry;
}
/* turn off motor */
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh,
fdctl, (type->rate << 4)| drive);
fdc_force_ready(FDCSTBY);
if (!found) {
intio_enable_intr(SICILIAN_INTR_FDC);
return 0;
}
return 1;
}
/*
* Controller is working, and drive responded. Attach it.
*/
void
fdattach(device_t parent, device_t self, void *aux)
{
struct fdc_softc *fdc = device_private(parent);
struct fd_softc *fd = device_private(self);
struct fdc_attach_args *fa = aux;
struct fd_type *type = &fd_types[0]; /* XXX 1.2MB */
int drive = fa->fa_drive;
callout_init(&fd->sc_motoron_ch, 0);
callout_init(&fd->sc_motoroff_ch, 0);
fd->sc_dev = self;
fd->sc_flags = 0;
if (type)
aprint_normal(": %s, %d cyl, %d head, %d sec\n", type->name,
type->cyls, type->heads, type->sectrac);
else
aprint_normal(": density unknown\n");
bufq_alloc(&fd->sc_q, "disksort", BUFQ_SORT_CYLINDER);
fd->sc_cylin = -1;
fd->sc_drive = drive;
fd->sc_deftype = type;
fdc->sc_fd[drive] = fd;
fd->sc_copybuf = (u_char *)malloc(PAGE_SIZE, M_DEVBUF, M_WAITOK);
if (fd->sc_copybuf == 0)
aprint_error("%s: WARNING!! malloc() failed.\n", __func__);
fd->sc_flags |= FD_ALIVE;
/*
* Initialize and attach the disk structure.
*/
disk_init(&fd->sc_dk, device_xname(fd->sc_dev), &fddkdriver);
disk_attach(&fd->sc_dk);
/*
* Establish a mountroot_hook anyway in case we booted
* with RB_ASKNAME and get selected as the boot device.
*/
mountroothook_establish(fd_mountroot_hook, fd->sc_dev);
#if NRND > 0
rnd_attach_source(&fd->rnd_source, device_xname(fd->sc_dev),
RND_TYPE_DISK, 0);
#endif
}
inline struct fd_type *
fd_dev_to_type(struct fd_softc *fd, dev_t dev)
{
int type = FDTYPE(dev);
if (type > (sizeof(fd_types) / sizeof(fd_types[0])))
return NULL;
return &fd_types[type];
}
void
fdstrategy(struct buf *bp)
{
struct fd_softc *fd;
int unit;
int sz;
int s;
unit = FDUNIT(bp->b_dev);
fd = device_lookup_private(&fd_cd, unit);
if (fd == NULL) {
bp->b_error = EINVAL;
goto done;
}
if (bp->b_blkno < 0 ||
(bp->b_bcount % FDC_BSIZE) != 0) {
DPRINTF(("fdstrategy: unit=%d, blkno=%" PRId64 ", "
"bcount=%d\n", unit,
bp->b_blkno, bp->b_bcount));
bp->b_error = EINVAL;
goto done;
}
/* If it's a null transfer, return immediately. */
if (bp->b_bcount == 0)
goto done;
sz = howmany(bp->b_bcount, FDC_BSIZE);
if (bp->b_blkno + sz >
(fd->sc_type->size << (fd->sc_type->secsize - 2))) {
sz = (fd->sc_type->size << (fd->sc_type->secsize - 2))
- bp->b_blkno;
if (sz == 0) {
/* If exactly at end of disk, return EOF. */
bp->b_resid = bp->b_bcount;
goto done;
}
if (sz < 0) {
/* If past end of disk, return EINVAL. */
bp->b_error = EINVAL;
goto done;
}
/* Otherwise, truncate request. */
bp->b_bcount = sz << DEV_BSHIFT;
}
bp->b_rawblkno = bp->b_blkno;
bp->b_cylinder = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE)
/ (fd->sc_type->seccyl * (1 << (fd->sc_type->secsize - 2)));
DPRINTF(("fdstrategy: %s b_blkno %" PRId64 " b_bcount %d cylin %d\n",
bp->b_flags & B_READ ? "read" : "write",
bp->b_blkno, bp->b_bcount, bp->b_cylinder));
/* Queue transfer on drive, activate drive and controller if idle. */
s = splbio();
bufq_put(fd->sc_q, bp);
callout_stop(&fd->sc_motoroff_ch); /* a good idea */
if (fd->sc_active == 0)
fdstart(fd);
#ifdef DIAGNOSTIC
else {
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
if (fdc->sc_state == DEVIDLE) {
printf("fdstrategy: controller inactive\n");
fdcstart(fdc);
}
}
#endif
splx(s);
return;
done:
/* Toss transfer; we're done early. */
biodone(bp);
}
void
fdstart(struct fd_softc *fd)
{
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int active = !TAILQ_EMPTY(&fdc->sc_drives);
/* Link into controller queue. */
fd->sc_active = 1;
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
/* If controller not already active, start it. */
if (!active)
fdcstart(fdc);
}
void
fdfinish(struct fd_softc *fd, struct buf *bp)
{
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
/*
* Move this drive to the end of the queue to give others a `fair'
* chance. We only force a switch if N operations are completed while
* another drive is waiting to be serviced, since there is a long motor
* startup delay whenever we switch.
*/
(void)bufq_get(fd->sc_q);
if (TAILQ_NEXT(fd, sc_drivechain) && ++fd->sc_ops >= 8) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
if (bufq_peek(fd->sc_q) != NULL) {
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
} else
fd->sc_active = 0;
}
bp->b_resid = fd->sc_bcount;
fd->sc_skip = 0;
#if NRND > 0
rnd_add_uint32(&fd->rnd_source, bp->b_blkno);
#endif
biodone(bp);
/* turn off motor 5s from now */
callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd);
fdc->sc_state = DEVIDLE;
}
int
fdread(dev_t dev, struct uio *uio, int flags)
{
return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio));
}
int
fdwrite(dev_t dev, struct uio *uio, int flags)
{
return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio));
}
void
fd_set_motor(struct fdc_softc *fdc, int reset)
{
struct fd_softc *fd;
int n;
DPRINTF(("fd_set_motor:\n"));
for (n = 0; n < 4; n++)
if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR)) {
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdctl,
0x80 | (fd->sc_type->rate << 4)| n);
}
}
void
fd_motor_off(void *arg)
{
struct fd_softc *fd = arg;
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int s;
DPRINTF(("fd_motor_off:\n"));
s = splbio();
fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
bus_space_write_1 (fdc->sc_iot, fdc->sc_ioh, fdctl,
(fd->sc_type->rate << 4) | fd->sc_drive);
#if 0
fd_set_motor(fdc, 0); /* XXX */
#endif
splx(s);
}
void
fd_motor_on(void *arg)
{
struct fd_softc *fd = arg;
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int s;
DPRINTF(("fd_motor_on:\n"));
s = splbio();
fd->sc_flags &= ~FD_MOTOR_WAIT;
if ((TAILQ_FIRST(&fdc->sc_drives) == fd) && (fdc->sc_state == MOTORWAIT))
(void) fdcintr(fdc);
splx(s);
}
int
fdcresult(struct fdc_softc *fdc)
{
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
u_char i;
int j = 100000,
n = 0;
for (; j; j--) {
i = bus_space_read_1(iot, ioh, fdsts) &
(NE7_DIO | NE7_RQM | NE7_CB);
if (i == NE7_RQM)
return n;
if (i == (NE7_DIO | NE7_RQM | NE7_CB)) {
if (n >= sizeof(fdc->sc_status)) {
log(LOG_ERR, "fdcresult: overrun\n");
return -1;
}
fdc->sc_status[n++] =
bus_space_read_1(iot, ioh, fddata);
}
delay(10);
}
log(LOG_ERR, "fdcresult: timeout\n");
return -1;
}
int
out_fdc(bus_space_tag_t iot, bus_space_handle_t ioh, u_char x)
{
int i = 100000;
while ((bus_space_read_1(iot, ioh, fdsts) & NE7_DIO) && i-- > 0);
if (i <= 0)
return -1;
while ((bus_space_read_1(iot, ioh, fdsts) & NE7_RQM) == 0 && i-- > 0);
if (i <= 0)
return -1;
bus_space_write_1(iot, ioh, fddata, x);
return 0;
}
int
fdopen(dev_t dev, int flags, int mode, struct lwp *l)
{
int unit;
struct fd_softc *fd;
struct fd_type *type;
struct fdc_softc *fdc;
unit = FDUNIT(dev);
fd = device_lookup_private(&fd_cd, unit);
if (fd == NULL)
return ENXIO;
type = fd_dev_to_type(fd, dev);
if (type == NULL)
return ENXIO;
if ((fd->sc_flags & FD_OPEN) != 0 &&
fd->sc_type != type)
return EBUSY;
fdc = device_private(device_parent(fd->sc_dev));
if ((fd->sc_flags & FD_OPEN) == 0) {
/* Lock eject button */
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout,
0x40 | ( 1 << unit));
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x40);
}
fd->sc_type = type;
fd->sc_cylin = -1;
switch (mode) {
case S_IFCHR:
fd->sc_flags |= FD_COPEN;
break;
case S_IFBLK:
fd->sc_flags |= FD_BOPEN;
break;
}
fdgetdisklabel(fd, dev);
return 0;
}
int
fdclose(dev_t dev, int flags, int mode, struct lwp *l)
{
int unit = FDUNIT(dev);
struct fd_softc *fd = device_lookup_private(&fd_cd, unit);
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
DPRINTF(("fdclose %d\n", unit));
switch (mode) {
case S_IFCHR:
fd->sc_flags &= ~FD_COPEN;
break;
case S_IFBLK:
fd->sc_flags &= ~FD_BOPEN;
break;
}
if ((fd->sc_flags & FD_OPEN) == 0) {
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout,
( 1 << unit));
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0);
}
return 0;
}
void
fdcstart(struct fdc_softc *fdc)
{
#ifdef DIAGNOSTIC
/* only got here if controller's drive queue was inactive; should
be in idle state */
if (fdc->sc_state != DEVIDLE) {
printf("fdcstart: not idle\n");
return;
}
#endif
(void) fdcintr(fdc);
}
static void
fdcpstatus(int n, struct fdc_softc *fdc)
{
char bits[64];
switch (n) {
case 0:
printf("\n");
break;
case 2:
snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]);
printf(" (st0 %s cyl %d)\n", bits, fdc->sc_status[1]);
break;
case 7:
snprintb(bits, sizeof(bits), NE7_ST0BITS, fdc->sc_status[0]);
printf(" (st0 %s", bits);
snprintb(bits, sizeof(bits), NE7_ST1BITS, fdc->sc_status[1]);
printf(" st1 %s", bits);
snprintb(bits, sizeof(bits), NE7_ST2BITS, fdc->sc_status[2]);
printf(" st2 %s", bits);
printf(" cyl %d head %d sec %d)\n",
fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]);
break;
#ifdef DIAGNOSTIC
default:
printf("\nfdcstatus: weird size");
break;
#endif
}
}
void
fdcstatus(device_t dv, int n, const char *s)
{
struct fdc_softc *fdc = device_private(device_parent(dv));
if (n == 0) {
out_fdc(fdc->sc_iot, fdc->sc_ioh, NE7CMD_SENSEI);
(void) fdcresult(fdc);
n = 2;
}
printf("%s: %s: state %d", device_xname(dv), s, fdc->sc_state);
fdcpstatus(n, fdc);
}
void
fdctimeout(void *arg)
{
struct fdc_softc *fdc = arg;
struct fd_softc *fd = TAILQ_FIRST(&fdc->sc_drives);
int s;
s = splbio();
fdcstatus(fd->sc_dev, 0, "timeout");
if (bufq_peek(fd->sc_q) != NULL)
fdc->sc_state++;
else
fdc->sc_state = DEVIDLE;
(void) fdcintr(fdc);
splx(s);
}
#if 0
void
fdcpseudointr(void *arg)
{
int s;
struct fdc_softc *fdc = arg;
/* just ensure it has the right spl */
s = splbio();
(void) fdcintr(fdc);
splx(s);
}
#endif
int
fdcintr(void *arg)
{
struct fdc_softc *fdc = arg;
#define st0 fdc->sc_status[0]
#define cyl fdc->sc_status[1]
struct fd_softc *fd;
struct buf *bp;
bus_space_tag_t iot = fdc->sc_iot;
bus_space_handle_t ioh = fdc->sc_ioh;
int read, head, sec, pos, i, sectrac, nblks;
int tmp;
struct fd_type *type;
loop:
fd = TAILQ_FIRST(&fdc->sc_drives);
if (fd == NULL) {
DPRINTF(("fdcintr: set DEVIDLE\n"));
if (fdc->sc_state == DEVIDLE) {
if (intio_get_sicilian_intr() & SICILIAN_STAT_FDC) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
if ((tmp = fdcresult(fdc)) != 2 ||
(st0 & 0xf8) != 0x20) {
goto loop;
}
}
}
/* no drives waiting; end */
fdc->sc_state = DEVIDLE;
return 1;
}
/* Is there a transfer to this drive? If not, deactivate drive. */
bp = bufq_peek(fd->sc_q);
if (bp == NULL) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
fd->sc_active = 0;
goto loop;
}
switch (fdc->sc_state) {
case DEVIDLE:
DPRINTF(("fdcintr: in DEVIDLE\n"));
fdc->sc_errors = 0;
fd->sc_skip = 0;
fd->sc_bcount = bp->b_bcount;
fd->sc_blkno = bp->b_blkno / (FDC_BSIZE / DEV_BSIZE);
callout_stop(&fd->sc_motoroff_ch);
if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) {
fdc->sc_state = MOTORWAIT;
return 1;
}
if ((fd->sc_flags & FD_MOTOR) == 0) {
/* Turn on the motor */
/* being careful about other drives. */
for (i = 0; i < 4; i++) {
struct fd_softc *ofd = fdc->sc_fd[i];
if (ofd && ofd->sc_flags & FD_MOTOR) {
callout_stop(&ofd->sc_motoroff_ch);
ofd->sc_flags &=
~(FD_MOTOR | FD_MOTOR_WAIT);
break;
}
}
fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT;
fd_set_motor(fdc, 0);
fdc->sc_state = MOTORWAIT;
/* allow .5s for motor to stabilize */
callout_reset(&fd->sc_motoron_ch, hz / 2,
fd_motor_on, fd);
return 1;
}
/* Make sure the right drive is selected. */
fd_set_motor(fdc, 0);
/* fall through */
case DOSEEK:
doseek:
DPRINTF(("fdcintr: in DOSEEK\n"));
if (fd->sc_cylin == bp->b_cylinder)
goto doio;
out_fdc(iot, ioh, NE7CMD_SPECIFY);/* specify command */
out_fdc(iot, ioh, 0xd0); /* XXX const */
out_fdc(iot, ioh, 0x10);
out_fdc(iot, ioh, NE7CMD_SEEK); /* seek function */
out_fdc(iot, ioh, fd->sc_drive); /* drive number */
out_fdc(iot, ioh, bp->b_cylinder * fd->sc_type->step);
fd->sc_cylin = -1;
fdc->sc_state = SEEKWAIT;
iostat_seek(fd->sc_dk.dk_stats);
disk_busy(&fd->sc_dk);
callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc);
return 1;
case DOIO:
doio:
DPRINTF(("fdcintr: DOIO: "));
type = fd->sc_type;
sectrac = type->sectrac;
pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2)));
sec = pos / (1 << (type->secsize - 2));
if (type->secsize == 2) {
fd->sc_part = SEC_P11;
nblks = (sectrac - sec) << (type->secsize - 2);
nblks = min(nblks, fd->sc_bcount / FDC_BSIZE);
DPRINTF(("nblks(0)"));
} else if ((fd->sc_blkno % 2) == 0) {
if (fd->sc_bcount & 0x00000200) {
if (fd->sc_bcount == FDC_BSIZE) {
fd->sc_part = SEC_P10;
nblks = 1;
DPRINTF(("nblks(1)"));
} else {
fd->sc_part = SEC_P11;
nblks = (sectrac - sec) * 2;
nblks = min(nblks, fd->sc_bcount
/ FDC_BSIZE - 1);
DPRINTF(("nblks(2)"));
}
} else {
fd->sc_part = SEC_P11;
nblks = (sectrac - sec)
<< (type->secsize - 2);
nblks = min(nblks, fd->sc_bcount / FDC_BSIZE);
DPRINTF(("nblks(3)"));
}
} else {
fd->sc_part = SEC_P01;
nblks = 1;
DPRINTF(("nblks(4)"));
}
nblks = min(nblks, FDC_MAXIOSIZE / FDC_BSIZE);
DPRINTF((" %d\n", nblks));
fd->sc_nblks = nblks;
fd->sc_nbytes = nblks * FDC_BSIZE;
head = (fd->sc_blkno
% (type->seccyl * (1 << (type->secsize - 2))))
/ (type->sectrac * (1 << (type->secsize - 2)));
#ifdef DIAGNOSTIC
{int block;
block = ((fd->sc_cylin * type->heads + head) * type->sectrac
+ sec) * (1 << (type->secsize - 2));
block += (fd->sc_part == SEC_P01) ? 1 : 0;
if (block != fd->sc_blkno) {
printf("C H R N: %d %d %d %d\n",
fd->sc_cylin, head, sec, type->secsize);
printf("fdcintr: doio: block %d != blkno %" PRId64 "\n",
block, fd->sc_blkno);
#ifdef DDB
Debugger();
#endif
}
}
#endif
read = bp->b_flags & B_READ;
DPRINTF(("fdcintr: %s drive %d track %d "
"head %d sec %d nblks %d, skip %d\n",
read ? "read" : "write", fd->sc_drive, fd->sc_cylin,
head, sec, nblks, fd->sc_skip));
DPRINTF(("C H R N: %d %d %d %d\n", fd->sc_cylin, head, sec,
type->secsize));
if (fd->sc_part != SEC_P11)
goto docopy;
fdc_dmastart(fdc, read, (char *)bp->b_data + fd->sc_skip,
fd->sc_nbytes);
if (read)
out_fdc(iot, ioh, NE7CMD_READ); /* READ */
else
out_fdc(iot, ioh, NE7CMD_WRITE); /* WRITE */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector +1 */
out_fdc(iot, ioh, type->secsize); /* sector size */
out_fdc(iot, ioh, type->sectrac); /* sectors/track */
out_fdc(iot, ioh, type->gap1); /* gap1 size */
out_fdc(iot, ioh, type->datalen); /* data length */
fdc->sc_state = IOCOMPLETE;
disk_busy(&fd->sc_dk);
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case DOCOPY:
docopy:
DPRINTF(("fdcintr: DOCOPY:\n"));
type = fd->sc_type;
head = (fd->sc_blkno
% (type->seccyl * (1 << (type->secsize - 2))))
/ (type->sectrac * (1 << (type->secsize - 2)));
pos = fd->sc_blkno % (type->sectrac * (1 << (type->secsize - 2)));
sec = pos / (1 << (type->secsize - 2));
fdc_dmastart(fdc, B_READ, fd->sc_copybuf, 1024);
out_fdc(iot, ioh, NE7CMD_READ); /* READ */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector +1 */
out_fdc(iot, ioh, type->secsize); /* sector size */
out_fdc(iot, ioh, type->sectrac); /* sectors/track */
out_fdc(iot, ioh, type->gap1); /* gap1 size */
out_fdc(iot, ioh, type->datalen); /* data length */
fdc->sc_state = COPYCOMPLETE;
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case DOIOHALF:
doiohalf:
DPRINTF((" DOIOHALF:\n"));
type = fd->sc_type;
sectrac = type->sectrac;
pos = fd->sc_blkno % (sectrac * (1 << (type->secsize - 2)));
sec = pos / (1 << (type->secsize - 2));
head = (fd->sc_blkno
% (type->seccyl * (1 << (type->secsize - 2))))
/ (type->sectrac * (1 << (type->secsize - 2)));
#ifdef DIAGNOSTIC
{int block;
block = ((fd->sc_cylin * type->heads + head) *
type->sectrac + sec)
* (1 << (type->secsize - 2));
block += (fd->sc_part == SEC_P01) ? 1 : 0;
if (block != fd->sc_blkno) {
printf("fdcintr: block %d != blkno %" PRId64 "\n",
block, fd->sc_blkno);
#ifdef DDB
Debugger();
#endif
}
}
#endif
if ((read = bp->b_flags & B_READ)) {
memcpy((char *)bp->b_data + fd->sc_skip, fd->sc_copybuf
+ (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0),
FDC_BSIZE);
fdc->sc_state = IOCOMPLETE;
goto iocomplete2;
} else {
memcpy((char *)fd->sc_copybuf
+ (fd->sc_part & SEC_P01 ? FDC_BSIZE : 0),
(char *)bp->b_data + fd->sc_skip, FDC_BSIZE);
fdc_dmastart(fdc, read, fd->sc_copybuf, 1024);
}
out_fdc(iot, ioh, NE7CMD_WRITE); /* WRITE */
out_fdc(iot, ioh, (head << 2) | fd->sc_drive);
out_fdc(iot, ioh, bp->b_cylinder); /* cylinder */
out_fdc(iot, ioh, head);
out_fdc(iot, ioh, sec + 1); /* sector +1 */
out_fdc(iot, ioh, fd->sc_type->secsize); /* sector size */
out_fdc(iot, ioh, sectrac); /* sectors/track */
out_fdc(iot, ioh, fd->sc_type->gap1); /* gap1 size */
out_fdc(iot, ioh, fd->sc_type->datalen); /* data length */
fdc->sc_state = IOCOMPLETE;
/* allow 2 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 2 * hz, fdctimeout, fdc);
return 1; /* will return later */
case SEEKWAIT:
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = SEEKCOMPLETE;
/* allow 1/50 second for heads to settle */
#if 0
callout_reset(&fdc->sc_intr_ch, hz / 50, fdcpseudointr, fdc);
#endif
return 1;
case SEEKCOMPLETE:
/* Make sure seek really happened */
DPRINTF(("fdcintr: SEEKCOMPLETE: FDC status = %x\n",
bus_space_read_1(fdc->sc_iot, fdc->sc_ioh, fdsts)));
out_fdc(iot, ioh, NE7CMD_SENSEI);
tmp = fdcresult(fdc);
if ((st0 & 0xf8) == 0xc0) {
DPRINTF(("fdcintr: first seek!\n"));
fdc->sc_state = DORECAL;
goto loop;
} else if (tmp != 2 ||
(st0 & 0xf8) != 0x20 ||
cyl != bp->b_cylinder) {
#ifdef FDDEBUG
fdcstatus(fd->sc_dev, 2, "seek failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = bp->b_cylinder;
goto doio;
case IOTIMEDOUT:
#if 0
isa_dmaabort(fdc->sc_drq);
#endif
case SEEKTIMEDOUT:
case RECALTIMEDOUT:
case RESETTIMEDOUT:
fdcretry(fdc);
goto loop;
case IOCOMPLETE: /* IO DONE, post-analyze */
callout_stop(&fdc->sc_timo_ch);
DPRINTF(("fdcintr: in IOCOMPLETE\n"));
if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) {
#if 0
isa_dmaabort(fdc->sc_drq);
#endif
fdcstatus(fd->sc_dev, tmp, bp->b_flags & B_READ ?
"read failed" : "write failed");
printf("blkno %" PRId64 " nblks %d\n",
fd->sc_blkno, fd->sc_nblks);
fdcretry(fdc);
goto loop;
}
#if 0
isa_dmadone(bp->b_flags & B_READ, bp->b_data + fd->sc_skip,
nblks * FDC_BSIZE, fdc->sc_drq);
#endif
iocomplete2:
if (fdc->sc_errors) {
diskerr(bp, "fd", "soft error (corrected)", LOG_PRINTF,
fd->sc_skip / FDC_BSIZE, (struct disklabel *)NULL);
printf("\n");
fdc->sc_errors = 0;
}
fd->sc_blkno += fd->sc_nblks;
fd->sc_skip += fd->sc_nbytes;
fd->sc_bcount -= fd->sc_nbytes;
DPRINTF(("fd->sc_bcount = %d\n", fd->sc_bcount));
if (fd->sc_bcount > 0) {
bp->b_cylinder = fd->sc_blkno
/ (fd->sc_type->seccyl
* (1 << (fd->sc_type->secsize - 2)));
goto doseek;
}
fdfinish(fd, bp);
goto loop;
case COPYCOMPLETE: /* IO DONE, post-analyze */
DPRINTF(("fdcintr: COPYCOMPLETE:"));
callout_stop(&fdc->sc_timo_ch);
if ((tmp = fdcresult(fdc)) != 7 || (st0 & 0xf8) != 0) {
printf("fdcintr: resnum=%d, st0=%x\n", tmp, st0);
#if 0
isa_dmaabort(fdc->sc_drq);
#endif
fdcstatus(fd->sc_dev, 7, bp->b_flags & B_READ ?
"read failed" : "write failed");
printf("blkno %" PRId64 " nblks %d\n",
fd->sc_blkno, fd->sc_nblks);
fdcretry(fdc);
goto loop;
}
goto doiohalf;
case DORESET:
DPRINTF(("fdcintr: in DORESET\n"));
/* try a reset, keep motor on */
fd_set_motor(fdc, 1);
DELAY(100);
fd_set_motor(fdc, 0);
fdc->sc_state = RESETCOMPLETE;
callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc);
return 1; /* will return later */
case RESETCOMPLETE:
DPRINTF(("fdcintr: in RESETCOMPLETE\n"));
callout_stop(&fdc->sc_timo_ch);
/* clear the controller output buffer */
for (i = 0; i < 4; i++) {
out_fdc(iot, ioh, NE7CMD_SENSEI);
(void) fdcresult(fdc);
}
/* fall through */
case DORECAL:
DPRINTF(("fdcintr: in DORECAL\n"));
out_fdc(iot, ioh, NE7CMD_RECAL); /* recalibrate function */
out_fdc(iot, ioh, fd->sc_drive);
fdc->sc_state = RECALWAIT;
callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc);
return 1; /* will return later */
case RECALWAIT:
DPRINTF(("fdcintr: in RECALWAIT\n"));
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = RECALCOMPLETE;
/* allow 1/30 second for heads to settle */
#if 0
callout_reset(&fdc->sc_intr_ch, hz / 30, fdcpseudointr, fdc);
#endif
return 1; /* will return later */
case RECALCOMPLETE:
DPRINTF(("fdcintr: in RECALCOMPLETE\n"));
out_fdc(iot, ioh, NE7CMD_SENSEI);
tmp = fdcresult(fdc);
if ((st0 & 0xf8) == 0xc0) {
DPRINTF(("fdcintr: first seek!\n"));
fdc->sc_state = DORECAL;
goto loop;
} else if (tmp != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) {
#ifdef FDDEBUG
fdcstatus(fd->sc_dev, 2, "recalibrate failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = 0;
goto doseek;
case MOTORWAIT:
if (fd->sc_flags & FD_MOTOR_WAIT)
return 1; /* time's not up yet */
goto doseek;
default:
fdcstatus(fd->sc_dev, 0, "stray interrupt");
return 1;
}
#ifdef DIAGNOSTIC
panic("fdcintr: impossible");
#endif
#undef st0
#undef cyl
}
void
fdcretry(struct fdc_softc *fdc)
{
struct fd_softc *fd;
struct buf *bp;
DPRINTF(("fdcretry:\n"));
fd = TAILQ_FIRST(&fdc->sc_drives);
bp = bufq_peek(fd->sc_q);
switch (fdc->sc_errors) {
case 0:
/* try again */
fdc->sc_state = SEEKCOMPLETE;
break;
case 1: case 2: case 3:
/* didn't work; try recalibrating */
fdc->sc_state = DORECAL;
break;
case 4:
/* still no go; reset the bastard */
fdc->sc_state = DORESET;
break;
default:
diskerr(bp, "fd", "hard error", LOG_PRINTF,
fd->sc_skip, (struct disklabel *)NULL);
fdcpstatus(7, fdc);
bp->b_error = EIO;
fdfinish(fd, bp);
}
fdc->sc_errors++;
}
int
fdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
struct fd_softc *fd = device_lookup_private(&fd_cd, FDUNIT(dev));
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int part = DISKPART(dev);
struct disklabel buffer;
int error;
DPRINTF(("fdioctl:"));
switch (cmd) {
case DIOCGDINFO:
DPRINTF(("DIOCGDINFO\n"));
#if 1
*(struct disklabel *)addr = *(fd->sc_dk.dk_label);
return(0);
#else
memset(&buffer, 0, sizeof(buffer));
buffer.d_secpercyl = fd->sc_type->seccyl;
buffer.d_type = DTYPE_FLOPPY;
buffer.d_secsize = 128 << fd->sc_type->secsize;
if (readdisklabel(dev, fdstrategy, &buffer, NULL) != NULL)
return EINVAL;
*(struct disklabel *)addr = buffer;
return 0;
#endif
case DIOCGPART:
DPRINTF(("DIOCGPART\n"));
((struct partinfo *)addr)->disklab = fd->sc_dk.dk_label;
((struct partinfo *)addr)->part =
&fd->sc_dk.dk_label->d_partitions[part];
return(0);
case DIOCWLABEL:
DPRINTF(("DIOCWLABEL\n"));
if ((flag & FWRITE) == 0)
return EBADF;
/* XXX do something */
return 0;
case DIOCWDINFO:
DPRINTF(("DIOCWDINFO\n"));
if ((flag & FWRITE) == 0)
return EBADF;
error = setdisklabel(&buffer, (struct disklabel *)addr,
0, NULL);
if (error)
return error;
error = writedisklabel(dev, fdstrategy, &buffer, NULL);
return error;
case DIOCLOCK:
/*
* Nothing to do here, really.
*/
return 0; /* XXX */
case DIOCEJECT:
DPRINTF(("DIOCEJECT\n"));
if (*(int *)addr == 0) {
/*
* Don't force eject: check that we are the only
* partition open. If so, unlock it.
*/
if ((fd->sc_dk.dk_openmask & ~(1 << part)) != 0 ||
fd->sc_dk.dk_bopenmask + fd->sc_dk.dk_copenmask !=
fd->sc_dk.dk_openmask) {
return (EBUSY);
}
}
/* FALLTHROUGH */
case ODIOCEJECT:
DPRINTF(("ODIOCEJECT\n"));
fd_do_eject(fdc, FDUNIT(dev));
return 0;
default:
return ENOTTY;
}
#ifdef DIAGNOSTIC
panic("fdioctl: impossible");
#endif
}
void
fd_do_eject(struct fdc_softc *fdc, int unit)
{
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout,
0x20 | ( 1 << unit));
DELAY(1); /* XXX */
bus_space_write_1(fdc->sc_iot, fdc->sc_ioh, fdout, 0x20);
}
/*
* Build disk label. For now we only create a label from what we know
* from 'sc'.
*/
static int
fdgetdisklabel(struct fd_softc *sc, dev_t dev)
{
struct disklabel *lp;
int part;
DPRINTF(("fdgetdisklabel()\n"));
part = DISKPART(dev);
lp = sc->sc_dk.dk_label;
memset(lp, 0, sizeof(struct disklabel));
lp->d_secsize = 128 << sc->sc_type->secsize;
lp->d_ntracks = sc->sc_type->heads;
lp->d_nsectors = sc->sc_type->sectrac;
lp->d_secpercyl = lp->d_ntracks * lp->d_nsectors;
lp->d_ncylinders = sc->sc_type->size / lp->d_secpercyl;
lp->d_secperunit = sc->sc_type->size;
lp->d_type = DTYPE_FLOPPY;
lp->d_rpm = 300; /* XXX */
lp->d_interleave = 1; /* FIXME: is this OK? */
lp->d_bbsize = 0;
lp->d_sbsize = 0;
lp->d_npartitions = part + 1;
#define STEP_DELAY 6000 /* 6ms (6000us) delay after stepping */
lp->d_trkseek = STEP_DELAY; /* XXX */
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
lp->d_partitions[part].p_size = lp->d_secperunit;
lp->d_partitions[part].p_fstype = FS_UNUSED;
lp->d_partitions[part].p_fsize = 1024;
lp->d_partitions[part].p_frag = 8;
return(0);
}
/*
* Mountroot hook: prompt the user to enter the root file system
* floppy.
*/
void
fd_mountroot_hook(device_t dev)
{
struct fd_softc *fd = device_private(dev);
struct fdc_softc *fdc = device_private(device_parent(fd->sc_dev));
int c;
/* XXX device_unit() abuse */
fd_do_eject(fdc, device_unit(dev));
printf("Insert filesystem floppy and press return.");
for (;;) {
c = cngetc();
if ((c == '\r') || (c == '\n')) {
printf("\n");
break;
}
}
}