2254 lines
56 KiB
C
2254 lines
56 KiB
C
/* $NetBSD: eval.c,v 1.5 2003/10/06 16:33:57 wiz Exp $ */
|
|
|
|
/*
|
|
* eval.c - gawk parse tree interpreter
|
|
*/
|
|
|
|
/*
|
|
* Copyright (C) 1986, 1988, 1989, 1991-2003 the Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GAWK, the GNU implementation of the
|
|
* AWK Programming Language.
|
|
*
|
|
* GAWK is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GAWK is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
#include "awk.h"
|
|
|
|
extern double pow P((double x, double y));
|
|
extern double modf P((double x, double *yp));
|
|
extern double fmod P((double x, double y));
|
|
|
|
static int eval_condition P((NODE *tree));
|
|
static NODE *op_assign P((NODE *tree));
|
|
static NODE *func_call P((NODE *tree));
|
|
static NODE *match_op P((NODE *tree));
|
|
static void pop_forloop P((void));
|
|
static inline void pop_all_forloops P((void));
|
|
static void push_forloop P((const char *varname, NODE **elems, size_t nelems));
|
|
static void push_args P((int count, NODE *arglist, NODE **oldstack,
|
|
const char *func_name, char **varnames));
|
|
static inline void pop_fcall_stack P((void));
|
|
static void pop_fcall P((void));
|
|
static int comp_func P((const void *p1, const void *p2));
|
|
|
|
#if __GNUC__ < 2
|
|
NODE *_t; /* used as a temporary in macros */
|
|
#endif
|
|
#ifdef MSDOS
|
|
double _msc51bug; /* to get around a bug in MSC 5.1 */
|
|
#endif
|
|
NODE *ret_node;
|
|
int OFSlen;
|
|
int ORSlen;
|
|
int OFMTidx;
|
|
int CONVFMTidx;
|
|
|
|
/* Profiling stuff */
|
|
#ifdef PROFILING
|
|
#define INCREMENT(n) n++
|
|
#else
|
|
#define INCREMENT(n) /* nothing */
|
|
#endif
|
|
|
|
/* Macros and variables to save and restore function and loop bindings */
|
|
/*
|
|
* the val variable allows return/continue/break-out-of-context to be
|
|
* caught and diagnosed
|
|
*/
|
|
#define PUSH_BINDING(stack, x, val) (memcpy((char *)(stack), (const char *)(x), sizeof(jmp_buf)), val++)
|
|
#define RESTORE_BINDING(stack, x, val) (memcpy((char *)(x), (const char *)(stack), sizeof(jmp_buf)), val--)
|
|
|
|
static jmp_buf loop_tag; /* always the current binding */
|
|
static int loop_tag_valid = FALSE; /* nonzero when loop_tag valid */
|
|
static int func_tag_valid = FALSE;
|
|
static jmp_buf func_tag;
|
|
extern int exiting, exit_val;
|
|
|
|
/* This rather ugly macro is for VMS C */
|
|
#ifdef C
|
|
#undef C
|
|
#endif
|
|
#define C(c) ((char)c)
|
|
/*
|
|
* This table is used by the regexp routines to do case independant
|
|
* matching. Basically, every ascii character maps to itself, except
|
|
* uppercase letters map to lower case ones. This table has 256
|
|
* entries, for ISO 8859-1. Note also that if the system this
|
|
* is compiled on doesn't use 7-bit ascii, casetable[] should not be
|
|
* defined to the linker, so gawk should not load.
|
|
*
|
|
* Do NOT make this array static, it is used in several spots, not
|
|
* just in this file.
|
|
*/
|
|
#if 'a' == 97 /* it's ascii */
|
|
const char casetable[] = {
|
|
'\000', '\001', '\002', '\003', '\004', '\005', '\006', '\007',
|
|
'\010', '\011', '\012', '\013', '\014', '\015', '\016', '\017',
|
|
'\020', '\021', '\022', '\023', '\024', '\025', '\026', '\027',
|
|
'\030', '\031', '\032', '\033', '\034', '\035', '\036', '\037',
|
|
/* ' ' '!' '"' '#' '$' '%' '&' ''' */
|
|
'\040', '\041', '\042', '\043', '\044', '\045', '\046', '\047',
|
|
/* '(' ')' '*' '+' ',' '-' '.' '/' */
|
|
'\050', '\051', '\052', '\053', '\054', '\055', '\056', '\057',
|
|
/* '0' '1' '2' '3' '4' '5' '6' '7' */
|
|
'\060', '\061', '\062', '\063', '\064', '\065', '\066', '\067',
|
|
/* '8' '9' ':' ';' '<' '=' '>' '?' */
|
|
'\070', '\071', '\072', '\073', '\074', '\075', '\076', '\077',
|
|
/* '@' 'A' 'B' 'C' 'D' 'E' 'F' 'G' */
|
|
'\100', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
|
|
/* 'H' 'I' 'J' 'K' 'L' 'M' 'N' 'O' */
|
|
'\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
|
|
/* 'P' 'Q' 'R' 'S' 'T' 'U' 'V' 'W' */
|
|
'\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
|
|
/* 'X' 'Y' 'Z' '[' '\' ']' '^' '_' */
|
|
'\170', '\171', '\172', '\133', '\134', '\135', '\136', '\137',
|
|
/* '`' 'a' 'b' 'c' 'd' 'e' 'f' 'g' */
|
|
'\140', '\141', '\142', '\143', '\144', '\145', '\146', '\147',
|
|
/* 'h' 'i' 'j' 'k' 'l' 'm' 'n' 'o' */
|
|
'\150', '\151', '\152', '\153', '\154', '\155', '\156', '\157',
|
|
/* 'p' 'q' 'r' 's' 't' 'u' 'v' 'w' */
|
|
'\160', '\161', '\162', '\163', '\164', '\165', '\166', '\167',
|
|
/* 'x' 'y' 'z' '{' '|' '}' '~' */
|
|
'\170', '\171', '\172', '\173', '\174', '\175', '\176', '\177',
|
|
|
|
/* Latin 1: */
|
|
C('\200'), C('\201'), C('\202'), C('\203'), C('\204'), C('\205'), C('\206'), C('\207'),
|
|
C('\210'), C('\211'), C('\212'), C('\213'), C('\214'), C('\215'), C('\216'), C('\217'),
|
|
C('\220'), C('\221'), C('\222'), C('\223'), C('\224'), C('\225'), C('\226'), C('\227'),
|
|
C('\230'), C('\231'), C('\232'), C('\233'), C('\234'), C('\235'), C('\236'), C('\237'),
|
|
C('\240'), C('\241'), C('\242'), C('\243'), C('\244'), C('\245'), C('\246'), C('\247'),
|
|
C('\250'), C('\251'), C('\252'), C('\253'), C('\254'), C('\255'), C('\256'), C('\257'),
|
|
C('\260'), C('\261'), C('\262'), C('\263'), C('\264'), C('\265'), C('\266'), C('\267'),
|
|
C('\270'), C('\271'), C('\272'), C('\273'), C('\274'), C('\275'), C('\276'), C('\277'),
|
|
C('\340'), C('\341'), C('\342'), C('\343'), C('\344'), C('\345'), C('\346'), C('\347'),
|
|
C('\350'), C('\351'), C('\352'), C('\353'), C('\354'), C('\355'), C('\356'), C('\357'),
|
|
C('\360'), C('\361'), C('\362'), C('\363'), C('\364'), C('\365'), C('\366'), C('\327'),
|
|
C('\370'), C('\371'), C('\372'), C('\373'), C('\374'), C('\375'), C('\376'), C('\337'),
|
|
C('\340'), C('\341'), C('\342'), C('\343'), C('\344'), C('\345'), C('\346'), C('\347'),
|
|
C('\350'), C('\351'), C('\352'), C('\353'), C('\354'), C('\355'), C('\356'), C('\357'),
|
|
C('\360'), C('\361'), C('\362'), C('\363'), C('\364'), C('\365'), C('\366'), C('\367'),
|
|
C('\370'), C('\371'), C('\372'), C('\373'), C('\374'), C('\375'), C('\376'), C('\377'),
|
|
};
|
|
#else
|
|
#include "You lose. You will need a translation table for your character set."
|
|
#endif
|
|
|
|
#undef C
|
|
|
|
/*
|
|
* This table maps node types to strings for debugging.
|
|
* KEEP IN SYNC WITH awk.h!!!!
|
|
*/
|
|
static const char *const nodetypes[] = {
|
|
"Node_illegal",
|
|
"Node_times",
|
|
"Node_quotient",
|
|
"Node_mod",
|
|
"Node_plus",
|
|
"Node_minus",
|
|
"Node_cond_pair",
|
|
"Node_subscript",
|
|
"Node_concat",
|
|
"Node_exp",
|
|
"Node_preincrement",
|
|
"Node_predecrement",
|
|
"Node_postincrement",
|
|
"Node_postdecrement",
|
|
"Node_unary_minus",
|
|
"Node_field_spec",
|
|
"Node_assign",
|
|
"Node_assign_times",
|
|
"Node_assign_quotient",
|
|
"Node_assign_mod",
|
|
"Node_assign_plus",
|
|
"Node_assign_minus",
|
|
"Node_assign_exp",
|
|
"Node_and",
|
|
"Node_or",
|
|
"Node_equal",
|
|
"Node_notequal",
|
|
"Node_less",
|
|
"Node_greater",
|
|
"Node_leq",
|
|
"Node_geq",
|
|
"Node_match",
|
|
"Node_nomatch",
|
|
"Node_not",
|
|
"Node_rule_list",
|
|
"Node_rule_node",
|
|
"Node_statement_list",
|
|
"Node_switch_body",
|
|
"Node_case_list",
|
|
"Node_if_branches",
|
|
"Node_expression_list",
|
|
"Node_param_list",
|
|
"Node_K_if",
|
|
"Node_K_switch",
|
|
"Node_K_case",
|
|
"Node_K_default",
|
|
"Node_K_while",
|
|
"Node_K_for",
|
|
"Node_K_arrayfor",
|
|
"Node_K_break",
|
|
"Node_K_continue",
|
|
"Node_K_print",
|
|
"Node_K_print_rec",
|
|
"Node_K_printf",
|
|
"Node_K_next",
|
|
"Node_K_exit",
|
|
"Node_K_do",
|
|
"Node_K_return",
|
|
"Node_K_delete",
|
|
"Node_K_delete_loop",
|
|
"Node_K_getline",
|
|
"Node_K_function",
|
|
"Node_K_nextfile",
|
|
"Node_redirect_output",
|
|
"Node_redirect_append",
|
|
"Node_redirect_pipe",
|
|
"Node_redirect_pipein",
|
|
"Node_redirect_input",
|
|
"Node_redirect_twoway",
|
|
"Node_var_new",
|
|
"Node_var",
|
|
"Node_var_array",
|
|
"Node_val",
|
|
"Node_builtin",
|
|
"Node_line_range",
|
|
"Node_in_array",
|
|
"Node_func",
|
|
"Node_func_call",
|
|
"Node_cond_exp",
|
|
"Node_regex",
|
|
"Node_dynregex",
|
|
"Node_hashnode",
|
|
"Node_ahash",
|
|
"Node_array_ref",
|
|
"Node_BINMODE",
|
|
"Node_CONVFMT",
|
|
"Node_FIELDWIDTHS",
|
|
"Node_FNR",
|
|
"Node_FS",
|
|
"Node_IGNORECASE",
|
|
"Node_LINT",
|
|
"Node_NF",
|
|
"Node_NR",
|
|
"Node_OFMT",
|
|
"Node_OFS",
|
|
"Node_ORS",
|
|
"Node_RS",
|
|
"Node_TEXTDOMAIN",
|
|
"Node_final --- this should never appear",
|
|
NULL
|
|
};
|
|
|
|
/* nodetype2str --- convert a node type into a printable value */
|
|
|
|
const char *
|
|
nodetype2str(NODETYPE type)
|
|
{
|
|
static char buf[40];
|
|
int tmp;
|
|
|
|
if ((tmp = type) >= Node_illegal && type <= Node_final)
|
|
return nodetypes[(int) type];
|
|
|
|
sprintf(buf, _("unknown nodetype %d"), (int) type);
|
|
return buf;
|
|
}
|
|
|
|
/* flags2str --- make a flags value readable */
|
|
|
|
const char *
|
|
flags2str(int flagval)
|
|
{
|
|
static const struct flagtab values[] = {
|
|
{ MALLOC, "MALLOC" },
|
|
{ TEMP, "TEMP" },
|
|
{ PERM, "PERM" },
|
|
{ STRING, "STRING" },
|
|
{ STRCUR, "STRCUR" },
|
|
{ NUMCUR, "NUMCUR" },
|
|
{ NUMBER, "NUMBER" },
|
|
{ MAYBE_NUM, "MAYBE_NUM" },
|
|
{ ARRAYMAXED, "ARRAYMAXED" },
|
|
{ FUNC, "FUNC" },
|
|
{ FIELD, "FIELD" },
|
|
{ INTLSTR, "INTLSTR" },
|
|
{ 0, NULL },
|
|
};
|
|
|
|
return genflags2str(flagval, values);
|
|
}
|
|
|
|
/* genflags2str --- general routine to convert a flag value to a string */
|
|
|
|
const char *
|
|
genflags2str(int flagval, const struct flagtab *tab)
|
|
{
|
|
static char buffer[BUFSIZ];
|
|
char *sp;
|
|
int i, space_left, space_needed;
|
|
|
|
sp = buffer;
|
|
space_left = BUFSIZ;
|
|
for (i = 0; tab[i].name != NULL; i++) {
|
|
/*
|
|
* note the trick, we want 1 or 0 for whether we need
|
|
* the '|' character.
|
|
*/
|
|
space_needed = (strlen(tab[i].name) + (sp != buffer));
|
|
if (space_left < space_needed)
|
|
fatal(_("buffer overflow in genflags2str"));
|
|
|
|
if ((flagval & tab[i].val) != 0) {
|
|
if (sp != buffer) {
|
|
*sp++ = '|';
|
|
space_left--;
|
|
}
|
|
strcpy(sp, tab[i].name);
|
|
/* note ordering! */
|
|
space_left -= strlen(sp);
|
|
sp += strlen(sp);
|
|
}
|
|
}
|
|
|
|
return buffer;
|
|
}
|
|
|
|
/*
|
|
* interpret:
|
|
* Tree is a bunch of rules to run. Returns zero if it hit an exit()
|
|
* statement
|
|
*/
|
|
int
|
|
interpret(register NODE *volatile tree)
|
|
{
|
|
jmp_buf volatile loop_tag_stack; /* shallow binding stack for loop_tag */
|
|
static jmp_buf rule_tag; /* tag the rule currently being run, for NEXT
|
|
* and EXIT statements. It is static because
|
|
* there are no nested rules */
|
|
register NODE *volatile t = NULL; /* temporary */
|
|
NODE **volatile lhs; /* lhs == Left Hand Side for assigns, etc */
|
|
NODE *volatile stable_tree;
|
|
int volatile traverse = TRUE; /* True => loop thru tree (Node_rule_list) */
|
|
|
|
/* avoid false source indications */
|
|
source = NULL;
|
|
sourceline = 0;
|
|
|
|
if (tree == NULL)
|
|
return 1;
|
|
sourceline = tree->source_line;
|
|
source = tree->source_file;
|
|
switch (tree->type) {
|
|
case Node_rule_node:
|
|
traverse = FALSE; /* False => one for-loop iteration only */
|
|
/* FALL THROUGH */
|
|
case Node_rule_list:
|
|
for (t = tree; t != NULL; t = t->rnode) {
|
|
if (traverse)
|
|
tree = t->lnode;
|
|
sourceline = tree->source_line;
|
|
source = tree->source_file;
|
|
INCREMENT(tree->exec_count);
|
|
switch (setjmp(rule_tag)) {
|
|
case 0: /* normal non-jump */
|
|
/* test pattern, if any */
|
|
if (tree->lnode == NULL ||
|
|
eval_condition(tree->lnode)) {
|
|
/* using the lnode exec_count is kludgey */
|
|
if (tree->lnode != NULL)
|
|
INCREMENT(tree->lnode->exec_count);
|
|
(void) interpret(tree->rnode);
|
|
}
|
|
break;
|
|
case TAG_CONTINUE: /* NEXT statement */
|
|
pop_all_forloops();
|
|
pop_fcall_stack();
|
|
return 1;
|
|
case TAG_BREAK: /* EXIT statement */
|
|
pop_all_forloops();
|
|
pop_fcall_stack();
|
|
return 0;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
if (! traverse) /* case Node_rule_node */
|
|
break; /* don't loop */
|
|
}
|
|
break;
|
|
|
|
case Node_statement_list:
|
|
for (t = tree; t != NULL; t = t->rnode)
|
|
(void) interpret(t->lnode);
|
|
break;
|
|
|
|
case Node_K_if:
|
|
INCREMENT(tree->exec_count);
|
|
if (eval_condition(tree->lnode)) {
|
|
INCREMENT(tree->rnode->exec_count);
|
|
(void) interpret(tree->rnode->lnode);
|
|
} else {
|
|
(void) interpret(tree->rnode->rnode);
|
|
}
|
|
break;
|
|
|
|
case Node_K_switch:
|
|
{
|
|
NODE *switch_value;
|
|
NODE *switch_body;
|
|
NODE *case_list;
|
|
NODE *default_list;
|
|
NODE *case_stmt;
|
|
|
|
int match_found = FALSE;
|
|
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
INCREMENT(tree->exec_count);
|
|
stable_tree = tree;
|
|
|
|
switch_value = tree_eval(stable_tree->lnode);
|
|
switch_body = stable_tree->rnode;
|
|
case_list = switch_body->lnode;
|
|
default_list = switch_body->rnode;
|
|
|
|
for (; case_list != NULL; case_list = case_list->rnode) {
|
|
case_stmt = case_list->lnode;
|
|
|
|
/*
|
|
* Once a match is found, all cases will be processed as they fall through,
|
|
* so continue to execute statements until a break is reached.
|
|
*/
|
|
if (! match_found) {
|
|
if (case_stmt->type == Node_K_default)
|
|
; /* do nothing */
|
|
else if (case_stmt->lnode->type == Node_regex) {
|
|
NODE *t1;
|
|
Regexp *rp;
|
|
|
|
t1 = force_string(switch_value);
|
|
rp = re_update(case_stmt->lnode);
|
|
|
|
match_found = (research(rp, t1->stptr, 0, t1->stlen, FALSE) >= 0);
|
|
if (t1 != switch_value)
|
|
free_temp(t1);
|
|
} else {
|
|
match_found = (cmp_nodes(switch_value, case_stmt->lnode) == 0);
|
|
}
|
|
}
|
|
|
|
/* If a match was found, execute the statements associated with the case. */
|
|
if (match_found) {
|
|
INCREMENT(case_stmt->exec_count);
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* Normal non-jump */
|
|
(void) interpret(case_stmt->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* continue statement */
|
|
free_temp(switch_value);
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
longjmp(loop_tag, TAG_CONTINUE);
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
free_temp(switch_value);
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
free_temp(switch_value);
|
|
|
|
/*
|
|
* If a default section was found, execute the statements associated with it
|
|
* and execute any trailing case statements if the default falls through.
|
|
*/
|
|
if (! match_found && default_list != NULL) {
|
|
for (case_list = default_list;
|
|
case_list != NULL; case_list = case_list->rnode) {
|
|
case_stmt = case_list->lnode;
|
|
|
|
INCREMENT(case_stmt->exec_count);
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* Normal non-jump */
|
|
(void) interpret(case_stmt->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* continue statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
longjmp(loop_tag, TAG_CONTINUE);
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
}
|
|
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
}
|
|
break;
|
|
|
|
case Node_K_while:
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
|
|
stable_tree = tree;
|
|
while (eval_condition(stable_tree->lnode)) {
|
|
INCREMENT(stable_tree->exec_count);
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* normal non-jump */
|
|
(void) interpret(stable_tree->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* continue statement */
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
|
|
case Node_K_do:
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
stable_tree = tree;
|
|
do {
|
|
INCREMENT(stable_tree->exec_count);
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* normal non-jump */
|
|
(void) interpret(stable_tree->rnode);
|
|
break;
|
|
case TAG_CONTINUE: /* continue statement */
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
} while (eval_condition(stable_tree->lnode));
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
|
|
case Node_K_for:
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
(void) interpret(tree->forloop->init);
|
|
stable_tree = tree;
|
|
while (eval_condition(stable_tree->forloop->cond)) {
|
|
INCREMENT(stable_tree->exec_count);
|
|
switch (setjmp(loop_tag)) {
|
|
case 0: /* normal non-jump */
|
|
(void) interpret(stable_tree->lnode);
|
|
/* fall through */
|
|
case TAG_CONTINUE: /* continue statement */
|
|
(void) interpret(stable_tree->forloop->incr);
|
|
break;
|
|
case TAG_BREAK: /* break statement */
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
return 1;
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
break;
|
|
|
|
case Node_K_arrayfor:
|
|
{
|
|
Func_ptr after_assign = NULL;
|
|
NODE **list = NULL;
|
|
NODE *volatile array;
|
|
NODE *volatile save_array;
|
|
volatile size_t i, num_elems;
|
|
size_t j;
|
|
volatile int retval = 0;
|
|
int sort_indices = whiny_users;
|
|
|
|
#define hakvar forloop->init
|
|
#define arrvar forloop->incr
|
|
/* get the array */
|
|
save_array = tree->arrvar;
|
|
array = get_array(save_array);
|
|
|
|
/* sanity: do nothing if empty */
|
|
if (array->var_array == NULL || array->table_size == 0)
|
|
break; /* from switch */
|
|
|
|
/* allocate space for array */
|
|
num_elems = array->table_size;
|
|
emalloc(list, NODE **, num_elems * sizeof(NODE *), "for_loop");
|
|
|
|
/* populate it */
|
|
for (i = j = 0; i < array->array_size; i++) {
|
|
NODE *t = array->var_array[i];
|
|
|
|
if (t == NULL)
|
|
continue;
|
|
|
|
for (; t != NULL; t = t->ahnext) {
|
|
list[j++] = dupnode(t);
|
|
assert(list[j-1] == t);
|
|
}
|
|
}
|
|
|
|
|
|
if (sort_indices)
|
|
qsort(list, num_elems, sizeof(NODE *), comp_func); /* shazzam! */
|
|
|
|
/* now we can run the loop */
|
|
push_forloop(array->vname, list, num_elems);
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
|
|
lhs = get_lhs(tree->hakvar, &after_assign, FALSE);
|
|
stable_tree = tree;
|
|
for (i = 0; i < num_elems; i++) {
|
|
INCREMENT(stable_tree->exec_count);
|
|
unref(*((NODE **) lhs));
|
|
*lhs = make_string(list[i]->ahname_str, list[i]->ahname_len);
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
switch (setjmp(loop_tag)) {
|
|
case 0:
|
|
(void) interpret(stable_tree->lnode);
|
|
case TAG_CONTINUE:
|
|
break;
|
|
|
|
case TAG_BREAK:
|
|
retval = 1;
|
|
goto done;
|
|
|
|
default:
|
|
cant_happen();
|
|
}
|
|
}
|
|
|
|
done:
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, loop_tag_valid);
|
|
pop_forloop();
|
|
|
|
if (do_lint && num_elems != array->table_size)
|
|
lintwarn(_("for loop: array `%s' changed size from %ld to %ld during loop execution"),
|
|
array_vname(save_array), (long) num_elems, (long) array->table_size);
|
|
|
|
if (retval == 1)
|
|
return 1;
|
|
break;
|
|
}
|
|
#undef hakvar
|
|
#undef arrvar
|
|
|
|
case Node_K_break:
|
|
INCREMENT(tree->exec_count);
|
|
if (! loop_tag_valid) {
|
|
/*
|
|
* Old AT&T nawk treats break outside of loops like
|
|
* next. New ones catch it at parse time. Allow it if
|
|
* do_traditional is on, and complain if lint.
|
|
*/
|
|
static int warned = FALSE;
|
|
|
|
if (do_lint && ! warned) {
|
|
lintwarn(_("`break' outside a loop is not portable"));
|
|
warned = TRUE;
|
|
}
|
|
if (! do_traditional || do_posix)
|
|
fatal(_("`break' outside a loop is not allowed"));
|
|
longjmp(rule_tag, TAG_CONTINUE);
|
|
} else
|
|
longjmp(loop_tag, TAG_BREAK);
|
|
break;
|
|
|
|
case Node_K_continue:
|
|
INCREMENT(tree->exec_count);
|
|
if (! loop_tag_valid) {
|
|
/*
|
|
* Old AT&T nawk treats continue outside of loops like
|
|
* next. New ones catch it at parse time. Allow it if
|
|
* do_traditional is on, and complain if lint.
|
|
*/
|
|
static int warned = FALSE;
|
|
|
|
if (do_lint && ! warned) {
|
|
lintwarn(_("`continue' outside a loop is not portable"));
|
|
warned = TRUE;
|
|
}
|
|
if (! do_traditional || do_posix)
|
|
fatal(_("`continue' outside a loop is not allowed"));
|
|
longjmp(rule_tag, TAG_CONTINUE);
|
|
} else
|
|
longjmp(loop_tag, TAG_CONTINUE);
|
|
break;
|
|
|
|
case Node_K_print:
|
|
INCREMENT(tree->exec_count);
|
|
do_print(tree);
|
|
break;
|
|
|
|
case Node_K_print_rec:
|
|
INCREMENT(tree->exec_count);
|
|
do_print_rec(tree);
|
|
break;
|
|
|
|
case Node_K_printf:
|
|
INCREMENT(tree->exec_count);
|
|
do_printf(tree);
|
|
break;
|
|
|
|
case Node_K_delete:
|
|
INCREMENT(tree->exec_count);
|
|
do_delete(tree->lnode, tree->rnode);
|
|
break;
|
|
|
|
case Node_K_delete_loop:
|
|
INCREMENT(tree->exec_count);
|
|
do_delete_loop(tree->lnode, tree->rnode);
|
|
break;
|
|
|
|
case Node_K_next:
|
|
INCREMENT(tree->exec_count);
|
|
if (in_begin_rule)
|
|
fatal(_("`next' cannot be called from a BEGIN rule"));
|
|
else if (in_end_rule)
|
|
fatal(_("`next' cannot be called from an END rule"));
|
|
|
|
/* could add a lint check here for in a loop or function */
|
|
longjmp(rule_tag, TAG_CONTINUE);
|
|
break;
|
|
|
|
case Node_K_nextfile:
|
|
INCREMENT(tree->exec_count);
|
|
if (in_begin_rule)
|
|
fatal(_("`nextfile' cannot be called from a BEGIN rule"));
|
|
else if (in_end_rule)
|
|
fatal(_("`nextfile' cannot be called from an END rule"));
|
|
|
|
/* could add a lint check here for in a loop or function */
|
|
/*
|
|
* Have to do this cleanup here, since we don't longjump
|
|
* back to the main awk rule loop (rule_tag).
|
|
*/
|
|
pop_all_forloops();
|
|
pop_fcall_stack();
|
|
|
|
do_nextfile();
|
|
break;
|
|
|
|
case Node_K_exit:
|
|
INCREMENT(tree->exec_count);
|
|
/*
|
|
* In A,K,&W, p. 49, it says that an exit statement "...
|
|
* causes the program to behave as if the end of input had
|
|
* occurred; no more input is read, and the END actions, if
|
|
* any are executed." This implies that the rest of the rules
|
|
* are not done. So we immediately break out of the main loop.
|
|
*/
|
|
exiting = TRUE;
|
|
if (tree->lnode != NULL) {
|
|
t = tree_eval(tree->lnode);
|
|
exit_val = (int) force_number(t);
|
|
free_temp(t);
|
|
}
|
|
longjmp(rule_tag, TAG_BREAK);
|
|
break;
|
|
|
|
case Node_K_return:
|
|
INCREMENT(tree->exec_count);
|
|
t = tree_eval(tree->lnode);
|
|
ret_node = dupnode(t);
|
|
free_temp(t);
|
|
longjmp(func_tag, TAG_RETURN);
|
|
break;
|
|
|
|
default:
|
|
/*
|
|
* Appears to be an expression statement. Throw away the
|
|
* value.
|
|
*/
|
|
if (do_lint && (tree->type == Node_var || tree->type == Node_var_new))
|
|
lintwarn(_("statement has no effect"));
|
|
INCREMENT(tree->exec_count);
|
|
t = tree_eval(tree);
|
|
if (t) /* stopme() returns NULL */
|
|
free_temp(t);
|
|
break;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* r_tree_eval --- evaluate a subtree */
|
|
|
|
NODE *
|
|
r_tree_eval(register NODE *tree, int iscond)
|
|
{
|
|
register NODE *r, *t1, *t2; /* return value & temporary subtrees */
|
|
register NODE **lhs;
|
|
register int di;
|
|
AWKNUM x, x1, x2;
|
|
long lx;
|
|
#ifdef _CRAY
|
|
long lx2;
|
|
#endif
|
|
|
|
#ifndef TREE_EVAL_MACRO
|
|
if (tree == NULL)
|
|
return Nnull_string;
|
|
else if (tree->type == Node_val) {
|
|
if (tree->stref <= 0)
|
|
cant_happen();
|
|
return ((tree->flags & INTLSTR) != 0
|
|
? r_force_string(tree)
|
|
: tree);
|
|
} else if (tree->type == Node_var) {
|
|
if (tree->var_value->stref <= 0)
|
|
cant_happen();
|
|
if (! var_uninitialized(tree))
|
|
return tree->var_value;
|
|
}
|
|
#endif
|
|
|
|
if (tree->type == Node_param_list) {
|
|
if ((tree->flags & FUNC) != 0)
|
|
fatal(_("can't use function name `%s' as variable or array"),
|
|
tree->vname);
|
|
|
|
tree = stack_ptr[tree->param_cnt];
|
|
|
|
if (tree == NULL) {
|
|
if (do_lint)
|
|
lintwarn(_("reference to uninitialized argument `%s'"),
|
|
tree->vname);
|
|
return Nnull_string;
|
|
}
|
|
|
|
if (do_lint && var_uninitialized(tree))
|
|
lintwarn(_("reference to uninitialized argument `%s'"),
|
|
tree->vname);
|
|
}
|
|
|
|
switch (tree->type) {
|
|
case Node_array_ref:
|
|
if (tree->orig_array->type == Node_var_array)
|
|
fatal(_("attempt to use array `%s' in a scalar context"),
|
|
array_vname(tree));
|
|
tree->orig_array->type = Node_var;
|
|
/* fall through */
|
|
case Node_var_new:
|
|
tree->type = Node_var;
|
|
tree->var_value = Nnull_string;
|
|
/* fall through */
|
|
case Node_var:
|
|
if (do_lint && var_uninitialized(tree))
|
|
lintwarn(_("reference to uninitialized variable `%s'"),
|
|
tree->vname);
|
|
return tree->var_value;
|
|
|
|
case Node_and:
|
|
return tmp_number((AWKNUM) (eval_condition(tree->lnode)
|
|
&& eval_condition(tree->rnode)));
|
|
|
|
case Node_or:
|
|
return tmp_number((AWKNUM) (eval_condition(tree->lnode)
|
|
|| eval_condition(tree->rnode)));
|
|
|
|
case Node_not:
|
|
return tmp_number((AWKNUM) ! eval_condition(tree->lnode));
|
|
|
|
/* Builtins */
|
|
case Node_builtin:
|
|
return (*tree->builtin)(tree->subnode);
|
|
|
|
case Node_K_getline:
|
|
return (do_getline(tree));
|
|
|
|
case Node_in_array:
|
|
return tmp_number((AWKNUM) (in_array(tree->lnode, tree->rnode) != NULL));
|
|
|
|
case Node_func_call:
|
|
return func_call(tree);
|
|
|
|
/* unary operations */
|
|
case Node_NR:
|
|
case Node_FNR:
|
|
case Node_NF:
|
|
case Node_FIELDWIDTHS:
|
|
case Node_FS:
|
|
case Node_RS:
|
|
case Node_field_spec:
|
|
case Node_subscript:
|
|
case Node_IGNORECASE:
|
|
case Node_OFS:
|
|
case Node_ORS:
|
|
case Node_OFMT:
|
|
case Node_CONVFMT:
|
|
case Node_BINMODE:
|
|
case Node_LINT:
|
|
case Node_TEXTDOMAIN:
|
|
lhs = get_lhs(tree, (Func_ptr *) NULL, TRUE);
|
|
return *lhs;
|
|
|
|
case Node_var_array:
|
|
fatal(_("attempt to use array `%s' in a scalar context"),
|
|
array_vname(tree));
|
|
|
|
case Node_unary_minus:
|
|
t1 = tree_eval(tree->subnode);
|
|
x = -force_number(t1);
|
|
free_temp(t1);
|
|
return tmp_number(x);
|
|
|
|
case Node_cond_exp:
|
|
if (eval_condition(tree->lnode))
|
|
return tree_eval(tree->rnode->lnode);
|
|
return tree_eval(tree->rnode->rnode);
|
|
|
|
case Node_match:
|
|
case Node_nomatch:
|
|
case Node_regex:
|
|
case Node_dynregex:
|
|
return match_op(tree);
|
|
|
|
case Node_concat:
|
|
{
|
|
NODE **treelist;
|
|
NODE **strlist;
|
|
NODE *save_tree;
|
|
register NODE **treep;
|
|
register NODE **strp;
|
|
register size_t len;
|
|
register size_t supposed_len;
|
|
char *str;
|
|
register char *dest;
|
|
int alloc_count, str_count;
|
|
int i;
|
|
|
|
/*
|
|
* This is an efficiency hack for multiple adjacent string
|
|
* concatenations, to avoid recursion and string copies.
|
|
*
|
|
* Node_concat trees grow downward to the left, so
|
|
* descend to lowest (first) node, accumulating nodes
|
|
* to evaluate to strings as we go.
|
|
*/
|
|
|
|
/*
|
|
* But first, no arbitrary limits. Count the number of
|
|
* nodes and malloc the treelist and strlist arrays.
|
|
* There will be alloc_count + 1 items to concatenate. We
|
|
* also leave room for an extra pointer at the end to
|
|
* use as a sentinel. Thus, start alloc_count at 2.
|
|
*/
|
|
save_tree = tree;
|
|
for (alloc_count = 2; tree != NULL && tree->type == Node_concat;
|
|
tree = tree->lnode)
|
|
alloc_count++;
|
|
tree = save_tree;
|
|
emalloc(treelist, NODE **, sizeof(NODE *) * alloc_count, "tree_eval");
|
|
emalloc(strlist, NODE **, sizeof(NODE *) * alloc_count, "tree_eval");
|
|
|
|
/* Now, here we go. */
|
|
treep = treelist;
|
|
while (tree != NULL && tree->type == Node_concat) {
|
|
*treep++ = tree->rnode;
|
|
tree = tree->lnode;
|
|
}
|
|
*treep = tree;
|
|
/*
|
|
* Now, evaluate to strings in LIFO order, accumulating
|
|
* the string length, so we can do a single malloc at the
|
|
* end.
|
|
*
|
|
* Evaluate the expressions first, then get their
|
|
* lengthes, in case one of the expressions has a
|
|
* side effect that changes one of the others.
|
|
* See test/nasty.awk.
|
|
*
|
|
* dupnode the results a la do_print, to give us
|
|
* more predicable behavior; compare gawk 3.0.6 to
|
|
* nawk/mawk on test/nasty.awk.
|
|
*/
|
|
strp = strlist;
|
|
supposed_len = len = 0;
|
|
while (treep >= treelist) {
|
|
NODE *n;
|
|
|
|
/* Here lies the wumpus's brother. R.I.P. */
|
|
n = force_string(tree_eval(*treep--));
|
|
*strp = dupnode(n);
|
|
free_temp(n);
|
|
supposed_len += (*strp)->stlen;
|
|
strp++;
|
|
}
|
|
*strp = NULL;
|
|
|
|
str_count = strp - strlist;
|
|
strp = strlist;
|
|
for (i = 0; i < str_count; i++) {
|
|
len += (*strp)->stlen;
|
|
strp++;
|
|
}
|
|
if (do_lint && supposed_len != len)
|
|
lintwarn(_("concatenation: side effects in one expression have changed the length of another!"));
|
|
emalloc(str, char *, len+2, "tree_eval");
|
|
str[len] = str[len+1] = '\0'; /* for good measure */
|
|
dest = str;
|
|
strp = strlist;
|
|
while (*strp != NULL) {
|
|
memcpy(dest, (*strp)->stptr, (*strp)->stlen);
|
|
dest += (*strp)->stlen;
|
|
unref(*strp);
|
|
strp++;
|
|
}
|
|
r = make_str_node(str, len, ALREADY_MALLOCED);
|
|
r->flags |= TEMP;
|
|
|
|
free(strlist);
|
|
free(treelist);
|
|
}
|
|
return r;
|
|
|
|
/* assignments */
|
|
case Node_assign:
|
|
{
|
|
Func_ptr after_assign = NULL;
|
|
|
|
if (do_lint && iscond)
|
|
lintwarn(_("assignment used in conditional context"));
|
|
r = tree_eval(tree->rnode);
|
|
lhs = get_lhs(tree->lnode, &after_assign, FALSE);
|
|
|
|
assign_val(lhs, r);
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
return *lhs;
|
|
}
|
|
|
|
/* other assignment types are easier because they are numeric */
|
|
case Node_preincrement:
|
|
case Node_predecrement:
|
|
case Node_postincrement:
|
|
case Node_postdecrement:
|
|
case Node_assign_exp:
|
|
case Node_assign_times:
|
|
case Node_assign_quotient:
|
|
case Node_assign_mod:
|
|
case Node_assign_plus:
|
|
case Node_assign_minus:
|
|
return op_assign(tree);
|
|
default:
|
|
break; /* handled below */
|
|
}
|
|
|
|
/*
|
|
* Evaluate subtrees in order to do binary operation, then keep going.
|
|
* Use dupnode to make sure that these values don't disappear out
|
|
* from under us during recursive subexpression evaluation.
|
|
*/
|
|
t1 = dupnode(tree_eval(tree->lnode));
|
|
t2 = dupnode(tree_eval(tree->rnode));
|
|
|
|
switch (tree->type) {
|
|
case Node_geq:
|
|
case Node_leq:
|
|
case Node_greater:
|
|
case Node_less:
|
|
case Node_notequal:
|
|
case Node_equal:
|
|
di = cmp_nodes(t1, t2);
|
|
unref(t1);
|
|
unref(t2);
|
|
switch (tree->type) {
|
|
case Node_equal:
|
|
return tmp_number((AWKNUM) (di == 0));
|
|
case Node_notequal:
|
|
return tmp_number((AWKNUM) (di != 0));
|
|
case Node_less:
|
|
return tmp_number((AWKNUM) (di < 0));
|
|
case Node_greater:
|
|
return tmp_number((AWKNUM) (di > 0));
|
|
case Node_leq:
|
|
return tmp_number((AWKNUM) (di <= 0));
|
|
case Node_geq:
|
|
return tmp_number((AWKNUM) (di >= 0));
|
|
default:
|
|
cant_happen();
|
|
}
|
|
break;
|
|
default:
|
|
break; /* handled below */
|
|
}
|
|
|
|
x1 = force_number(t1);
|
|
x2 = force_number(t2);
|
|
unref(t1);
|
|
unref(t2);
|
|
switch (tree->type) {
|
|
case Node_exp:
|
|
if ((lx = x2) == x2 && lx >= 0) { /* integer exponent */
|
|
if (lx == 0)
|
|
x = 1;
|
|
else if (lx == 1)
|
|
x = x1;
|
|
else {
|
|
/* doing it this way should be more precise */
|
|
for (x = x1; --lx; )
|
|
x *= x1;
|
|
}
|
|
} else
|
|
x = pow((double) x1, (double) x2);
|
|
return tmp_number(x);
|
|
|
|
case Node_times:
|
|
return tmp_number(x1 * x2);
|
|
|
|
case Node_quotient:
|
|
if (x2 == 0)
|
|
fatal(_("division by zero attempted"));
|
|
#ifdef _CRAY
|
|
/* special case for integer division, put in for Cray */
|
|
lx2 = x2;
|
|
if (lx2 == 0)
|
|
return tmp_number(x1 / x2);
|
|
lx = (long) x1 / lx2;
|
|
if (lx * x2 == x1)
|
|
return tmp_number((AWKNUM) lx);
|
|
else
|
|
#endif
|
|
return tmp_number(x1 / x2);
|
|
|
|
case Node_mod:
|
|
if (x2 == 0)
|
|
fatal(_("division by zero attempted in `%%'"));
|
|
#ifdef HAVE_FMOD
|
|
return tmp_number(fmod(x1, x2));
|
|
#else /* ! HAVE_FMOD */
|
|
(void) modf(x1 / x2, &x);
|
|
return tmp_number(x1 - x * x2);
|
|
#endif /* ! HAVE_FMOD */
|
|
|
|
case Node_plus:
|
|
return tmp_number(x1 + x2);
|
|
|
|
case Node_minus:
|
|
return tmp_number(x1 - x2);
|
|
|
|
default:
|
|
fatal(_("illegal type (%s) in tree_eval"), nodetype2str(tree->type));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* eval_condition --- is TREE true or false? Returns 0==false, non-zero==true */
|
|
|
|
static int
|
|
eval_condition(register NODE *tree)
|
|
{
|
|
register NODE *t1;
|
|
register int ret;
|
|
|
|
if (tree == NULL) /* Null trees are the easiest kinds */
|
|
return TRUE;
|
|
if (tree->type == Node_line_range) {
|
|
/*
|
|
* Node_line_range is kind of like Node_match, EXCEPT: the
|
|
* lnode field (more properly, the condpair field) is a node
|
|
* of a Node_cond_pair; whether we evaluate the lnode of that
|
|
* node or the rnode depends on the triggered word. More
|
|
* precisely: if we are not yet triggered, we tree_eval the
|
|
* lnode; if that returns true, we set the triggered word.
|
|
* If we are triggered (not ELSE IF, note), we tree_eval the
|
|
* rnode, clear triggered if it succeeds, and perform our
|
|
* action (regardless of success or failure). We want to be
|
|
* able to begin and end on a single input record, so this
|
|
* isn't an ELSE IF, as noted above.
|
|
*/
|
|
if (! tree->triggered) {
|
|
if (! eval_condition(tree->condpair->lnode))
|
|
return FALSE;
|
|
else
|
|
tree->triggered = TRUE;
|
|
}
|
|
/* Else we are triggered */
|
|
if (eval_condition(tree->condpair->rnode))
|
|
tree->triggered = FALSE;
|
|
return TRUE;
|
|
}
|
|
|
|
/*
|
|
* Could just be J.random expression. in which case, null and 0 are
|
|
* false, anything else is true
|
|
*/
|
|
|
|
t1 = m_tree_eval(tree, TRUE);
|
|
if (t1->flags & MAYBE_NUM)
|
|
(void) force_number(t1);
|
|
if (t1->flags & NUMBER)
|
|
ret = (t1->numbr != 0.0);
|
|
else
|
|
ret = (t1->stlen != 0);
|
|
free_temp(t1);
|
|
return ret;
|
|
}
|
|
|
|
/* cmp_nodes --- compare two nodes, returning negative, 0, positive */
|
|
|
|
int
|
|
cmp_nodes(register NODE *t1, register NODE *t2)
|
|
{
|
|
register int ret;
|
|
register size_t len1, len2;
|
|
register int l;
|
|
int ldiff;
|
|
|
|
if (t1 == t2)
|
|
return 0;
|
|
if (t1->flags & MAYBE_NUM)
|
|
(void) force_number(t1);
|
|
if (t2->flags & MAYBE_NUM)
|
|
(void) force_number(t2);
|
|
if ((t1->flags & NUMBER) && (t2->flags & NUMBER)) {
|
|
if (t1->numbr == t2->numbr)
|
|
return 0;
|
|
/* don't subtract, in case one or both are infinite */
|
|
else if (t1->numbr < t2->numbr)
|
|
return -1;
|
|
else
|
|
return 1;
|
|
}
|
|
(void) force_string(t1);
|
|
(void) force_string(t2);
|
|
len1 = t1->stlen;
|
|
len2 = t2->stlen;
|
|
ldiff = len1 - len2;
|
|
if (len1 == 0 || len2 == 0)
|
|
return ldiff;
|
|
l = (ldiff <= 0 ? len1 : len2);
|
|
if (IGNORECASE) {
|
|
const unsigned char *cp1 = (const unsigned char *) t1->stptr;
|
|
const unsigned char *cp2 = (const unsigned char *) t2->stptr;
|
|
|
|
#ifdef MBS_SUPPORT
|
|
if (gawk_mb_cur_max > 1) {
|
|
mbstate_t mbs;
|
|
memset(&mbs, 0, sizeof(mbstate_t));
|
|
ret = strncasecmpmbs((const char *) cp1, mbs,
|
|
(const char *) cp2, mbs, l);
|
|
} else
|
|
#endif
|
|
for (ret = 0; l-- > 0 && ret == 0; cp1++, cp2++)
|
|
ret = casetable[*cp1] - casetable[*cp2];
|
|
} else
|
|
ret = memcmp(t1->stptr, t2->stptr, l);
|
|
return (ret == 0 ? ldiff : ret);
|
|
}
|
|
|
|
/* op_assign --- do +=, -=, etc. */
|
|
|
|
static NODE *
|
|
op_assign(register NODE *tree)
|
|
{
|
|
AWKNUM rval, lval;
|
|
NODE **lhs;
|
|
AWKNUM t1, t2;
|
|
long ltemp;
|
|
NODE *tmp;
|
|
Func_ptr after_assign = NULL;
|
|
int post = FALSE;
|
|
|
|
/*
|
|
* For += etc, do the rhs first, since it can rearrange things,
|
|
* and *then* get the lhs.
|
|
*/
|
|
if (tree->rnode != NULL) {
|
|
tmp = tree_eval(tree->rnode);
|
|
rval = force_number(tmp);
|
|
free_temp(tmp);
|
|
} else
|
|
rval = (AWKNUM) 1.0;
|
|
|
|
lhs = get_lhs(tree->lnode, &after_assign, TRUE);
|
|
lval = force_number(*lhs);
|
|
unref(*lhs);
|
|
|
|
switch(tree->type) {
|
|
case Node_postincrement:
|
|
post = TRUE;
|
|
/* fall through */
|
|
case Node_preincrement:
|
|
case Node_assign_plus:
|
|
*lhs = make_number(lval + rval);
|
|
break;
|
|
|
|
case Node_postdecrement:
|
|
post = TRUE;
|
|
/* fall through */
|
|
case Node_predecrement:
|
|
case Node_assign_minus:
|
|
*lhs = make_number(lval - rval);
|
|
break;
|
|
|
|
case Node_assign_exp:
|
|
if ((ltemp = rval) == rval) { /* integer exponent */
|
|
if (ltemp == 0)
|
|
*lhs = make_number((AWKNUM) 1);
|
|
else if (ltemp == 1)
|
|
*lhs = make_number(lval);
|
|
else {
|
|
/* doing it this way should be more precise */
|
|
for (t1 = t2 = lval; --ltemp; )
|
|
t1 *= t2;
|
|
*lhs = make_number(t1);
|
|
}
|
|
} else
|
|
*lhs = make_number((AWKNUM) pow((double) lval, (double) rval));
|
|
break;
|
|
|
|
case Node_assign_times:
|
|
*lhs = make_number(lval * rval);
|
|
break;
|
|
|
|
case Node_assign_quotient:
|
|
if (rval == (AWKNUM) 0)
|
|
fatal(_("division by zero attempted in `/='"));
|
|
#ifdef _CRAY
|
|
/* special case for integer division, put in for Cray */
|
|
ltemp = rval;
|
|
if (ltemp == 0) {
|
|
*lhs = make_number(lval / rval);
|
|
break;
|
|
}
|
|
ltemp = (long) lval / ltemp;
|
|
if (ltemp * lval == rval)
|
|
*lhs = make_number((AWKNUM) ltemp);
|
|
else
|
|
#endif /* _CRAY */
|
|
*lhs = make_number(lval / rval);
|
|
break;
|
|
|
|
case Node_assign_mod:
|
|
if (rval == (AWKNUM) 0)
|
|
fatal(_("division by zero attempted in `%%='"));
|
|
#ifdef HAVE_FMOD
|
|
*lhs = make_number(fmod(lval, rval));
|
|
#else /* ! HAVE_FMOD */
|
|
(void) modf(lval / rval, &t1);
|
|
t2 = lval - rval * t1;
|
|
*lhs = make_number(t2);
|
|
#endif /* ! HAVE_FMOD */
|
|
break;
|
|
|
|
default:
|
|
cant_happen();
|
|
}
|
|
|
|
if (after_assign)
|
|
(*after_assign)();
|
|
|
|
/* for postincrement or postdecrement, return the old value */
|
|
return (post ? tmp_number(lval) : *lhs);
|
|
}
|
|
|
|
/*
|
|
* Avoiding memory leaks is difficult. In paticular, any of `next',
|
|
* `nextfile', `break' or `continue' (when not in a loop), can longjmp
|
|
* out to the outermost level. This leaks memory if it happens in a
|
|
* called function. It also leaks memory if it happens in a
|
|
* `for (iggy in foo)' loop, since such loops malloc an array of the
|
|
* current array indices to loop over, which provides stability.
|
|
*
|
|
* The following code takes care of these problems. First comes the
|
|
* array-loop management code. This can be a stack of arrays being looped
|
|
* on at any one time. This stack serves for both mainline code and
|
|
* function body code. As each loop starts and finishes, it pushes its
|
|
* info onto this stack and off of it; whether the loop is in a function
|
|
* body or not isn't relevant.
|
|
*
|
|
* Since the list of indices is created using dupnode(), when popping
|
|
* this stack it should be safe to unref() things, and then memory
|
|
* will get finally released when the function call stack is popped.
|
|
* This means that the loop_stack should be popped first upon a `next'.
|
|
*/
|
|
|
|
static struct loop_info {
|
|
const char *varname; /* variable name, for debugging */
|
|
NODE **elems; /* list of indices */
|
|
size_t nelems; /* how many there are */
|
|
} *loop_stack = NULL;
|
|
size_t nloops = 0; /* how many slots there are in the stack */
|
|
size_t nloops_active = 0; /* how many loops are actively stacked */
|
|
|
|
/* pop_forloop --- pop one for loop off the stack */
|
|
|
|
static void
|
|
pop_forloop()
|
|
{
|
|
int i, curloop;
|
|
struct loop_info *loop;
|
|
|
|
assert(nloops_active > 0);
|
|
|
|
curloop = --nloops_active; /* 0-based indexing */
|
|
loop = & loop_stack[curloop];
|
|
|
|
for (i = 0; i < loop->nelems; i++)
|
|
unref(loop->elems[i]);
|
|
|
|
free(loop->elems);
|
|
|
|
loop->elems = NULL;
|
|
loop->varname = NULL;
|
|
loop->nelems = 0;
|
|
}
|
|
|
|
/* pop_forloops --- pop the for loops stack all the way */
|
|
|
|
static inline void
|
|
pop_all_forloops()
|
|
{
|
|
while (nloops_active > 0)
|
|
pop_forloop(); /* decrements nloops_active for us */
|
|
}
|
|
|
|
/* push_forloop --- add a single for loop to the stack */
|
|
|
|
static void
|
|
push_forloop(const char *varname, NODE **elems, size_t nelems)
|
|
{
|
|
#define NLOOPS 4 /* seems like a good guess */
|
|
if (loop_stack == NULL) {
|
|
/* allocate stack, set vars */
|
|
nloops = NLOOPS;
|
|
emalloc(loop_stack, struct loop_info *, nloops * sizeof(struct loop_info),
|
|
"push_forloop");
|
|
} else if (nloops_active == nloops) {
|
|
/* grow stack, set vars */
|
|
nloops *= 2;
|
|
erealloc(loop_stack, struct loop_info *, nloops * sizeof(struct loop_info),
|
|
"push_forloop");
|
|
}
|
|
|
|
loop_stack[nloops_active].varname = varname;
|
|
loop_stack[nloops_active].elems = elems;
|
|
loop_stack[nloops_active].nelems = nelems;
|
|
nloops_active++;
|
|
}
|
|
|
|
static struct fcall {
|
|
const char *fname; /* function name */
|
|
unsigned long count; /* how many args */
|
|
NODE *arglist; /* list thereof */
|
|
NODE **prevstack; /* function stack frame of previous function */
|
|
NODE **stack; /* function stack frame of current function */
|
|
} *fcall_list = NULL;
|
|
|
|
static long fcall_list_size = 0;
|
|
static long curfcall = -1;
|
|
|
|
/* pop_fcall --- pop off a single function call */
|
|
|
|
static void
|
|
pop_fcall()
|
|
{
|
|
NODE *n, **sp;
|
|
int count;
|
|
struct fcall *f;
|
|
|
|
assert(curfcall >= 0);
|
|
f = & fcall_list[curfcall];
|
|
stack_ptr = f->prevstack;
|
|
|
|
sp = f->stack;
|
|
|
|
for (count = f->count; count > 0; count--) {
|
|
n = *sp++;
|
|
if (n->type == Node_var) /* local variable */
|
|
unref(n->var_value);
|
|
else if (n->type == Node_var_array) /* local array */
|
|
assoc_clear(n);
|
|
freenode(n);
|
|
}
|
|
if (f->stack)
|
|
free((char *) f->stack);
|
|
/* memset(f, '\0', sizeof(struct fcall)); */
|
|
curfcall--;
|
|
}
|
|
|
|
/* pop_fcall_stack --- pop off all function args, don't leak memory */
|
|
|
|
static inline void
|
|
pop_fcall_stack()
|
|
{
|
|
while (curfcall >= 0)
|
|
pop_fcall();
|
|
}
|
|
|
|
/* push_args --- push function arguments onto the stack */
|
|
|
|
static void
|
|
push_args(int count,
|
|
NODE *argp,
|
|
NODE **oldstack,
|
|
const char *func_name,
|
|
char **varnames)
|
|
{
|
|
struct fcall *f;
|
|
NODE *arg, *r, **sp;
|
|
int i;
|
|
|
|
if (fcall_list_size == 0) { /* first time */
|
|
emalloc(fcall_list, struct fcall *, 10 * sizeof(struct fcall),
|
|
"push_args");
|
|
fcall_list_size = 10;
|
|
}
|
|
|
|
if (++curfcall >= fcall_list_size) {
|
|
fcall_list_size *= 2;
|
|
erealloc(fcall_list, struct fcall *,
|
|
fcall_list_size * sizeof(struct fcall), "push_args");
|
|
}
|
|
f = & fcall_list[curfcall];
|
|
|
|
if (count > 0)
|
|
emalloc(f->stack, NODE **, count*sizeof(NODE *), "push_args");
|
|
else
|
|
f->stack = NULL;
|
|
f->count = count;
|
|
f->fname = func_name; /* not used, for debugging, just in case */
|
|
f->arglist = argp;
|
|
f->prevstack = oldstack;
|
|
|
|
sp = f->stack;
|
|
|
|
/* for each calling arg. add NODE * on stack */
|
|
for (i = 0; i < count; i++) {
|
|
getnode(r);
|
|
*sp++ = r;
|
|
if (argp == NULL) {
|
|
/* local variable */
|
|
r->type = Node_var_new;
|
|
r->vname = varnames[i];
|
|
continue;
|
|
}
|
|
arg = argp->lnode;
|
|
/* call by reference for arrays; see below also */
|
|
if (arg->type == Node_param_list) {
|
|
/* we must also reassign f here; see below */
|
|
f = & fcall_list[curfcall];
|
|
arg = f->prevstack[arg->param_cnt];
|
|
}
|
|
if (arg->type == Node_var_array || arg->type == Node_var_new) {
|
|
r->type = Node_array_ref;
|
|
r->orig_array = arg;
|
|
r->prev_array = arg;
|
|
} else if (arg->type == Node_array_ref) {
|
|
*r = *arg;
|
|
r->prev_array = arg;
|
|
} else {
|
|
NODE *n = tree_eval(arg);
|
|
|
|
r->type = Node_var;
|
|
r->lnode = dupnode(n);
|
|
r->rnode = (NODE *) NULL;
|
|
free_temp(n);
|
|
}
|
|
r->vname = varnames[i];
|
|
argp = argp->rnode;
|
|
}
|
|
|
|
/*
|
|
* We have to reassign f. Why, you may ask? It is possible that
|
|
* other functions were called during the course of tree_eval()-ing
|
|
* the arguments to this function. As a result of that, fcall_list
|
|
* may have been realloc()'ed, with the result that f is now
|
|
* pointing into free()'d space. This was a nasty one to track down.
|
|
*/
|
|
f = & fcall_list[curfcall];
|
|
|
|
if (argp != NULL) {
|
|
/* Left over calling args. */
|
|
warning(
|
|
_("function `%s' called with more arguments than declared"),
|
|
func_name);
|
|
/* Evaluate them, they may have side effects: */
|
|
do {
|
|
arg = argp->lnode;
|
|
if (arg->type == Node_param_list)
|
|
arg = f->prevstack[arg->param_cnt];
|
|
if (arg->type != Node_var_array &&
|
|
arg->type != Node_array_ref &&
|
|
arg->type != Node_var_new)
|
|
free_temp(tree_eval(arg));
|
|
|
|
/* reassign f, tree_eval could have moved it */
|
|
f = & fcall_list[curfcall];
|
|
} while ((argp = argp->rnode) != NULL);
|
|
}
|
|
|
|
stack_ptr = f->stack;
|
|
}
|
|
|
|
/* func_call --- call a function, call by reference for arrays */
|
|
|
|
NODE **stack_ptr;
|
|
|
|
static NODE *
|
|
func_call(NODE *tree)
|
|
{
|
|
register NODE *r;
|
|
NODE *name, *arg_list;
|
|
NODE *f;
|
|
jmp_buf volatile func_tag_stack;
|
|
jmp_buf volatile loop_tag_stack;
|
|
int volatile save_loop_tag_valid = FALSE;
|
|
NODE *save_ret_node;
|
|
extern NODE *ret_node;
|
|
|
|
/* tree->rnode is a Node_val giving function name */
|
|
/* tree->lnode is Node_expression_list of calling args. */
|
|
name = tree->rnode;
|
|
arg_list = tree->lnode;
|
|
|
|
/* retrieve function definition node */
|
|
if (tree->funcbody != NULL)
|
|
f = tree->funcbody;
|
|
else {
|
|
f = lookup(name->stptr);
|
|
if (f == NULL || f->type != Node_func)
|
|
fatal(_("function `%s' not defined"), name->stptr);
|
|
|
|
tree->funcbody = f; /* save for next call */
|
|
}
|
|
|
|
#ifdef FUNC_TRACE
|
|
fprintf(stderr, _("function %s called\n"), name->stptr);
|
|
#endif
|
|
push_args(f->lnode->param_cnt, arg_list, stack_ptr, name->stptr,
|
|
f->parmlist);
|
|
|
|
/*
|
|
* Execute function body, saving context, as a return statement
|
|
* will longjmp back here.
|
|
*
|
|
* Have to save and restore the loop_tag stuff so that a return
|
|
* inside a loop in a function body doesn't scrog any loops going
|
|
* on in the main program. We save the necessary info in variables
|
|
* local to this function so that function nesting works OK.
|
|
* We also only bother to save the loop stuff if we're in a loop
|
|
* when the function is called.
|
|
*/
|
|
if (loop_tag_valid) {
|
|
int junk = 0;
|
|
|
|
save_loop_tag_valid = (volatile int) loop_tag_valid;
|
|
PUSH_BINDING(loop_tag_stack, loop_tag, junk);
|
|
loop_tag_valid = FALSE;
|
|
}
|
|
PUSH_BINDING(func_tag_stack, func_tag, func_tag_valid);
|
|
save_ret_node = ret_node;
|
|
ret_node = Nnull_string; /* default return value */
|
|
INCREMENT(f->exec_count); /* count function calls */
|
|
if (setjmp(func_tag) == 0)
|
|
(void) interpret(f->rnode);
|
|
|
|
r = ret_node;
|
|
ret_node = (NODE *) save_ret_node;
|
|
RESTORE_BINDING(func_tag_stack, func_tag, func_tag_valid);
|
|
pop_fcall();
|
|
|
|
/* Restore the loop_tag stuff if necessary. */
|
|
if (save_loop_tag_valid) {
|
|
int junk = 0;
|
|
|
|
loop_tag_valid = (int) save_loop_tag_valid;
|
|
RESTORE_BINDING(loop_tag_stack, loop_tag, junk);
|
|
}
|
|
|
|
if ((r->flags & PERM) == 0)
|
|
r->flags |= TEMP;
|
|
return r;
|
|
}
|
|
|
|
#ifdef PROFILING
|
|
/* dump_fcall_stack --- print a backtrace of the awk function calls */
|
|
|
|
void
|
|
dump_fcall_stack(FILE *fp)
|
|
{
|
|
int i;
|
|
|
|
if (curfcall < 0)
|
|
return;
|
|
|
|
fprintf(fp, _("\n\t# Function Call Stack:\n\n"));
|
|
for (i = curfcall; i >= 0; i--)
|
|
fprintf(fp, "\t# %3d. %s\n", i+1, fcall_list[i].fname);
|
|
fprintf(fp, _("\t# -- main --\n"));
|
|
}
|
|
#endif /* PROFILING */
|
|
|
|
/*
|
|
* r_get_lhs:
|
|
* This returns a POINTER to a node pointer. get_lhs(ptr) is the current
|
|
* value of the var, or where to store the var's new value
|
|
*
|
|
* For the special variables, don't unref their current value if it's
|
|
* the same as the internal copy; perhaps the current one is used in
|
|
* a concatenation or some other expression somewhere higher up in the
|
|
* call chain. Ouch.
|
|
*/
|
|
|
|
NODE **
|
|
r_get_lhs(register NODE *ptr, Func_ptr *assign, int reference)
|
|
{
|
|
register NODE **aptr = NULL;
|
|
register NODE *n;
|
|
|
|
if (assign)
|
|
*assign = NULL; /* for safety */
|
|
if (ptr->type == Node_param_list) {
|
|
if ((ptr->flags & FUNC) != 0)
|
|
fatal(_("can't use function name `%s' as variable or array"), ptr->vname);
|
|
ptr = stack_ptr[ptr->param_cnt];
|
|
}
|
|
|
|
switch (ptr->type) {
|
|
case Node_var_array:
|
|
fatal(_("attempt to use array `%s' in a scalar context"),
|
|
array_vname(ptr));
|
|
|
|
/*
|
|
* The following goop ensures that uninitialized variables
|
|
* used as parameters eventually get their type set correctly
|
|
* to scalar (i.e., Node_var).
|
|
*/
|
|
case Node_array_ref:
|
|
if (ptr->orig_array->type == Node_var_array)
|
|
fatal(_("attempt to use array `%s' in a scalar context"),
|
|
array_vname(ptr));
|
|
ptr->orig_array->type = Node_var;
|
|
/* fall through */
|
|
case Node_var_new:
|
|
ptr->type = Node_var;
|
|
ptr->var_value = Nnull_string;
|
|
/* fall through */
|
|
case Node_var:
|
|
if (do_lint && reference && var_uninitialized(ptr))
|
|
lintwarn(_("reference to uninitialized variable `%s'"),
|
|
ptr->vname);
|
|
|
|
aptr = &(ptr->var_value);
|
|
#ifdef GAWKDEBUG
|
|
if (ptr->var_value->stref <= 0)
|
|
cant_happen();
|
|
#endif
|
|
break;
|
|
|
|
case Node_FIELDWIDTHS:
|
|
aptr = &(FIELDWIDTHS_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_FIELDWIDTHS;
|
|
break;
|
|
|
|
case Node_RS:
|
|
aptr = &(RS_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_RS;
|
|
break;
|
|
|
|
case Node_FS:
|
|
aptr = &(FS_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_FS;
|
|
break;
|
|
|
|
case Node_FNR:
|
|
if (FNR_node->var_value->numbr != FNR) {
|
|
unref(FNR_node->var_value);
|
|
FNR_node->var_value = make_number((AWKNUM) FNR);
|
|
}
|
|
aptr = &(FNR_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_FNR;
|
|
break;
|
|
|
|
case Node_NR:
|
|
if (NR_node->var_value->numbr != NR) {
|
|
unref(NR_node->var_value);
|
|
NR_node->var_value = make_number((AWKNUM) NR);
|
|
}
|
|
aptr = &(NR_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_NR;
|
|
break;
|
|
|
|
case Node_NF:
|
|
if (NF == -1 || NF_node->var_value->numbr != NF) {
|
|
if (NF == -1)
|
|
(void) get_field(HUGE-1, assign); /* parse record */
|
|
unref(NF_node->var_value);
|
|
NF_node->var_value = make_number((AWKNUM) NF);
|
|
}
|
|
aptr = &(NF_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_NF;
|
|
break;
|
|
|
|
case Node_IGNORECASE:
|
|
aptr = &(IGNORECASE_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_IGNORECASE;
|
|
break;
|
|
|
|
case Node_BINMODE:
|
|
aptr = &(BINMODE_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_BINMODE;
|
|
break;
|
|
|
|
case Node_LINT:
|
|
aptr = &(LINT_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_LINT;
|
|
break;
|
|
|
|
case Node_OFMT:
|
|
aptr = &(OFMT_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_OFMT;
|
|
break;
|
|
|
|
case Node_CONVFMT:
|
|
aptr = &(CONVFMT_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_CONVFMT;
|
|
break;
|
|
|
|
case Node_ORS:
|
|
aptr = &(ORS_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_ORS;
|
|
break;
|
|
|
|
case Node_OFS:
|
|
aptr = &(OFS_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_OFS;
|
|
break;
|
|
|
|
case Node_TEXTDOMAIN:
|
|
aptr = &(TEXTDOMAIN_node->var_value);
|
|
if (assign != NULL)
|
|
*assign = set_TEXTDOMAIN;
|
|
break;
|
|
|
|
case Node_field_spec:
|
|
{
|
|
int field_num;
|
|
|
|
n = tree_eval(ptr->lnode);
|
|
if (do_lint) {
|
|
if ((n->flags & NUMBER) == 0) {
|
|
lintwarn(_("attempt to field reference from non-numeric value"));
|
|
if (n->stlen == 0)
|
|
lintwarn(_("attempt to reference from null string"));
|
|
}
|
|
}
|
|
field_num = (int) force_number(n);
|
|
free_temp(n);
|
|
if (field_num < 0)
|
|
fatal(_("attempt to access field %d"), field_num);
|
|
if (field_num == 0 && field0_valid) { /* short circuit */
|
|
aptr = &fields_arr[0];
|
|
if (assign != NULL)
|
|
*assign = reset_record;
|
|
} else
|
|
aptr = get_field(field_num, assign);
|
|
if (do_lint && reference && (*aptr == Null_field || *aptr == Nnull_string))
|
|
lintwarn(_("reference to uninitialized field `$%d'"),
|
|
field_num);
|
|
break;
|
|
}
|
|
|
|
case Node_subscript:
|
|
n = get_array(ptr->lnode);
|
|
aptr = assoc_lookup(n, concat_exp(ptr->rnode), reference);
|
|
break;
|
|
|
|
case Node_builtin:
|
|
#if 1
|
|
/* in gawk for a while */
|
|
fatal(_("assignment is not allowed to result of builtin function"));
|
|
#else
|
|
/*
|
|
* This is how Christos at Deshaw did it.
|
|
* Does this buy us anything?
|
|
*/
|
|
if (ptr->builtin == NULL)
|
|
fatal(_("assignment is not allowed to result of builtin function"));
|
|
ptr->callresult = (*ptr->builtin)(ptr->subnode);
|
|
aptr = &ptr->callresult;
|
|
break;
|
|
#endif
|
|
|
|
default:
|
|
fprintf(stderr, "type = %s\n", nodetype2str(ptr->type));
|
|
fflush(stderr);
|
|
cant_happen();
|
|
}
|
|
return aptr;
|
|
}
|
|
|
|
/* match_op --- do ~ and !~ */
|
|
|
|
static NODE *
|
|
match_op(register NODE *tree)
|
|
{
|
|
register NODE *t1;
|
|
register Regexp *rp;
|
|
int i;
|
|
int match = TRUE;
|
|
|
|
if (tree->type == Node_nomatch)
|
|
match = FALSE;
|
|
if (tree->type == Node_regex)
|
|
t1 = *get_field(0, (Func_ptr *) 0);
|
|
else {
|
|
t1 = force_string(tree_eval(tree->lnode));
|
|
tree = tree->rnode;
|
|
}
|
|
rp = re_update(tree);
|
|
i = research(rp, t1->stptr, 0, t1->stlen, FALSE);
|
|
i = (i == -1) ^ (match == TRUE);
|
|
free_temp(t1);
|
|
return tmp_number((AWKNUM) i);
|
|
}
|
|
|
|
/* set_IGNORECASE --- update IGNORECASE as appropriate */
|
|
|
|
void
|
|
set_IGNORECASE()
|
|
{
|
|
static int warned = FALSE;
|
|
|
|
if ((do_lint || do_traditional) && ! warned) {
|
|
warned = TRUE;
|
|
lintwarn(_("`IGNORECASE' is a gawk extension"));
|
|
}
|
|
if (do_traditional)
|
|
IGNORECASE = FALSE;
|
|
else if ((IGNORECASE_node->var_value->flags & (STRING|STRCUR)) != 0) {
|
|
if ((IGNORECASE_node->var_value->flags & MAYBE_NUM) == 0)
|
|
IGNORECASE = (force_string(IGNORECASE_node->var_value)->stlen > 0);
|
|
else
|
|
IGNORECASE = (force_number(IGNORECASE_node->var_value) != 0.0);
|
|
} else if ((IGNORECASE_node->var_value->flags & (NUMCUR|NUMBER)) != 0)
|
|
IGNORECASE = (force_number(IGNORECASE_node->var_value) != 0.0);
|
|
else
|
|
IGNORECASE = FALSE; /* shouldn't happen */
|
|
|
|
set_RS(); /* set_RS() calls set_FS() if need be, for us */
|
|
}
|
|
|
|
/* set_BINMODE --- set translation mode (OS/2, DOS, others) */
|
|
|
|
void
|
|
set_BINMODE()
|
|
{
|
|
static int warned = FALSE;
|
|
char *p, *cp, save;
|
|
NODE *v;
|
|
int digits = FALSE;
|
|
|
|
if ((do_lint || do_traditional) && ! warned) {
|
|
warned = TRUE;
|
|
lintwarn(_("`BINMODE' is a gawk extension"));
|
|
}
|
|
if (do_traditional)
|
|
BINMODE = 0;
|
|
else if ((BINMODE_node->var_value->flags & STRING) != 0) {
|
|
v = BINMODE_node->var_value;
|
|
p = v->stptr;
|
|
save = p[v->stlen];
|
|
p[v->stlen] = '\0';
|
|
|
|
for (cp = p; *cp != '\0'; cp++) {
|
|
if (ISDIGIT(*cp)) {
|
|
digits = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (! digits || (BINMODE_node->var_value->flags & MAYBE_NUM) == 0) {
|
|
BINMODE = 0;
|
|
if (strcmp(p, "r") == 0)
|
|
BINMODE = 1;
|
|
else if (strcmp(p, "w") == 0)
|
|
BINMODE = 2;
|
|
else if (strcmp(p, "rw") == 0 || strcmp(p, "wr") == 0)
|
|
BINMODE = 3;
|
|
|
|
if (BINMODE == 0 && v->stlen != 0) {
|
|
/* arbitrary string, assume both */
|
|
BINMODE = 3;
|
|
warning("BINMODE: arbitary string value treated as \"rw\"");
|
|
}
|
|
} else
|
|
BINMODE = (int) force_number(BINMODE_node->var_value);
|
|
|
|
p[v->stlen] = save;
|
|
} else if ((BINMODE_node->var_value->flags & NUMBER) != 0)
|
|
BINMODE = (int) force_number(BINMODE_node->var_value);
|
|
else
|
|
BINMODE = 0; /* shouldn't happen */
|
|
}
|
|
|
|
/* set_OFS --- update OFS related variables when OFS assigned to */
|
|
|
|
void
|
|
set_OFS()
|
|
{
|
|
OFS = force_string(OFS_node->var_value)->stptr;
|
|
OFSlen = OFS_node->var_value->stlen;
|
|
OFS[OFSlen] = '\0';
|
|
}
|
|
|
|
/* set_ORS --- update ORS related variables when ORS assigned to */
|
|
|
|
void
|
|
set_ORS()
|
|
{
|
|
ORS = force_string(ORS_node->var_value)->stptr;
|
|
ORSlen = ORS_node->var_value->stlen;
|
|
ORS[ORSlen] = '\0';
|
|
}
|
|
|
|
/* fmt_ok --- is the conversion format a valid one? */
|
|
|
|
NODE **fmt_list = NULL;
|
|
static int fmt_ok P((NODE *n));
|
|
static int fmt_index P((NODE *n));
|
|
|
|
static int
|
|
fmt_ok(NODE *n)
|
|
{
|
|
NODE *tmp = force_string(n);
|
|
const char *p = tmp->stptr;
|
|
|
|
if (*p++ != '%')
|
|
return 0;
|
|
while (*p && strchr(" +-#", *p) != NULL) /* flags */
|
|
p++;
|
|
while (*p && ISDIGIT(*p)) /* width - %*.*g is NOT allowed */
|
|
p++;
|
|
if (*p == '\0' || (*p != '.' && ! ISDIGIT(*p)))
|
|
return 0;
|
|
if (*p == '.')
|
|
p++;
|
|
while (*p && ISDIGIT(*p)) /* precision */
|
|
p++;
|
|
if (*p == '\0' || strchr("efgEG", *p) == NULL)
|
|
return 0;
|
|
if (*++p != '\0')
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* fmt_index --- track values of OFMT and CONVFMT to keep semantics correct */
|
|
|
|
static int
|
|
fmt_index(NODE *n)
|
|
{
|
|
register int ix = 0;
|
|
static int fmt_num = 4;
|
|
static int fmt_hiwater = 0;
|
|
|
|
if (fmt_list == NULL)
|
|
emalloc(fmt_list, NODE **, fmt_num*sizeof(*fmt_list), "fmt_index");
|
|
(void) force_string(n);
|
|
while (ix < fmt_hiwater) {
|
|
if (cmp_nodes(fmt_list[ix], n) == 0)
|
|
return ix;
|
|
ix++;
|
|
}
|
|
/* not found */
|
|
n->stptr[n->stlen] = '\0';
|
|
if (do_lint && ! fmt_ok(n))
|
|
lintwarn(_("bad `%sFMT' specification `%s'"),
|
|
n == CONVFMT_node->var_value ? "CONV"
|
|
: n == OFMT_node->var_value ? "O"
|
|
: "", n->stptr);
|
|
|
|
if (fmt_hiwater >= fmt_num) {
|
|
fmt_num *= 2;
|
|
erealloc(fmt_list, NODE **, fmt_num * sizeof(*fmt_list), "fmt_index");
|
|
}
|
|
fmt_list[fmt_hiwater] = dupnode(n);
|
|
return fmt_hiwater++;
|
|
}
|
|
|
|
/* set_OFMT --- track OFMT correctly */
|
|
|
|
void
|
|
set_OFMT()
|
|
{
|
|
OFMTidx = fmt_index(OFMT_node->var_value);
|
|
OFMT = fmt_list[OFMTidx]->stptr;
|
|
}
|
|
|
|
/* set_CONVFMT --- track CONVFMT correctly */
|
|
|
|
void
|
|
set_CONVFMT()
|
|
{
|
|
CONVFMTidx = fmt_index(CONVFMT_node->var_value);
|
|
CONVFMT = fmt_list[CONVFMTidx]->stptr;
|
|
}
|
|
|
|
/* set_LINT --- update LINT as appropriate */
|
|
|
|
void
|
|
set_LINT()
|
|
{
|
|
#ifndef NO_LINT
|
|
int old_lint = do_lint;
|
|
|
|
if ((LINT_node->var_value->flags & (STRING|STRCUR)) != 0) {
|
|
if ((LINT_node->var_value->flags & MAYBE_NUM) == 0) {
|
|
const char *lintval;
|
|
size_t lintlen;
|
|
|
|
do_lint = (force_string(LINT_node->var_value)->stlen > 0);
|
|
lintval = LINT_node->var_value->stptr;
|
|
lintlen = LINT_node->var_value->stlen;
|
|
if (do_lint) {
|
|
do_lint = LINT_ALL;
|
|
if (lintlen == 5 && strncmp(lintval, "fatal", 5) == 0)
|
|
lintfunc = r_fatal;
|
|
else if (lintlen == 7 && strncmp(lintval, "invalid", 7) == 0)
|
|
do_lint = LINT_INVALID;
|
|
else
|
|
lintfunc = warning;
|
|
} else
|
|
lintfunc = warning;
|
|
} else {
|
|
if (force_number(LINT_node->var_value) != 0.0)
|
|
do_lint = LINT_ALL;
|
|
else
|
|
do_lint = FALSE;
|
|
lintfunc = warning;
|
|
}
|
|
} else if ((LINT_node->var_value->flags & (NUMCUR|NUMBER)) != 0) {
|
|
if (force_number(LINT_node->var_value) != 0.0)
|
|
do_lint = LINT_ALL;
|
|
else
|
|
do_lint = FALSE;
|
|
lintfunc = warning;
|
|
} else
|
|
do_lint = FALSE; /* shouldn't happen */
|
|
|
|
if (! do_lint)
|
|
lintfunc = warning;
|
|
|
|
/* explicitly use warning() here, in case lintfunc == r_fatal */
|
|
if (old_lint != do_lint && old_lint && do_lint == FALSE)
|
|
warning(_("turning off `--lint' due to assignment to `LINT'"));
|
|
#endif /* ! NO_LINT */
|
|
}
|
|
|
|
/* set_TEXTDOMAIN --- update TEXTDOMAIN variable when TEXTDOMAIN assigned to */
|
|
|
|
void
|
|
set_TEXTDOMAIN()
|
|
{
|
|
int len;
|
|
|
|
TEXTDOMAIN = force_string(TEXTDOMAIN_node->var_value)->stptr;
|
|
len = TEXTDOMAIN_node->var_value->stlen;
|
|
TEXTDOMAIN[len] = '\0';
|
|
/*
|
|
* Note: don't call textdomain(); this value is for
|
|
* the awk program, not for gawk itself.
|
|
*/
|
|
}
|
|
|
|
/*
|
|
* assign_val --- do mechanics of assignment, for calling from multiple
|
|
* places.
|
|
*/
|
|
|
|
NODE *
|
|
assign_val(NODE **lhs_p, NODE *rhs)
|
|
{
|
|
if (rhs != *lhs_p) {
|
|
/*
|
|
* Since we know that the nodes are different,
|
|
* we can do the unref() before the dupnode().
|
|
*/
|
|
unref(*lhs_p);
|
|
*lhs_p = dupnode(rhs);
|
|
}
|
|
return *lhs_p;
|
|
}
|
|
|
|
/* update_ERRNO --- update the value of ERRNO */
|
|
|
|
void
|
|
update_ERRNO()
|
|
{
|
|
char *cp;
|
|
|
|
cp = strerror(errno);
|
|
cp = gettext(cp);
|
|
unref(ERRNO_node->var_value);
|
|
ERRNO_node->var_value = make_string(cp, strlen(cp));
|
|
}
|
|
|
|
/* comp_func --- array index comparison function for qsort */
|
|
|
|
static int
|
|
comp_func(const void *p1, const void *p2)
|
|
{
|
|
size_t len1, len2;
|
|
const char *str1, *str2;
|
|
const NODE *t1, *t2;
|
|
int cmp1;
|
|
|
|
t1 = *((const NODE *const *) p1);
|
|
t2 = *((const NODE *const *) p2);
|
|
|
|
/*
|
|
t1 = force_string(t1);
|
|
t2 = force_string(t2);
|
|
*/
|
|
len1 = t1->ahname_len;
|
|
str1 = t1->ahname_str;
|
|
|
|
len2 = t2->ahname_len;
|
|
str2 = t2->ahname_str;
|
|
|
|
/* Array indexes are strings, compare as such, always! */
|
|
cmp1 = memcmp(str1, str2, len1 < len2 ? len1 : len2);
|
|
/* if prefixes are equal, size matters */
|
|
return (cmp1 != 0 ? cmp1 :
|
|
len1 < len2 ? -1 : (len1 > len2));
|
|
}
|