NetBSD/sys/dev/auconv.c
kent 0de9e471b6 add the following four functions:
extern int auconv_set_converter(const struct audio_format *, int,
				int, struct audio_params *, int);
extern int auconv_create_encodings(const struct audio_format *, int,
				   struct audio_encoding_set **);
extern int auconv_delete_encodings(struct audio_encoding_set *);
extern int auconv_query_encoding(const struct audio_encoding_set *,
				 audio_encoding_t *);

These are helper functions for implementing audio_hw_if::set_params() and
audio_hw_if::query_encodings().
2004-11-13 08:08:22 +00:00

1033 lines
27 KiB
C

/* $NetBSD: auconv.c,v 1.11 2004/11/13 08:08:22 kent Exp $ */
/*
* Copyright (c) 1996 The NetBSD Foundation, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the Computer Systems
* Engineering Group at Lawrence Berkeley Laboratory.
* 4. Neither the name of the University nor of the Laboratory may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: auconv.c,v 1.11 2004/11/13 08:08:22 kent Exp $");
#include <sys/types.h>
#include <sys/audioio.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/null.h>
#include <sys/systm.h>
#include <dev/audio_if.h>
#include <dev/auconv.h>
#include <dev/mulaw.h>
#include <machine/limits.h>
#ifndef _KERNEL
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#endif
#include <aurateconv.h>
#include <mulaw.h>
/* #define AUCONV_DEBUG */
#if NAURATECONV > 0
static int auconv_rateconv_supportable(u_int, u_int, u_int);
static int auconv_rateconv_check_channels(const struct audio_format *, int,
int, struct audio_params *);
static int auconv_rateconv_check_rates(const struct audio_format *, int,
int, struct audio_params *);
#endif
#ifdef AUCONV_DEBUG
static void auconv_dump_formats(const struct audio_format *, int);
#endif
static int auconv_exact_match(const struct audio_format *, int, int,
const struct audio_params *);
static u_int auconv_normalize_encoding(u_int, u_int);
static int auconv_is_supported_rate(const struct audio_format *, u_long);
static int auconv_add_encoding(int, int, int, struct audio_encoding_set **,
int *);
#ifdef _KERNEL
#define AUCONV_MALLOC(size) malloc(size, M_DEVBUF, M_NOWAIT)
#define AUCONV_REALLOC(p, size) realloc(p, size, M_DEVBUF, M_NOWAIT)
#define AUCONV_FREE(p) free(p, M_DEVBUF)
#else
#define AUCONV_MALLOC(size) malloc(size)
#define AUCONV_REALLOC(p, size) realloc(p, size)
#define AUCONV_FREE(p) free(p)
#define FALSE 0
#define TRUE 1
#endif
struct audio_encoding_set {
int size;
audio_encoding_t items[1];
};
#define ENCODING_SET_SIZE(n) (offsetof(struct audio_encoding_set, items) \
+ sizeof(audio_encoding_t) * (n))
struct conv_table {
u_int hw_encoding;
u_int hw_precision;
u_int hw_subframe;
void (*play_conv)(void *, u_char *, int);
void (*rec_conv)(void *, u_char *, int);
int factor;
};
/*
* SLINEAR-16 or SLINEAR-24 should precede in a table because
* aurateconv supports only SLINEAR.
*/
static const struct conv_table s8_table[] = {
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
linear8_to_linear16_le, linear16_to_linear8_le, 2},
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
linear8_to_linear16_be, linear16_to_linear8_be, 2},
{AUDIO_ENCODING_ULINEAR_LE, 8, 8,
change_sign8, change_sign8, 1},
{0, 0, 0, NULL, NULL, 0}};
static const struct conv_table u8_table[] = {
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
ulinear8_to_slinear16_le, slinear16_to_ulinear8_le, 2},
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
ulinear8_to_slinear16_be, slinear16_to_ulinear8_be, 2},
{AUDIO_ENCODING_SLINEAR_LE, 8, 8,
change_sign8, change_sign8, 1},
{AUDIO_ENCODING_ULINEAR_LE, 16, 16,
linear8_to_linear16_le, linear16_to_linear8_le, 2},
{AUDIO_ENCODING_ULINEAR_BE, 16, 16,
linear8_to_linear16_be, linear16_to_linear8_be, 2},
{0, 0, 0, NULL, NULL, 0}};
static const struct conv_table s16le_table[] = {
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
swap_bytes, swap_bytes, 1},
{AUDIO_ENCODING_ULINEAR_LE, 16, 16,
change_sign16_le, change_sign16_le, 1},
{AUDIO_ENCODING_ULINEAR_BE, 16, 16,
swap_bytes_change_sign16_be, change_sign16_swap_bytes_be, 1},
{0, 0, 0, NULL, NULL, 0}};
static const struct conv_table s16be_table[] = {
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
swap_bytes, swap_bytes, 1},
{AUDIO_ENCODING_ULINEAR_BE, 16, 16,
change_sign16_be, change_sign16_be, 1},
{AUDIO_ENCODING_ULINEAR_LE, 16, 16,
swap_bytes_change_sign16_le, change_sign16_swap_bytes_le, 1},
{0, 0, 0, NULL, NULL, 0}};
static const struct conv_table u16le_table[] = {
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
change_sign16_le, change_sign16_le, 1},
{AUDIO_ENCODING_ULINEAR_BE, 16, 16,
swap_bytes, swap_bytes, 1},
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
swap_bytes_change_sign16_be, change_sign16_swap_bytes_be, 1},
{0, 0, 0, NULL, NULL, 0}};
static const struct conv_table u16be_table[] = {
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
change_sign16_be, change_sign16_be, 1},
{AUDIO_ENCODING_ULINEAR_LE, 16, 16,
swap_bytes, swap_bytes, 1},
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
swap_bytes_change_sign16_le, change_sign16_swap_bytes_le, 1},
{0, 0, 0, NULL, NULL, 0}};
#if NMULAW > 0
static const struct conv_table mulaw_table[] = {
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
mulaw_to_slinear16_le, slinear16_to_mulaw_le, 2},
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
mulaw_to_slinear16_be, slinear16_to_mulaw_be, 2},
{AUDIO_ENCODING_ULINEAR_LE, 16, 16,
mulaw_to_ulinear16_le, ulinear16_to_mulaw_le, 2},
{AUDIO_ENCODING_ULINEAR_BE, 16, 16,
mulaw_to_ulinear16_be, ulinear16_to_mulaw_be, 2},
{AUDIO_ENCODING_SLINEAR_LE, 8, 8,
mulaw_to_slinear8, slinear8_to_mulaw, 1},
{AUDIO_ENCODING_ULINEAR_LE, 8, 8,
mulaw_to_ulinear8, ulinear8_to_mulaw, 1},
{0, 0, 0, NULL, NULL, 0}};
static const struct conv_table alaw_table[] = {
{AUDIO_ENCODING_SLINEAR_LE, 16, 16,
alaw_to_slinear16_le, slinear16_to_alaw_le, 2},
{AUDIO_ENCODING_SLINEAR_BE, 16, 16,
alaw_to_slinear16_be, slinear16_to_alaw_be, 2},
{AUDIO_ENCODING_ULINEAR_LE, 16, 16,
alaw_to_ulinear16_le, ulinear16_to_alaw_le, 2},
{AUDIO_ENCODING_ULINEAR_BE, 16, 16,
alaw_to_ulinear16_be, ulinear16_to_alaw_be, 2},
{AUDIO_ENCODING_SLINEAR_LE, 8, 8,
alaw_to_slinear8, slinear8_to_alaw, 1},
{AUDIO_ENCODING_ULINEAR_LE, 8, 8,
alaw_to_ulinear8, ulinear8_to_alaw, 1},
{0, 0, 0, NULL, NULL, 0}};
#endif
void
change_sign8(void *v, u_char *p, int cc)
{
while (--cc >= 0) {
*p ^= 0x80;
++p;
}
}
void
change_sign16_le(void *v, u_char *p, int cc)
{
while ((cc -= 2) >= 0) {
p[1] ^= 0x80;
p += 2;
}
}
void
change_sign16_be(void *v, u_char *p, int cc)
{
while ((cc -= 2) >= 0) {
p[0] ^= 0x80;
p += 2;
}
}
void
swap_bytes(void *v, u_char *p, int cc)
{
u_char t;
while ((cc -= 2) >= 0) {
t = p[0];
p[0] = p[1];
p[1] = t;
p += 2;
}
}
void
swap_bytes_change_sign16_le(void *v, u_char *p, int cc)
{
u_char t;
while ((cc -= 2) >= 0) {
t = p[1];
p[1] = p[0] ^ 0x80;
p[0] = t;
p += 2;
}
}
void
swap_bytes_change_sign16_be(void *v, u_char *p, int cc)
{
u_char t;
while ((cc -= 2) >= 0) {
t = p[0];
p[0] = p[1] ^ 0x80;
p[1] = t;
p += 2;
}
}
void
change_sign16_swap_bytes_le(void *v, u_char *p, int cc)
{
swap_bytes_change_sign16_be(v, p, cc);
}
void
change_sign16_swap_bytes_be(void *v, u_char *p, int cc)
{
swap_bytes_change_sign16_le(v, p, cc);
}
void
linear8_to_linear16_le(void *v, u_char *p, int cc)
{
u_char *q = p;
p += cc;
q += cc * 2;
while (--cc >= 0) {
q -= 2;
q[1] = *--p;
q[0] = 0;
}
}
void
linear8_to_linear16_be(void *v, u_char *p, int cc)
{
u_char *q = p;
p += cc;
q += cc * 2;
while (--cc >= 0) {
q -= 2;
q[0] = *--p;
q[1] = 0;
}
}
void
linear16_to_linear8_le(void *v, u_char *p, int cc)
{
u_char *q = p;
while (--cc >= 0) {
*q++ = p[1];
p += 2;
}
}
void
linear16_to_linear8_be(void *v, u_char *p, int cc)
{
u_char *q = p;
while (--cc >= 0) {
*q++ = p[0];
p += 2;
}
}
void
ulinear8_to_slinear16_le(void *v, u_char *p, int cc)
{
u_char *q = p;
p += cc;
q += cc * 2;
while (--cc >= 0) {
q -= 2;
q[1] = *--p ^ 0x80;
q[0] = 0;
}
}
void
ulinear8_to_slinear16_be(void *v, u_char *p, int cc)
{
u_char *q = p;
p += cc;
q += cc * 2;
while (--cc >= 0) {
q -= 2;
q[0] = *--p ^ 0x80;
q[1] = 0;
}
}
void
slinear16_to_ulinear8_le(void *v, u_char *p, int cc)
{
u_char *q = p;
while (--cc >= 0) {
*q++ = p[1] ^ 0x80;
p += 2;
}
}
void
slinear16_to_ulinear8_be(void *v, u_char *p, int cc)
{
u_char *q = p;
while (--cc >= 0) {
*q++ = p[0] ^ 0x80;
p += 2;
}
}
/**
* Set appropriate parameters in `param,' and return the index in
* the hardware capability array `formats.'
*
* @param formats [IN] An array of formats which a hardware can support.
* @param nformats [IN] The number of elements of the array.
* @param mode [IN] Either AUMODE_PLAY or AUMODE_RECORD.
* @param param [IN/OUT] Requested format. param->sw_code may be set.
* @param rateconv [IN] TRUE if aurateconv may be used.
* @return The index of selected audio_format entry. -1 if the device
* can not support the specified param.
*/
int
auconv_set_converter(const struct audio_format *formats, int nformats,
int mode, struct audio_params *param, int rateconv)
{
struct audio_params work;
const struct conv_table *table;
int enc;
int i, j;
#ifdef AUCONV_DEBUG
auconv_dump_formats(formats, nformats);
#endif
work = *param;
work.sw_code = NULL;
work.factor = 1;
work.factor_denom = 1;
work.hw_sample_rate = work.sample_rate;
work.hw_encoding = work.encoding;
work.hw_precision = work.precision;
/* work.hw_subframe = work.precision; */
work.hw_channels = work.channels;
enc = auconv_normalize_encoding(work.encoding, work.precision);
/* check support by native format */
i = auconv_exact_match(formats, nformats, mode, &work);
if (i >= 0) {
*param = work;
return i;
}
work = *param;
#if NAURATECONV > 0
/* native format with aurateconv */
if (rateconv
&& auconv_rateconv_supportable(enc, work.hw_precision,
work.hw_precision)) {
i = auconv_rateconv_check_channels(formats, nformats,
mode, &work);
if (i >= 0) {
*param = work;
return i;
}
}
#endif
/* check for emulation */
table = NULL;
switch (enc) {
case AUDIO_ENCODING_SLINEAR_LE:
if (param->precision == 8)
table = s8_table;
else if (param->precision == 16)
table = s16le_table;
break;
case AUDIO_ENCODING_SLINEAR_BE:
if (param->precision == 8)
table = s8_table;
else if (param->precision == 16)
table = s16be_table;
break;
case AUDIO_ENCODING_ULINEAR_LE:
if (param->precision == 8)
table = u8_table;
else if (param->precision == 16)
table = u16le_table;
break;
case AUDIO_ENCODING_ULINEAR_BE:
if (param->precision == 8)
table = u8_table;
else if (param->precision == 16)
table = u16be_table;
break;
#if NMULAW > 0
case AUDIO_ENCODING_ULAW:
table = mulaw_table;
break;
case AUDIO_ENCODING_ALAW:
table = alaw_table;
break;
#endif
}
if (table == NULL)
return -1;
work = *param;
for (j = 0; table[j].hw_precision != 0; j++) {
work.hw_encoding = table[j].hw_encoding;
work.hw_precision = table[j].hw_precision;
/* work.hw_subframe = table[j].hw_subframe; */
i = auconv_exact_match(formats, nformats, mode, &work);
if (i >= 0) {
*param = work;
param->sw_code = mode == AUMODE_PLAY
? table[j].play_conv : table[j].rec_conv;
param->factor = table[j].factor;
param->factor_denom = 1;
return i;
}
}
/* not found */
#if NAURATECONV > 0
/* emulation with aurateconv */
if (!rateconv)
return -1;
work = *param;
for (j = 0; table[j].hw_precision != 0; j++) {
if (!auconv_rateconv_supportable(table[j].hw_encoding,
table[j].hw_precision,
table[j].hw_subframe))
continue;
work.hw_encoding = table[j].hw_encoding;
work.hw_precision = table[j].hw_precision;
/* work.hw_subframe = table[j].hw_subframe; */
i = auconv_rateconv_check_channels(formats, nformats,
mode, &work);
if (i >= 0) {
*param = work;
param->sw_code = mode == AUMODE_PLAY
? table[j].play_conv : table[j].rec_conv;
param->factor = table[j].factor;
param->factor_denom = 1;
return i;
}
}
#endif
return -1;
}
#if NAURATECONV > 0
static int
auconv_rateconv_supportable(u_int encoding, u_int precision, u_int subframe)
{
if (encoding != AUDIO_ENCODING_SLINEAR_LE
&& encoding != AUDIO_ENCODING_SLINEAR_BE)
return FALSE;
if (precision != 16 && precision != 24)
return FALSE;
if (precision != subframe)
return FALSE;
return TRUE;
}
static int
auconv_rateconv_check_channels(const struct audio_format *formats, int nformats,
int mode, struct audio_params *param)
{
int ind, n;
/* check for the specified number of channels */
ind = auconv_rateconv_check_rates(formats ,nformats, mode, param);
if (ind >= 0)
return ind;
/* check for larger numbers */
for (n = param->channels + 1; n <= AUDIO_MAX_CHANNELS; n++) {
param->hw_channels = n;
ind = auconv_rateconv_check_rates(formats, nformats,
mode, param);
if (ind >= 0)
return ind;
}
/* check for stereo:monaural conversion */
if (param->channels == 2) {
param->hw_channels = 1;
ind = auconv_rateconv_check_rates(formats, nformats,
mode, param);
if (ind >= 0)
return ind;
}
param->hw_channels = param->channels;
return -1;
}
static int
auconv_rateconv_check_rates(const struct audio_format *formats, int nformats,
int mode, struct audio_params *param)
{
int ind, i, j, enc, f_enc;
u_long rate, minrate, maxrate;
/* exact match */
ind = auconv_exact_match(formats, nformats, mode, param);
if (ind >= 0)
return ind;
/* determine min/max of specified encoding/precision/channels */
minrate = ULONG_MAX;
maxrate = 0;
enc = auconv_normalize_encoding(param->hw_encoding,
param->hw_precision);
for (i = 0; i < nformats; i++) {
if (!AUFMT_IS_VALID(&formats[i]))
continue;
if ((formats[i].mode & mode) == 0)
continue;
f_enc = auconv_normalize_encoding(formats[i].encoding,
formats[i].precision);
if (f_enc != enc)
continue;
if (formats[i].precision != param->hw_precision)
continue;
if (formats[i].subframe_size != param->hw_precision /*hw_subframe*/)
continue;
if (formats[i].channels != param->hw_channels)
continue;
if (formats[i].frequency_type == 0) {
if (formats[i].frequency[0] < minrate)
minrate = formats[i].frequency[0];
if (formats[i].frequency[1] > maxrate)
maxrate = formats[i].frequency[1];
} else {
for (j = 0; j < formats[i].frequency_type; j++) {
if (formats[i].frequency[j] < minrate)
minrate = formats[i].frequency[j];
if (formats[i].frequency[j] > maxrate)
maxrate = formats[i].frequency[j];
}
}
}
if (maxrate == 0)
return -1;
/* try multiples of sample_rate */
for (i = 2; (rate = param->sample_rate * i) <= maxrate; i++) {
param->hw_sample_rate = rate;
ind = auconv_exact_match(formats, nformats, mode, param);
if (ind >= 0)
return ind;
}
param->hw_sample_rate = param->sample_rate >= minrate
? maxrate : minrate;
ind = auconv_exact_match(formats, nformats, mode, param);
if (ind >= 0)
return ind;
param->hw_sample_rate = param->sample_rate;
return -1;
}
#endif /* NAURATECONV */
#ifdef AUCONV_DEBUG
static void
auconv_dump_formats(const struct audio_format *formats, int nformats)
{
static const char *encoding_names[] = {
"none", AudioEmulaw, AudioEalaw, "pcm16",
"pcm8", AudioEadpcm, AudioEslinear_le, AudioEslinear_be,
AudioEulinear_le, AudioEulinear_be,
AudioEslinear, AudioEulinear,
AudioEmpeg_l1_stream, AudioEmpeg_l1_packets,
AudioEmpeg_l1_system, AudioEmpeg_l2_stream,
AudioEmpeg_l2_packets, AudioEmpeg_l2_system
};
const struct audio_format *f;
int i, j;
for (i = 0; i < nformats; i++) {
f = &formats[i];
printf("[%2d]: mode=", i);
if (!AUFMT_IS_VALID(f)) {
printf("INVALID");
} else if (f->mode == AUMODE_PLAY) {
printf("PLAY");
} else if (f->mode == AUMODE_RECORD) {
printf("RECORD");
} else if (f->mode == (AUMODE_PLAY | AUMODE_RECORD)) {
printf("PLAY|RECORD");
} else {
printf("0x%x", f->mode);
}
printf(" enc=%s", encoding_names[f->encoding]);
printf(" %u/%ubit", f->precision, f->subframe_size);
printf(" %uch", f->channels);
printf(" channel_mask=");
if (f->channel_mask == AUFMT_MONAURAL) {
printf("MONAURAL");
} else if (f->channel_mask == AUFMT_STEREO) {
printf("STEREO");
} else if (f->channel_mask == AUFMT_SURROUND4) {
printf("SURROUND4");
} else if (f->channel_mask == AUFMT_DOLBY_5_1) {
printf("DOLBY5.1");
} else {
printf("0x%x", f->channel_mask);
}
if (f->frequency_type == 0) {
printf(" %luHz-%luHz", f->frequency[0],
f->frequency[1]);
} else {
printf(" %luHz", f->frequency[0]);
for (j = 1; j < f->frequency_type; j++)
printf(",%luHz", f->frequency[j]);
}
printf("\n");
}
}
#endif /* AUCONV_DEBUG */
/**
* a sub-routine for auconv_set_converter()
*/
static int
auconv_exact_match(const struct audio_format *formats, int nformats,
int mode, const struct audio_params *param)
{
int i, enc, f_enc;
enc = auconv_normalize_encoding(param->hw_encoding,
param->hw_precision);
for (i = 0; i < nformats; i++) {
if (!AUFMT_IS_VALID(&formats[i]))
continue;
if ((formats[i].mode & mode) == 0)
continue;
f_enc = auconv_normalize_encoding(formats[i].encoding,
formats[i].precision);
if (f_enc != enc)
continue;
/**
* XXX we need encoding-dependent check.
* XXX Is to check precision/channels meaningful for
* MPEG encodings?
*/
if (formats[i].precision != param->hw_precision)
continue;
if (formats[i].subframe_size != param->hw_precision /*hw_subframe*/)
continue;
if (formats[i].channels != param->hw_channels)
continue;
if (!auconv_is_supported_rate(&formats[i],
param->hw_sample_rate))
continue;
return i;
}
return -1;
}
/**
* a sub-routine for auconv_set_converter()
*/
static u_int
auconv_normalize_encoding(u_int encoding, u_int precision)
{
int enc;
enc = encoding;
#if BYTE_ORDER == LITTLE_ENDIAN
if (enc == AUDIO_ENCODING_SLINEAR)
enc = AUDIO_ENCODING_SLINEAR_LE;
else if (enc == AUDIO_ENCODING_ULINEAR)
enc = AUDIO_ENCODING_ULINEAR_LE;
#else
if (enc == AUDIO_ENCODING_SLINEAR)
enc = AUDIO_ENCODING_SLINEAR_BE;
else if (enc == AUDIO_ENCODING_ULINEAR)
enc = AUDIO_ENCODING_ULINEAR_BE;
#endif
if (precision == 8 && enc == AUDIO_ENCODING_SLINEAR_BE)
enc = AUDIO_ENCODING_SLINEAR_LE;
if (precision == 8 && enc == AUDIO_ENCODING_ULINEAR_BE)
enc = AUDIO_ENCODING_ULINEAR_LE;
return enc;
}
/**
* a sub-routine for auconv_set_converter()
*/
static int
auconv_is_supported_rate(const struct audio_format *format, u_long rate)
{
u_int i;
if (format->frequency_type == 0) {
return format->frequency[0] <= rate
&& rate <= format->frequency[1];
}
for (i = 0; i < format->frequency_type; i++) {
if (format->frequency[i] == rate)
return TRUE;
}
return FALSE;
}
/**
* Create an audio_encoding_set besed on hardware capability represented
* by audio_format.
*
* Usage:
* foo_attach(...) {
* :
* if (auconv_create_encodings(formats, nformats,
* &sc->sc_encodings) != 0) {
* // attach failure
* }
*
* @param formats [IN] An array of formats which a hardware can support.
* @param nformats [IN] The number of elements of the array.
* @param encodings [OUT] receives an address of an audio_encoding_set.
* @return errno; 0 for success.
*/
int
auconv_create_encodings(const struct audio_format *formats, int nformats,
struct audio_encoding_set **encodings)
{
struct audio_encoding_set *buf;
int capacity;
int i;
int err;
#define ADD_ENCODING(enc, prec, flags) do { \
err = auconv_add_encoding(enc, prec, flags, &buf, &capacity); \
if (err != 0) goto err_exit; \
} while (/*CONSTCOND*/0)
capacity = 10;
buf = AUCONV_MALLOC(ENCODING_SET_SIZE(capacity));
buf->size = 0;
for (i = 0; i < nformats; i++) {
if (!AUFMT_IS_VALID(&formats[i]))
continue;
switch (formats[i].encoding) {
case AUDIO_ENCODING_SLINEAR_LE:
ADD_ENCODING(formats[i].encoding,
formats[i].precision, 0);
ADD_ENCODING(AUDIO_ENCODING_SLINEAR_BE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ULINEAR_LE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ULINEAR_BE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
#if NMULAW > 0
if (formats[i].precision == 8
|| formats[i].precision == 16) {
ADD_ENCODING(AUDIO_ENCODING_ULAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ALAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
}
#endif
break;
case AUDIO_ENCODING_SLINEAR_BE:
ADD_ENCODING(formats[i].encoding,
formats[i].precision, 0);
ADD_ENCODING(AUDIO_ENCODING_SLINEAR_LE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ULINEAR_LE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ULINEAR_BE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
#if NMULAW > 0
if (formats[i].precision == 8
|| formats[i].precision == 16) {
ADD_ENCODING(AUDIO_ENCODING_ULAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ALAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
}
#endif
break;
case AUDIO_ENCODING_ULINEAR_LE:
ADD_ENCODING(formats[i].encoding,
formats[i].precision, 0);
ADD_ENCODING(AUDIO_ENCODING_SLINEAR_BE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_SLINEAR_LE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ULINEAR_BE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
#if NMULAW > 0
if (formats[i].precision == 8
|| formats[i].precision == 16) {
ADD_ENCODING(AUDIO_ENCODING_ULAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ALAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
}
#endif
break;
case AUDIO_ENCODING_ULINEAR_BE:
ADD_ENCODING(formats[i].encoding,
formats[i].precision, 0);
ADD_ENCODING(AUDIO_ENCODING_SLINEAR_BE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ULINEAR_LE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_SLINEAR_LE,
formats[i].precision,
AUDIO_ENCODINGFLAG_EMULATED);
#if NMULAW > 0
if (formats[i].precision == 8
|| formats[i].precision == 16) {
ADD_ENCODING(AUDIO_ENCODING_ULAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
ADD_ENCODING(AUDIO_ENCODING_ALAW, 8,
AUDIO_ENCODINGFLAG_EMULATED);
}
#endif
break;
case AUDIO_ENCODING_ULAW:
case AUDIO_ENCODING_ALAW:
case AUDIO_ENCODING_ADPCM:
case AUDIO_ENCODING_MPEG_L1_STREAM:
case AUDIO_ENCODING_MPEG_L1_PACKETS:
case AUDIO_ENCODING_MPEG_L1_SYSTEM:
case AUDIO_ENCODING_MPEG_L2_STREAM:
case AUDIO_ENCODING_MPEG_L2_PACKETS:
case AUDIO_ENCODING_MPEG_L2_SYSTEM:
ADD_ENCODING(formats[i].encoding,
formats[i].precision, 0);
break;
case AUDIO_ENCODING_SLINEAR:
case AUDIO_ENCODING_ULINEAR:
case AUDIO_ENCODING_LINEAR:
case AUDIO_ENCODING_LINEAR8:
default:
printf("%s: invalid encoding value "
"for audio_format: %d\n",
__func__, formats[i].encoding);
break;
}
}
*encodings = buf;
return 0;
err_exit:
if (buf != NULL)
AUCONV_FREE(buf);
*encodings = NULL;
return err;
}
/**
* a sub-routine for auconv_create_encodings()
*/
static int
auconv_add_encoding(int enc, int prec, int flags,
struct audio_encoding_set **buf, int *capacity)
{
static const char *encoding_names[] = {
NULL, AudioEmulaw, AudioEalaw, NULL,
NULL, AudioEadpcm, AudioEslinear_le, AudioEslinear_be,
AudioEulinear_le, AudioEulinear_be,
AudioEslinear, AudioEulinear,
AudioEmpeg_l1_stream, AudioEmpeg_l1_packets,
AudioEmpeg_l1_system, AudioEmpeg_l2_stream,
AudioEmpeg_l2_packets, AudioEmpeg_l2_system
};
struct audio_encoding_set *set;
struct audio_encoding_set *new_buf;
audio_encoding_t *e;
int i;
set = *buf;
/* already has the same encoding? */
e = set->items;
for (i = 0; i < set->size; i++, e++) {
if (e->encoding == enc && e->precision == prec) {
/* overwrite EMULATED flag */
if ((e->flags & AUDIO_ENCODINGFLAG_EMULATED)
&& (flags & AUDIO_ENCODINGFLAG_EMULATED) == 0) {
e->flags &= ~AUDIO_ENCODINGFLAG_EMULATED;
}
return 0;
}
}
/* We don't have the specified one. */
if (set->size >= *capacity) {
new_buf = AUCONV_REALLOC(set,
ENCODING_SET_SIZE(*capacity + 10));
if (new_buf == NULL)
return ENOMEM;
*buf = new_buf;
set = new_buf;
*capacity += 10;
}
e = &set->items[set->size];
e->index = 0;
strlcpy(e->name, encoding_names[enc], MAX_AUDIO_DEV_LEN);
e->encoding = enc;
e->precision = prec;
e->flags = flags;
set->size += 1;
return 0;
}
/**
* Delete an audio_encoding_set created by auconv_create_encodings().
*
* Usage:
* foo_detach(...) {
* :
* auconv_delete_encodings(sc->sc_encodings);
* :
* }
*
* @param encodings [IN] An audio_encoding_set which was created by
* auconv_create_encodings().
* @return errno; 0 for success.
*/
int auconv_delete_encodings(struct audio_encoding_set *encodings)
{
if (encodings != NULL)
AUCONV_FREE(encodings);
return 0;
}
/**
* Copy the element specified by aep->index.
*
* Usage:
* int foo_query_encoding(void *v, audio_encoding_t *aep) {
* struct foo_softc *sc = (struct foo_softc *)v;
* return auconv_query_encoding(sc->sc_encodings, aep);
* }
*
* @param encodings [IN] An audio_encoding_set created by
* auconv_create_encodings().
* @param aep [IN/OUT] resultant audio_encoding_t.
*/
int
auconv_query_encoding(const struct audio_encoding_set *encodings,
audio_encoding_t *aep)
{
if (aep->index >= encodings->size)
return EINVAL;
strlcpy(aep->name, encodings->items[aep->index].name,
MAX_AUDIO_DEV_LEN);
aep->encoding = encodings->items[aep->index].encoding;
aep->precision = encodings->items[aep->index].precision;
aep->flags = encodings->items[aep->index].flags;
return 0;
}