NetBSD/sys/arch/hppa/spmath/impys.S

317 lines
10 KiB
ArmAsm

/* $NetBSD: impys.S,v 1.1 2002/06/05 01:04:25 fredette Exp $ */
/* $OpenBSD: impys.S,v 1.5 2001/03/29 03:58:18 mickey Exp $ */
/*
* Copyright 1996 1995 by Open Software Foundation, Inc.
* All Rights Reserved
*
* Permission to use, copy, modify, and distribute this software and
* its documentation for any purpose and without fee is hereby granted,
* provided that the above copyright notice appears in all copies and
* that both the copyright notice and this permission notice appear in
* supporting documentation.
*
* OSF DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE.
*
* IN NO EVENT SHALL OSF BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN ACTION OF CONTRACT,
* NEGLIGENCE, OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
* WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
/*
* pmk1.1
*/
/*
* (c) Copyright 1986 HEWLETT-PACKARD COMPANY
*
* To anyone who acknowledges that this file is provided "AS IS"
* without any express or implied warranty:
* permission to use, copy, modify, and distribute this file
* for any purpose is hereby granted without fee, provided that
* the above copyright notice and this notice appears in all
* copies, and that the name of Hewlett-Packard Company not be
* used in advertising or publicity pertaining to distribution
* of the software without specific, written prior permission.
* Hewlett-Packard Company makes no representations about the
* suitability of this software for any purpose.
*/
#include <machine/asm.h>
/****************************************************************************
*
* Implement an integer multiply routine for 32-bit operands and 64-bit product
* with operand values of zero (multiplicand only) and -2**31 treated specially.
* The algorithm uses the absolute value of the multiplier, four bits at a time,
* from right to left, to generate partial product. Execution speed is more
* important than program size in this implementation.
*
***************************************************************************/
/*
* Definitions - General registers
*/
gr0 .equ 0 /* General register zero */
pu .equ 3 /* upper part of product */
pl .equ 4 /* lower part of product */
op2 .equ 4 /* multiplier */
op1 .equ 5 /* multiplicand */
cnt .equ 6 /* count in multiply */
brindex .equ 7 /* index into the br. table */
sign .equ 8 /* sign of product */
pc .equ 9 /* carry bit of product, = 00...01 */
pm .equ 10 /* value of -1 used in shifting */
.text
ENTRY(impys,32)
stws,ma pu,4(sp) ; save registers on stack
stws,ma pl,4(sp) ; save registers on stack
stws,ma op1,4(sp) ; save registers on stack
stws,ma cnt,4(sp) ; save registers on stack
stws,ma brindex,4(sp) ; save registers on stack
stws,ma sign,4(sp) ; save registers on stack
stws,ma pc,4(sp) ; save registers on stack
stws,ma pm,4(sp) ; save registers on stack
;
; Start multiply process
;
ldws 0(arg1),op2 ; get multiplier
ldws 0(arg0),op1 ; get multiplicand
addi -1,gr0,pm ; initialize pm to 111...1
comb,< op2,gr0,mpyb ; br. if multiplier < 0
xor op2,op1,sign ; sign(0) = sign of product
mpy1 comb,< op1,gr0,mpya ; br. if multiplicand < 0
addi 0,gr0,pu ; clear product
addib,= 0,op1,fini0 ; op1 = 0, product = 0
mpy2 addi 1,gr0,pc ; initialize pc to 00...01
movib,tr 8,cnt,mloop ; set count for mpy loop
extru op2,31,4,brindex ; 4 bits as index into table
;
.align 8
;
b sh4c ; br. if sign overflow
sh4n shd pu,pl,4,pl ; shift product right 4 bits
addib,<= -1,cnt,mulend ; reduce count by 1, exit if
extru pu,27,28,pu ; <= zero
;
mloop blr brindex,gr0 ; br. into table
; entries of 2 words
extru op2,27,4,brindex ; next 4 bits into index
;
;
; branch table for the multiplication process with four multiplier bits
;
mtable ; two words per entry
;
; ---- bits = 0000 ---- shift product 4 bits -------------------------------
;
b sh4n+4 ; just shift partial
shd pu,pl,4,pl ; product right 4 bits
;
; ---- bits = 0001 ---- add op1, then shift 4 bits
;
addb,tr op1,pu,sh4n+4 ; add op1 to product, to shift
shd pu,pl,4,pl ; product right 4 bits
;
; ---- bits = 0010 ---- add op1, add op1, then shift 4 bits
;
addb,tr op1,pu,sh4n ; add 2*op1, to shift
addb,uv op1,pu,sh4c ; product right 4 bits
;
; ---- bits = 0011 ---- add op1, add 2*op1, shift 4 bits
;
addb,tr op1,pu,sh4n-4 ; add op1 & 2*op1, shift
sh1add,nsv op1,pu,pu ; product right 4 bits
;
; ---- bits = 0100 ---- shift 2, add op1, shift 2
;
b sh2sa
shd pu,pl,2,pl ; shift product 2 bits
;
; ---- bits = 0101 ---- add op1, shift 2, add op1, and shift 2 again
;
addb,tr op1,pu,sh2us ; add op1 to product
shd pu,pl,2,pl ; shift 2 bits
;
; ---- bits = 0110 ---- add op1, add op1, shift 2, add op1, and shift 2 again
;
addb,tr op1,pu,sh2c ; add 2*op1, to shift 2 bits
addb,nuv op1,pu,sh2us ; br. if not overflow
;
; ---- bits = 0111 ---- subtract op1, shift 3, add op1, and shift 1
;
b sh3s
sub pu,op1,pu ; subtract op1, br. to sh3s
;
; ---- bits = 1000 ---- shift 3, add op1, shift 1
;
b sh3sa
shd pu,pl,3,pl ; shift product right 3 bits
;
; ---- bits = 1001 ---- add op1, shift 3, add op1, shift 1
;
addb,tr op1,pu,sh3us ; add op1, to shift 3, add op1,
shd pu,pl,3,pl ; and shift 1
;
; ---- bits = 1010 ---- add op1, add op1, shift 3, add op1, shift 1
;
addb,tr op1,pu,sh3c ; add 2*op1, to shift 3 bits
addb,nuv op1,pu,sh3us ; br. if no overflow
;
; ---- bits = 1011 ---- add -op1, shift 2, add -op1, shift 2, inc. next index
;
addib,tr 1,brindex,sh2s ; add 1 to index, subtract op1,
sub pu,op1,pu ; shift 2 with minus sign
;
; ---- bits = 1100 ---- shift 2, subtract op1, shift 2, increment next index
;
addib,tr 1,brindex,sh2sb ; add 1 to index, to shift
shd pu,pl,2,pl ; shift right 2 bits signed
;
; ---- bits = 1101 ---- add op1, shift 2, add -op1, shift 2
;
addb,tr op1,pu,sh2ns ; add op1, to shift 2
shd pu,pl,2,pl ; right 2 unsigned, etc.
;
; ---- bits = 1110 ---- shift 1 signed, add -op1, shift 3 signed
;
addib,tr 1,brindex,sh1sa ; add 1 to index, to shift
shd pu,pl,1,pl ; shift 1 bit
;
; ---- bits = 1111 ---- add -op1, shift 4 signed
;
addib,tr 1,brindex,sh4s ; add 1 to index, subtract op1,
sub pu,op1,pu ; to shift 4 signed
;
; ---- bits = 10000 ---- shift 4 signed
;
addib,tr 1,brindex,sh4s+4 ; add 1 to index
shd pu,pl,4,pl ; shift 4 signed
;
; ---- end of table ---------------------------------------------------------
;
sh4s shd pu,pl,4,pl
addib,tr -1,cnt,mloop ; loop (count > 0 always here)
shd pm,pu,4,pu ; shift 4, minus signed
;
sh4c addib,> -1,cnt,mloop ; decrement count, loop if > 0
shd pc,pu,4,pu ; shift 4 with overflow
b signs ; end of multiply
bb,>=,n sign,0,fini ; test sign of procduct
;
mpyb add,= op2,op2,gr0 ; if <> 0, back to main sect.
b mpy1
sub 0,op2,op2 ; op2 = |multiplier|
add,>= op1,gr0,gr0 ; if op1 < 0, invert sign,
xor pm,sign,sign ; for correct result
;
; special case for multiplier = -2**31, op1 = signed multiplicand
; or multiplicand = -2**31, op1 = signed multiplier
;
shd op1,0,1,pl ; shift op1 left 31 bits
mmax extrs op1,30,31,pu
b signs ; negate product (if needed)
bb,>=,n sign,0,fini ; test sign of product
;
mpya add,= op1,op1,gr0 ; op1 = -2**31, special case
b mpy2
sub 0,op1,op1 ; op1 = |multiplicand|
add,>= op2,gr0,gr0 ; if op2 < 0, invert sign,
xor pm,sign,sign ; for correct result
movb,tr op2,op1,mmax ; use op2 as multiplicand
shd op1,0,1,pl ; shift it left 31 bits
;
sh3c shd pu,pl,3,pl ; shift product 3 bits
shd pc,pu,3,pu ; shift 3 signed
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh3us extru pu,28,29,pu ; shift 3 unsigned
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh3sa extrs pu,28,29,pu ; shift 3 signed
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh3s shd pu,pl,3,pl ; shift 3 minus signed
shd pm,pu,3,pu
addb,tr op1,pu,sh1 ; add op1, to shift 1 bit
shd pu,pl,1,pl
;
sh1 addib,> -1,cnt,mloop ; loop if count > 0
extru pu,30,31,pu
b signs ; end of multiply
bb,>=,n sign,0,fini ; test sign of product
;
sh2ns addib,tr 1,brindex,sh2sb+4 ; increment index
extru pu,29,30,pu ; shift unsigned
;
sh2s shd pu,pl,2,pl ; shift with minus sign
shd pm,pu,2,pu ;
sub pu,op1,pu ; subtract op1
shd pu,pl,2,pl ; shift with minus sign
addib,tr -1,cnt,mloop ; decrement count, loop
shd pm,pu,2,pu ; shift with minus sign
; count never reaches 0 here
;
sh2sb extrs pu,29,30,pu ; shift 2 signed
sub pu,op1,pu ; subtract op1 from product
shd pu,pl,2,pl ; shift with minus sign
addib,tr -1,cnt,mloop ; decrement count, loop
shd pm,pu,2,pu ; shift with minus sign
; count never reaches 0 here
;
sh1sa extrs pu,30,31,pu ; signed
sub pu,op1,pu ; subtract op1 from product
shd pu,pl,3,pl ; shift 3 with minus sign
addib,tr -1,cnt,mloop ; dec. count, to loop
shd pm,pu,3,pu ; count never reaches 0 here
;
fini0 movib,tr,n 0,pl,fini ; product = 0 as op1 = 0
;
sh2us extru pu,29,30,pu ; shift 2 unsigned
addb,tr op1,pu,sh2a ; add op1
shd pu,pl,2,pl ; shift 2 bits
;
sh2c shd pu,pl,2,pl
shd pc,pu,2,pu ; shift with carry
addb,tr op1,pu,sh2a ; add op1 to product
shd pu,pl,2,pl ; br. to sh2 to shift pu
;
sh2sa extrs pu,29,30,pu ; shift with sign
addb,tr op1,pu,sh2a ; add op1 to product
shd pu,pl,2,pl ; br. to sh2 to shift pu
;
sh2a addib,> -1,cnt,mloop ; loop if count > 0
extru pu,29,30,pu
;
mulend bb,>=,n sign,0,fini ; test sign of product
signs sub 0,pl,pl ; negate product if sign
subb 0,pu,pu ; is negative
;
; finish
;
fini stws pu,0(arg2) ; save high part of result
stws pl,4(arg2) ; save low part of result
ldws,mb -4(sp),pm ; restore registers
ldws,mb -4(sp),pc ; restore registers
ldws,mb -4(sp),sign ; restore registers
ldws,mb -4(sp),brindex ; restore registers
ldws,mb -4(sp),cnt ; restore registers
ldws,mb -4(sp),op1 ; restore registers
ldws,mb -4(sp),pl ; restore registers
bv 0(rp) ; return
ldws,mb -4(sp),pu ; restore registers
EXIT(impys)
.end