NetBSD/sys/kern/kern_synch.c
ad b60416c0e2 Move the LW_BOUND flag into the thread-private flag word. It can be tested
by other threads/CPUs but that is only done when the LWP is known to be in a
quiescent state (for example, on a run queue).
2008-04-12 17:16:09 +00:00

1632 lines
40 KiB
C

/* $NetBSD: kern_synch.c,v 1.224 2008/04/12 17:16:09 ad Exp $ */
/*-
* Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
* Daniel Sieger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2007, 2008 Mindaugas Rasiukevicius <rmind at NetBSD org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.224 2008/04/12 17:16:09 ad Exp $");
#include "opt_kstack.h"
#include "opt_lockdebug.h"
#include "opt_multiprocessor.h"
#include "opt_perfctrs.h"
#define __MUTEX_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#if defined(PERFCTRS)
#include <sys/pmc.h>
#endif
#include <sys/cpu.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/syscall_stats.h>
#include <sys/sleepq.h>
#include <sys/lockdebug.h>
#include <sys/evcnt.h>
#include <sys/intr.h>
#include <sys/lwpctl.h>
#include <sys/atomic.h>
#include <sys/simplelock.h>
#include <sys/bitops.h>
#include <sys/kmem.h>
#include <sys/sysctl.h>
#include <sys/idle.h>
#include <uvm/uvm_extern.h>
/*
* Priority related defintions.
*/
#define PRI_TS_COUNT (NPRI_USER)
#define PRI_RT_COUNT (PRI_COUNT - PRI_TS_COUNT)
#define PRI_HTS_RANGE (PRI_TS_COUNT / 10)
#define PRI_HIGHEST_TS (MAXPRI_USER)
/*
* Bits per map.
*/
#define BITMAP_BITS (32)
#define BITMAP_SHIFT (5)
#define BITMAP_MSB (0x80000000U)
#define BITMAP_MASK (BITMAP_BITS - 1)
/*
* Structures, runqueue.
*/
typedef struct {
TAILQ_HEAD(, lwp) q_head;
} queue_t;
typedef struct {
/* Lock and bitmap */
uint32_t r_bitmap[PRI_COUNT >> BITMAP_SHIFT];
/* Counters */
u_int r_count; /* Count of the threads */
u_int r_avgcount; /* Average count of threads */
u_int r_mcount; /* Count of migratable threads */
/* Runqueues */
queue_t r_rt_queue[PRI_RT_COUNT];
queue_t r_ts_queue[PRI_TS_COUNT];
} runqueue_t;
static u_int sched_unsleep(struct lwp *, bool);
static void sched_changepri(struct lwp *, pri_t);
static void sched_lendpri(struct lwp *, pri_t);
static void *sched_getrq(runqueue_t *, const pri_t);
#ifdef MULTIPROCESSOR
static lwp_t *sched_catchlwp(void);
static void sched_balance(void *);
#endif
syncobj_t sleep_syncobj = {
SOBJ_SLEEPQ_SORTED,
sleepq_unsleep,
sleepq_changepri,
sleepq_lendpri,
syncobj_noowner,
};
syncobj_t sched_syncobj = {
SOBJ_SLEEPQ_SORTED,
sched_unsleep,
sched_changepri,
sched_lendpri,
syncobj_noowner,
};
const int schedppq = 1;
callout_t sched_pstats_ch;
unsigned sched_pstats_ticks;
kcondvar_t lbolt; /* once a second sleep address */
/*
* Migration and balancing.
*/
static u_int cacheht_time; /* Cache hotness time */
static u_int min_catch; /* Minimal LWP count for catching */
static u_int balance_period; /* Balance period */
static struct cpu_info *worker_ci; /* Victim CPU */
#ifdef MULTIPROCESSOR
static struct callout balance_ch; /* Callout of balancer */
#endif
/*
* During autoconfiguration or after a panic, a sleep will simply lower the
* priority briefly to allow interrupts, then return. The priority to be
* used (safepri) is machine-dependent, thus this value is initialized and
* maintained in the machine-dependent layers. This priority will typically
* be 0, or the lowest priority that is safe for use on the interrupt stack;
* it can be made higher to block network software interrupts after panics.
*/
int safepri;
/*
* OBSOLETE INTERFACE
*
* General sleep call. Suspends the current process until a wakeup is
* performed on the specified identifier. The process will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds (0
* means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*
* The interlock is held until we are on a sleep queue. The interlock will
* be locked before returning back to the caller unless the PNORELOCK flag
* is specified, in which case the interlock will always be unlocked upon
* return.
*/
int
ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
volatile struct simplelock *interlock)
{
struct lwp *l = curlwp;
sleepq_t *sq;
int error;
KASSERT((l->l_pflag & LP_INTR) == 0);
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(NULL, 0);
if ((priority & PNORELOCK) != 0)
simple_unlock(interlock);
return 0;
}
l->l_kpriority = true;
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_enter(sq, l);
sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
if (interlock != NULL) {
KASSERT(simple_lock_held(interlock));
simple_unlock(interlock);
}
error = sleepq_block(timo, priority & PCATCH);
if (interlock != NULL && (priority & PNORELOCK) == 0)
simple_lock(interlock);
return error;
}
int
mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
kmutex_t *mtx)
{
struct lwp *l = curlwp;
sleepq_t *sq;
int error;
KASSERT((l->l_pflag & LP_INTR) == 0);
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
return 0;
}
l->l_kpriority = true;
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_enter(sq, l);
sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj);
mutex_exit(mtx);
error = sleepq_block(timo, priority & PCATCH);
if ((priority & PNORELOCK) == 0)
mutex_enter(mtx);
return error;
}
/*
* General sleep call for situations where a wake-up is not expected.
*/
int
kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
{
struct lwp *l = curlwp;
sleepq_t *sq;
int error;
if (sleepq_dontsleep(l))
return sleepq_abort(NULL, 0);
if (mtx != NULL)
mutex_exit(mtx);
l->l_kpriority = true;
sq = sleeptab_lookup(&sleeptab, l);
sleepq_enter(sq, l);
sleepq_enqueue(sq, l, wmesg, &sleep_syncobj);
error = sleepq_block(timo, intr);
if (mtx != NULL)
mutex_enter(mtx);
return error;
}
/*
* OBSOLETE INTERFACE
*
* Make all processes sleeping on the specified identifier runnable.
*/
void
wakeup(wchan_t ident)
{
sleepq_t *sq;
if (cold)
return;
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_wake(sq, ident, (u_int)-1);
}
/*
* OBSOLETE INTERFACE
*
* Make the highest priority process first in line on the specified
* identifier runnable.
*/
void
wakeup_one(wchan_t ident)
{
sleepq_t *sq;
if (cold)
return;
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_wake(sq, ident, 1);
}
/*
* General yield call. Puts the current process back on its run queue and
* performs a voluntary context switch. Should only be called when the
* current process explicitly requests it (eg sched_yield(2)).
*/
void
yield(void)
{
struct lwp *l = curlwp;
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
lwp_lock(l);
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
KASSERT(l->l_stat == LSONPROC);
l->l_kpriority = false;
(void)mi_switch(l);
KERNEL_LOCK(l->l_biglocks, l);
}
/*
* General preemption call. Puts the current process back on its run queue
* and performs an involuntary context switch.
*/
void
preempt(void)
{
struct lwp *l = curlwp;
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
lwp_lock(l);
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
KASSERT(l->l_stat == LSONPROC);
l->l_kpriority = false;
l->l_nivcsw++;
(void)mi_switch(l);
KERNEL_LOCK(l->l_biglocks, l);
}
/*
* Compute the amount of time during which the current lwp was running.
*
* - update l_rtime unless it's an idle lwp.
*/
void
updatertime(lwp_t *l, const struct bintime *now)
{
if ((l->l_flag & LW_IDLE) != 0)
return;
/* rtime += now - stime */
bintime_add(&l->l_rtime, now);
bintime_sub(&l->l_rtime, &l->l_stime);
}
/*
* The machine independent parts of context switch.
*
* Returns 1 if another LWP was actually run.
*/
int
mi_switch(lwp_t *l)
{
struct cpu_info *ci, *tci = NULL;
struct schedstate_percpu *spc;
struct lwp *newl;
int retval, oldspl;
struct bintime bt;
bool returning;
KASSERT(lwp_locked(l, NULL));
LOCKDEBUG_BARRIER(l->l_mutex, 1);
#ifdef KSTACK_CHECK_MAGIC
kstack_check_magic(l);
#endif
binuptime(&bt);
KDASSERT(l->l_cpu == curcpu());
ci = l->l_cpu;
spc = &ci->ci_schedstate;
returning = false;
newl = NULL;
/*
* If we have been asked to switch to a specific LWP, then there
* is no need to inspect the run queues. If a soft interrupt is
* blocking, then return to the interrupted thread without adjusting
* VM context or its start time: neither have been changed in order
* to take the interrupt.
*/
if (l->l_switchto != NULL) {
if ((l->l_pflag & LP_INTR) != 0) {
returning = true;
softint_block(l);
if ((l->l_flag & LW_TIMEINTR) != 0)
updatertime(l, &bt);
}
newl = l->l_switchto;
l->l_switchto = NULL;
}
#ifndef __HAVE_FAST_SOFTINTS
else if (ci->ci_data.cpu_softints != 0) {
/* There are pending soft interrupts, so pick one. */
newl = softint_picklwp();
newl->l_stat = LSONPROC;
newl->l_flag |= LW_RUNNING;
}
#endif /* !__HAVE_FAST_SOFTINTS */
/* Count time spent in current system call */
if (!returning) {
SYSCALL_TIME_SLEEP(l);
/*
* XXXSMP If we are using h/w performance counters,
* save context.
*/
#if PERFCTRS
if (PMC_ENABLED(l->l_proc)) {
pmc_save_context(l->l_proc);
}
#endif
updatertime(l, &bt);
}
/*
* If on the CPU and we have gotten this far, then we must yield.
*/
KASSERT(l->l_stat != LSRUN);
if (l->l_stat == LSONPROC && (l->l_target_cpu || l != newl)) {
KASSERT(lwp_locked(l, spc->spc_lwplock));
if (l->l_target_cpu == l->l_cpu) {
l->l_target_cpu = NULL;
} else {
tci = l->l_target_cpu;
}
if (__predict_false(tci != NULL)) {
/* Double-lock the runqueues */
spc_dlock(ci, tci);
} else {
/* Lock the runqueue */
spc_lock(ci);
}
if ((l->l_flag & LW_IDLE) == 0) {
l->l_stat = LSRUN;
if (__predict_false(tci != NULL)) {
/*
* Set the new CPU, lock and unset the
* l_target_cpu - thread will be enqueued
* to the runqueue of target CPU.
*/
l->l_cpu = tci;
lwp_setlock(l, tci->ci_schedstate.spc_mutex);
l->l_target_cpu = NULL;
} else {
lwp_setlock(l, spc->spc_mutex);
}
sched_enqueue(l, true);
} else {
KASSERT(tci == NULL);
l->l_stat = LSIDL;
}
} else {
/* Lock the runqueue */
spc_lock(ci);
}
/*
* Let sched_nextlwp() select the LWP to run the CPU next.
* If no LWP is runnable, select the idle LWP.
*
* Note that spc_lwplock might not necessary be held, and
* new thread would be unlocked after setting the LWP-lock.
*/
if (newl == NULL) {
newl = sched_nextlwp();
if (newl != NULL) {
sched_dequeue(newl);
KASSERT(lwp_locked(newl, spc->spc_mutex));
newl->l_stat = LSONPROC;
newl->l_cpu = ci;
newl->l_flag |= LW_RUNNING;
lwp_setlock(newl, spc->spc_lwplock);
} else {
newl = ci->ci_data.cpu_idlelwp;
newl->l_stat = LSONPROC;
newl->l_flag |= LW_RUNNING;
}
/*
* Only clear want_resched if there are no
* pending (slow) software interrupts.
*/
ci->ci_want_resched = ci->ci_data.cpu_softints;
spc->spc_flags &= ~SPCF_SWITCHCLEAR;
spc->spc_curpriority = lwp_eprio(newl);
}
/* Items that must be updated with the CPU locked. */
if (!returning) {
/* Update the new LWP's start time. */
newl->l_stime = bt;
/*
* ci_curlwp changes when a fast soft interrupt occurs.
* We use cpu_onproc to keep track of which kernel or
* user thread is running 'underneath' the software
* interrupt. This is important for time accounting,
* itimers and forcing user threads to preempt (aston).
*/
ci->ci_data.cpu_onproc = newl;
}
if (l != newl) {
struct lwp *prevlwp;
/* Release all locks, but leave the current LWP locked */
if (l->l_mutex == l->l_cpu->ci_schedstate.spc_mutex) {
/*
* In case of migration, drop the local runqueue
* lock, thread is on other runqueue now.
*/
if (__predict_false(tci != NULL))
spc_unlock(ci);
/*
* Drop spc_lwplock, if the current LWP has been moved
* to the run queue (it is now locked by spc_mutex).
*/
mutex_spin_exit(spc->spc_lwplock);
} else {
/*
* Otherwise, drop the spc_mutex, we are done with the
* run queues.
*/
mutex_spin_exit(spc->spc_mutex);
KASSERT(tci == NULL);
}
/*
* Mark that context switch is going to be perfomed
* for this LWP, to protect it from being switched
* to on another CPU.
*/
KASSERT(l->l_ctxswtch == 0);
l->l_ctxswtch = 1;
l->l_ncsw++;
l->l_flag &= ~LW_RUNNING;
/*
* Increase the count of spin-mutexes before the release
* of the last lock - we must remain at IPL_SCHED during
* the context switch.
*/
oldspl = MUTEX_SPIN_OLDSPL(ci);
ci->ci_mtx_count--;
lwp_unlock(l);
/* Count the context switch on this CPU. */
ci->ci_data.cpu_nswtch++;
/* Update status for lwpctl, if present. */
if (l->l_lwpctl != NULL)
l->l_lwpctl->lc_curcpu = LWPCTL_CPU_NONE;
/*
* Save old VM context, unless a soft interrupt
* handler is blocking.
*/
if (!returning)
pmap_deactivate(l);
/*
* We may need to spin-wait for if 'newl' is still
* context switching on another CPU.
*/
if (newl->l_ctxswtch != 0) {
u_int count;
count = SPINLOCK_BACKOFF_MIN;
while (newl->l_ctxswtch)
SPINLOCK_BACKOFF(count);
}
/* Switch to the new LWP.. */
prevlwp = cpu_switchto(l, newl, returning);
ci = curcpu();
/*
* Switched away - we have new curlwp.
* Restore VM context and IPL.
*/
pmap_activate(l);
if (prevlwp != NULL) {
/* Normalize the count of the spin-mutexes */
ci->ci_mtx_count++;
/* Unmark the state of context switch */
membar_exit();
prevlwp->l_ctxswtch = 0;
}
splx(oldspl);
/* Update status for lwpctl, if present. */
if (l->l_lwpctl != NULL) {
l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
l->l_lwpctl->lc_pctr++;
}
retval = 1;
} else {
/* Nothing to do - just unlock and return. */
KASSERT(tci == NULL);
spc_unlock(ci);
lwp_unlock(l);
retval = 0;
}
KASSERT(l == curlwp);
KASSERT(l->l_stat == LSONPROC);
KASSERT(l->l_cpu == ci);
/*
* XXXSMP If we are using h/w performance counters, restore context.
*/
#if PERFCTRS
if (PMC_ENABLED(l->l_proc)) {
pmc_restore_context(l->l_proc);
}
#endif
SYSCALL_TIME_WAKEUP(l);
LOCKDEBUG_BARRIER(NULL, 1);
return retval;
}
/*
* Change process state to be runnable, placing it on the run queue if it is
* in memory, and awakening the swapper if it isn't in memory.
*
* Call with the process and LWP locked. Will return with the LWP unlocked.
*/
void
setrunnable(struct lwp *l)
{
struct proc *p = l->l_proc;
struct cpu_info *ci;
sigset_t *ss;
KASSERT((l->l_flag & LW_IDLE) == 0);
KASSERT(mutex_owned(&p->p_smutex));
KASSERT(lwp_locked(l, NULL));
KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
switch (l->l_stat) {
case LSSTOP:
/*
* If we're being traced (possibly because someone attached us
* while we were stopped), check for a signal from the debugger.
*/
if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
ss = &l->l_sigpend.sp_set;
else
ss = &p->p_sigpend.sp_set;
sigaddset(ss, p->p_xstat);
signotify(l);
}
p->p_nrlwps++;
break;
case LSSUSPENDED:
l->l_flag &= ~LW_WSUSPEND;
p->p_nrlwps++;
cv_broadcast(&p->p_lwpcv);
break;
case LSSLEEP:
KASSERT(l->l_wchan != NULL);
break;
default:
panic("setrunnable: lwp %p state was %d", l, l->l_stat);
}
/*
* If the LWP was sleeping interruptably, then it's OK to start it
* again. If not, mark it as still sleeping.
*/
if (l->l_wchan != NULL) {
l->l_stat = LSSLEEP;
/* lwp_unsleep() will release the lock. */
lwp_unsleep(l, true);
return;
}
/*
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
* about to call mi_switch(), in which case it will yield.
*/
if ((l->l_flag & LW_RUNNING) != 0) {
l->l_stat = LSONPROC;
l->l_slptime = 0;
lwp_unlock(l);
return;
}
/*
* Look for a CPU to run.
* Set the LWP runnable.
*/
ci = sched_takecpu(l);
l->l_cpu = ci;
if (l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex) {
lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
lwp_lock(l);
}
sched_setrunnable(l);
l->l_stat = LSRUN;
l->l_slptime = 0;
/*
* If thread is swapped out - wake the swapper to bring it back in.
* Otherwise, enter it into a run queue.
*/
if (l->l_flag & LW_INMEM) {
sched_enqueue(l, false);
resched_cpu(l);
lwp_unlock(l);
} else {
lwp_unlock(l);
uvm_kick_scheduler();
}
}
/*
* suspendsched:
*
* Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
*/
void
suspendsched(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct lwp *l;
struct proc *p;
/*
* We do this by process in order not to violate the locking rules.
*/
mutex_enter(&proclist_lock);
PROCLIST_FOREACH(p, &allproc) {
mutex_enter(&p->p_smutex);
if ((p->p_flag & PK_SYSTEM) != 0) {
mutex_exit(&p->p_smutex);
continue;
}
p->p_stat = SSTOP;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if (l == curlwp)
continue;
lwp_lock(l);
/*
* Set L_WREBOOT so that the LWP will suspend itself
* when it tries to return to user mode. We want to
* try and get to get as many LWPs as possible to
* the user / kernel boundary, so that they will
* release any locks that they hold.
*/
l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
if (l->l_stat == LSSLEEP &&
(l->l_flag & LW_SINTR) != 0) {
/* setrunnable() will release the lock. */
setrunnable(l);
continue;
}
lwp_unlock(l);
}
mutex_exit(&p->p_smutex);
}
mutex_exit(&proclist_lock);
/*
* Kick all CPUs to make them preempt any LWPs running in user mode.
* They'll trap into the kernel and suspend themselves in userret().
*/
for (CPU_INFO_FOREACH(cii, ci)) {
spc_lock(ci);
cpu_need_resched(ci, RESCHED_IMMED);
spc_unlock(ci);
}
}
/*
* sched_unsleep:
*
* The is called when the LWP has not been awoken normally but instead
* interrupted: for example, if the sleep timed out. Because of this,
* it's not a valid action for running or idle LWPs.
*/
static u_int
sched_unsleep(struct lwp *l, bool cleanup)
{
lwp_unlock(l);
panic("sched_unsleep");
}
void
resched_cpu(struct lwp *l)
{
struct cpu_info *ci;
/*
* XXXSMP
* Since l->l_cpu persists across a context switch,
* this gives us *very weak* processor affinity, in
* that we notify the CPU on which the process last
* ran that it should try to switch.
*
* This does not guarantee that the process will run on
* that processor next, because another processor might
* grab it the next time it performs a context switch.
*
* This also does not handle the case where its last
* CPU is running a higher-priority process, but every
* other CPU is running a lower-priority process. There
* are ways to handle this situation, but they're not
* currently very pretty, and we also need to weigh the
* cost of moving a process from one CPU to another.
*/
ci = l->l_cpu;
if (lwp_eprio(l) > ci->ci_schedstate.spc_curpriority)
cpu_need_resched(ci, 0);
}
static void
sched_changepri(struct lwp *l, pri_t pri)
{
KASSERT(lwp_locked(l, NULL));
if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
sched_dequeue(l);
l->l_priority = pri;
sched_enqueue(l, false);
} else {
l->l_priority = pri;
}
resched_cpu(l);
}
static void
sched_lendpri(struct lwp *l, pri_t pri)
{
KASSERT(lwp_locked(l, NULL));
if (l->l_stat == LSRUN && (l->l_flag & LW_INMEM) != 0) {
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
sched_dequeue(l);
l->l_inheritedprio = pri;
sched_enqueue(l, false);
} else {
l->l_inheritedprio = pri;
}
resched_cpu(l);
}
struct lwp *
syncobj_noowner(wchan_t wchan)
{
return NULL;
}
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
/*
* If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
* faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
* and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
*
* To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
* 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
*
* If you dont want to bother with the faster/more-accurate formula, you
* can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
* (more general) method of calculating the %age of CPU used by a process.
*/
#define CCPU_SHIFT (FSHIFT + 1)
/*
* sched_pstats:
*
* Update process statistics and check CPU resource allocation.
* Call scheduler-specific hook to eventually adjust process/LWP
* priorities.
*/
/* ARGSUSED */
void
sched_pstats(void *arg)
{
struct rlimit *rlim;
struct lwp *l;
struct proc *p;
int sig, clkhz;
long runtm;
sched_pstats_ticks++;
mutex_enter(&proclist_lock);
PROCLIST_FOREACH(p, &allproc) {
/*
* Increment time in/out of memory and sleep time (if
* sleeping). We ignore overflow; with 16-bit int's
* (remember them?) overflow takes 45 days.
*/
mutex_enter(&p->p_smutex);
mutex_spin_enter(&p->p_stmutex);
runtm = p->p_rtime.sec;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if ((l->l_flag & LW_IDLE) != 0)
continue;
lwp_lock(l);
runtm += l->l_rtime.sec;
l->l_swtime++;
sched_pstats_hook(l);
lwp_unlock(l);
/*
* p_pctcpu is only for ps.
*/
l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
if (l->l_slptime < 1) {
clkhz = stathz != 0 ? stathz : hz;
#if (FSHIFT >= CCPU_SHIFT)
l->l_pctcpu += (clkhz == 100) ?
((fixpt_t)l->l_cpticks) <<
(FSHIFT - CCPU_SHIFT) :
100 * (((fixpt_t) p->p_cpticks)
<< (FSHIFT - CCPU_SHIFT)) / clkhz;
#else
l->l_pctcpu += ((FSCALE - ccpu) *
(l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
#endif
l->l_cpticks = 0;
}
}
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
mutex_spin_exit(&p->p_stmutex);
/*
* Check if the process exceeds its CPU resource allocation.
* If over max, kill it.
*/
rlim = &p->p_rlimit[RLIMIT_CPU];
sig = 0;
if (runtm >= rlim->rlim_cur) {
if (runtm >= rlim->rlim_max)
sig = SIGKILL;
else {
sig = SIGXCPU;
if (rlim->rlim_cur < rlim->rlim_max)
rlim->rlim_cur += 5;
}
}
mutex_exit(&p->p_smutex);
if (sig) {
mutex_enter(&proclist_mutex);
psignal(p, sig);
mutex_exit(&proclist_mutex);
}
}
mutex_exit(&proclist_lock);
uvm_meter();
cv_wakeup(&lbolt);
callout_schedule(&sched_pstats_ch, hz);
}
void
sched_init(void)
{
cv_init(&lbolt, "lbolt");
callout_init(&sched_pstats_ch, CALLOUT_MPSAFE);
callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
/* Balancing */
worker_ci = curcpu();
cacheht_time = mstohz(5); /* ~5 ms */
balance_period = mstohz(300); /* ~300ms */
/* Minimal count of LWPs for catching: log2(count of CPUs) */
min_catch = min(ilog2(ncpu), 4);
/* Initialize balancing callout and run it */
#ifdef MULTIPROCESSOR
callout_init(&balance_ch, CALLOUT_MPSAFE);
callout_setfunc(&balance_ch, sched_balance, NULL);
callout_schedule(&balance_ch, balance_period);
#endif
sched_pstats(NULL);
}
SYSCTL_SETUP(sysctl_sched_setup, "sysctl sched setup")
{
const struct sysctlnode *node = NULL;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "kern", NULL,
NULL, 0, NULL, 0,
CTL_KERN, CTL_EOL);
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "sched",
SYSCTL_DESCR("Scheduler options"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
if (node == NULL)
return;
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "cacheht_time",
SYSCTL_DESCR("Cache hotness time (in ticks)"),
NULL, 0, &cacheht_time, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "balance_period",
SYSCTL_DESCR("Balance period (in ticks)"),
NULL, 0, &balance_period, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_INT, "min_catch",
SYSCTL_DESCR("Minimal count of threads for catching"),
NULL, 0, &min_catch, 0,
CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, &node, NULL,
CTLFLAG_READWRITE,
CTLTYPE_INT, "timesoftints",
SYSCTL_DESCR("Track CPU time for soft interrupts"),
NULL, 0, &softint_timing, 0,
CTL_CREATE, CTL_EOL);
}
void
sched_cpuattach(struct cpu_info *ci)
{
runqueue_t *ci_rq;
void *rq_ptr;
u_int i, size;
if (ci->ci_schedstate.spc_lwplock == NULL) {
ci->ci_schedstate.spc_lwplock =
mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
}
if (ci == lwp0.l_cpu) {
/* Initialize the scheduler structure of the primary LWP */
lwp0.l_mutex = ci->ci_schedstate.spc_lwplock;
}
if (ci->ci_schedstate.spc_mutex != NULL) {
/* Already initialized. */
return;
}
/* Allocate the run queue */
size = roundup2(sizeof(runqueue_t), coherency_unit) + coherency_unit;
rq_ptr = kmem_zalloc(size, KM_SLEEP);
if (rq_ptr == NULL) {
panic("sched_cpuattach: could not allocate the runqueue");
}
ci_rq = (void *)(roundup2((uintptr_t)(rq_ptr), coherency_unit));
/* Initialize run queues */
ci->ci_schedstate.spc_mutex =
mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
for (i = 0; i < PRI_RT_COUNT; i++)
TAILQ_INIT(&ci_rq->r_rt_queue[i].q_head);
for (i = 0; i < PRI_TS_COUNT; i++)
TAILQ_INIT(&ci_rq->r_ts_queue[i].q_head);
ci->ci_schedstate.spc_sched_info = ci_rq;
}
/*
* Control of the runqueue.
*/
static void *
sched_getrq(runqueue_t *ci_rq, const pri_t prio)
{
KASSERT(prio < PRI_COUNT);
return (prio <= PRI_HIGHEST_TS) ?
&ci_rq->r_ts_queue[prio].q_head :
&ci_rq->r_rt_queue[prio - PRI_HIGHEST_TS - 1].q_head;
}
void
sched_enqueue(struct lwp *l, bool swtch)
{
runqueue_t *ci_rq;
struct schedstate_percpu *spc;
TAILQ_HEAD(, lwp) *q_head;
const pri_t eprio = lwp_eprio(l);
struct cpu_info *ci;
ci = l->l_cpu;
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
/* Update the last run time on switch */
if (__predict_true(swtch == true)) {
l->l_rticks = hardclock_ticks;
l->l_rticksum += (hardclock_ticks - l->l_rticks);
} else if (l->l_rticks == 0)
l->l_rticks = hardclock_ticks;
/* Enqueue the thread */
q_head = sched_getrq(ci_rq, eprio);
if (TAILQ_EMPTY(q_head)) {
u_int i;
uint32_t q;
/* Mark bit */
i = eprio >> BITMAP_SHIFT;
q = BITMAP_MSB >> (eprio & BITMAP_MASK);
KASSERT((ci_rq->r_bitmap[i] & q) == 0);
ci_rq->r_bitmap[i] |= q;
}
TAILQ_INSERT_TAIL(q_head, l, l_runq);
ci_rq->r_count++;
if ((l->l_pflag & LP_BOUND) == 0)
ci_rq->r_mcount++;
/*
* Update the value of highest priority in the runqueue,
* if priority of this thread is higher.
*/
if (eprio > spc->spc_maxpriority)
spc->spc_maxpriority = eprio;
sched_newts(l);
/*
* Wake the chosen CPU or cause a preemption if the newly
* enqueued thread has higher priority. Don't cause a
* preemption if the thread is yielding (swtch).
*/
if (!swtch && eprio > spc->spc_curpriority) {
cpu_need_resched(ci,
(eprio >= PRI_KERNEL ? RESCHED_IMMED : 0));
}
}
void
sched_dequeue(struct lwp *l)
{
runqueue_t *ci_rq;
TAILQ_HEAD(, lwp) *q_head;
struct schedstate_percpu *spc;
const pri_t eprio = lwp_eprio(l);
spc = & l->l_cpu->ci_schedstate;
ci_rq = spc->spc_sched_info;
KASSERT(lwp_locked(l, spc->spc_mutex));
KASSERT(eprio <= spc->spc_maxpriority);
KASSERT(ci_rq->r_bitmap[eprio >> BITMAP_SHIFT] != 0);
KASSERT(ci_rq->r_count > 0);
ci_rq->r_count--;
if ((l->l_pflag & LP_BOUND) == 0)
ci_rq->r_mcount--;
q_head = sched_getrq(ci_rq, eprio);
TAILQ_REMOVE(q_head, l, l_runq);
if (TAILQ_EMPTY(q_head)) {
u_int i;
uint32_t q;
/* Unmark bit */
i = eprio >> BITMAP_SHIFT;
q = BITMAP_MSB >> (eprio & BITMAP_MASK);
KASSERT((ci_rq->r_bitmap[i] & q) != 0);
ci_rq->r_bitmap[i] &= ~q;
/*
* Update the value of highest priority in the runqueue, in a
* case it was a last thread in the queue of highest priority.
*/
if (eprio != spc->spc_maxpriority)
return;
do {
if (ci_rq->r_bitmap[i] != 0) {
q = ffs(ci_rq->r_bitmap[i]);
spc->spc_maxpriority =
(i << BITMAP_SHIFT) + (BITMAP_BITS - q);
return;
}
} while (i--);
/* If not found - set the lowest value */
spc->spc_maxpriority = 0;
}
}
/*
* Migration and balancing.
*/
#ifdef MULTIPROCESSOR
/* Estimate if LWP is cache-hot */
static inline bool
lwp_cache_hot(const struct lwp *l)
{
if (l->l_slptime || l->l_rticks == 0)
return false;
return (hardclock_ticks - l->l_rticks <= cacheht_time);
}
/* Check if LWP can migrate to the chosen CPU */
static inline bool
sched_migratable(const struct lwp *l, struct cpu_info *ci)
{
const struct schedstate_percpu *spc = &ci->ci_schedstate;
/* CPU is offline */
if (__predict_false(spc->spc_flags & SPCF_OFFLINE))
return false;
/* Affinity bind */
if (__predict_false(l->l_flag & LW_AFFINITY))
return CPU_ISSET(cpu_index(ci), &l->l_affinity);
/* Processor-set */
return (spc->spc_psid == l->l_psid);
}
/*
* Estimate the migration of LWP to the other CPU.
* Take and return the CPU, if migration is needed.
*/
struct cpu_info *
sched_takecpu(struct lwp *l)
{
struct cpu_info *ci, *tci, *first, *next;
struct schedstate_percpu *spc;
runqueue_t *ci_rq, *ici_rq;
pri_t eprio, lpri, pri;
KASSERT(lwp_locked(l, NULL));
ci = l->l_cpu;
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
/* If thread is strictly bound, do not estimate other CPUs */
if (l->l_pflag & LP_BOUND)
return ci;
/* CPU of this thread is idling - run there */
if (ci_rq->r_count == 0)
return ci;
eprio = lwp_eprio(l);
/* Stay if thread is cache-hot */
if (__predict_true(l->l_stat != LSIDL) &&
lwp_cache_hot(l) && eprio >= spc->spc_curpriority)
return ci;
/* Run on current CPU if priority of thread is higher */
ci = curcpu();
spc = &ci->ci_schedstate;
if (eprio > spc->spc_curpriority && sched_migratable(l, ci))
return ci;
/*
* Look for the CPU with the lowest priority thread. In case of
* equal priority, choose the CPU with the fewest of threads.
*/
first = l->l_cpu;
ci = first;
tci = first;
lpri = PRI_COUNT;
do {
next = CIRCLEQ_LOOP_NEXT(&cpu_queue, ci, ci_data.cpu_qchain);
spc = &ci->ci_schedstate;
ici_rq = spc->spc_sched_info;
pri = max(spc->spc_curpriority, spc->spc_maxpriority);
if (pri > lpri)
continue;
if (pri == lpri && ci_rq->r_count < ici_rq->r_count)
continue;
if (!sched_migratable(l, ci))
continue;
lpri = pri;
tci = ci;
ci_rq = ici_rq;
} while (ci = next, ci != first);
return tci;
}
/*
* Tries to catch an LWP from the runqueue of other CPU.
*/
static struct lwp *
sched_catchlwp(void)
{
struct cpu_info *curci = curcpu(), *ci = worker_ci;
struct schedstate_percpu *spc;
TAILQ_HEAD(, lwp) *q_head;
runqueue_t *ci_rq;
struct lwp *l;
if (curci == ci)
return NULL;
/* Lockless check */
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
if (ci_rq->r_mcount < min_catch)
return NULL;
/*
* Double-lock the runqueues.
*/
if (curci < ci) {
spc_lock(ci);
} else if (!mutex_tryenter(ci->ci_schedstate.spc_mutex)) {
const runqueue_t *cur_rq = curci->ci_schedstate.spc_sched_info;
spc_unlock(curci);
spc_lock(ci);
spc_lock(curci);
if (cur_rq->r_count) {
spc_unlock(ci);
return NULL;
}
}
if (ci_rq->r_mcount < min_catch) {
spc_unlock(ci);
return NULL;
}
/* Take the highest priority thread */
q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
l = TAILQ_FIRST(q_head);
for (;;) {
/* Check the first and next result from the queue */
if (l == NULL)
break;
KASSERT(l->l_stat == LSRUN);
KASSERT(l->l_flag & LW_INMEM);
/* Look for threads, whose are allowed to migrate */
if ((l->l_pflag & LP_BOUND) || lwp_cache_hot(l) ||
!sched_migratable(l, curci)) {
l = TAILQ_NEXT(l, l_runq);
continue;
}
/* Grab the thread, and move to the local run queue */
sched_dequeue(l);
l->l_cpu = curci;
lwp_unlock_to(l, curci->ci_schedstate.spc_mutex);
sched_enqueue(l, false);
return l;
}
spc_unlock(ci);
return l;
}
/*
* Periodical calculations for balancing.
*/
static void
sched_balance(void *nocallout)
{
struct cpu_info *ci, *hci;
runqueue_t *ci_rq;
CPU_INFO_ITERATOR cii;
u_int highest;
hci = curcpu();
highest = 0;
/* Make lockless countings */
for (CPU_INFO_FOREACH(cii, ci)) {
ci_rq = ci->ci_schedstate.spc_sched_info;
/* Average count of the threads */
ci_rq->r_avgcount = (ci_rq->r_avgcount + ci_rq->r_mcount) >> 1;
/* Look for CPU with the highest average */
if (ci_rq->r_avgcount > highest) {
hci = ci;
highest = ci_rq->r_avgcount;
}
}
/* Update the worker */
worker_ci = hci;
if (nocallout == NULL)
callout_schedule(&balance_ch, balance_period);
}
#else
struct cpu_info *
sched_takecpu(struct lwp *l)
{
return l->l_cpu;
}
#endif /* MULTIPROCESSOR */
/*
* Scheduler mill.
*/
struct lwp *
sched_nextlwp(void)
{
struct cpu_info *ci = curcpu();
struct schedstate_percpu *spc;
TAILQ_HEAD(, lwp) *q_head;
runqueue_t *ci_rq;
struct lwp *l;
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
#ifdef MULTIPROCESSOR
/* If runqueue is empty, try to catch some thread from other CPU */
if (__predict_false(spc->spc_flags & SPCF_OFFLINE)) {
if ((ci_rq->r_count - ci_rq->r_mcount) == 0)
return NULL;
} else if (ci_rq->r_count == 0) {
/* Reset the counter, and call the balancer */
ci_rq->r_avgcount = 0;
sched_balance(ci);
/* The re-locking will be done inside */
return sched_catchlwp();
}
#else
if (ci_rq->r_count == 0)
return NULL;
#endif
/* Take the highest priority thread */
KASSERT(ci_rq->r_bitmap[spc->spc_maxpriority >> BITMAP_SHIFT]);
q_head = sched_getrq(ci_rq, spc->spc_maxpriority);
l = TAILQ_FIRST(q_head);
KASSERT(l != NULL);
sched_oncpu(l);
l->l_rticks = hardclock_ticks;
return l;
}
bool
sched_curcpu_runnable_p(void)
{
const struct cpu_info *ci = curcpu();
const runqueue_t *ci_rq = ci->ci_schedstate.spc_sched_info;
#ifndef __HAVE_FAST_SOFTINTS
if (ci->ci_data.cpu_softints)
return true;
#endif
if (ci->ci_schedstate.spc_flags & SPCF_OFFLINE)
return (ci_rq->r_count - ci_rq->r_mcount);
return ci_rq->r_count;
}
/*
* Debugging.
*/
#ifdef DDB
void
sched_print_runqueue(void (*pr)(const char *, ...))
{
runqueue_t *ci_rq;
struct schedstate_percpu *spc;
struct lwp *l;
struct proc *p;
int i;
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
for (CPU_INFO_FOREACH(cii, ci)) {
spc = &ci->ci_schedstate;
ci_rq = spc->spc_sched_info;
(*pr)("Run-queue (CPU = %u):\n", ci->ci_index);
(*pr)(" pid.lid = %d.%d, threads count = %u, "
"avgcount = %u, highest pri = %d\n",
ci->ci_curlwp->l_proc->p_pid, ci->ci_curlwp->l_lid,
ci_rq->r_count, ci_rq->r_avgcount, spc->spc_maxpriority);
i = (PRI_COUNT >> BITMAP_SHIFT) - 1;
do {
uint32_t q;
q = ci_rq->r_bitmap[i];
(*pr)(" bitmap[%d] => [ %d (0x%x) ]\n", i, ffs(q), q);
} while (i--);
}
(*pr)(" %5s %4s %4s %10s %3s %4s %11s %3s %s\n",
"LID", "PRI", "EPRI", "FL", "ST", "LWP", "CPU", "LRTIME");
PROCLIST_FOREACH(p, &allproc) {
(*pr)(" /- %d (%s)\n", (int)p->p_pid, p->p_comm);
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
ci = l->l_cpu;
(*pr)(" | %5d %4u %4u 0x%8.8x %3s %4u %11p %3u "
"%u\n",
(int)l->l_lid, l->l_priority, lwp_eprio(l),
l->l_flag, l->l_stat == LSRUN ? "RQ" :
(l->l_stat == LSSLEEP ? "SQ" : "-"),
l, ci->ci_index,
(u_int)(hardclock_ticks - l->l_rticks));
}
}
}
#endif