NetBSD/usr.sbin/tprof/tprof_analyze.c

460 lines
10 KiB
C

/* $NetBSD: tprof_analyze.c,v 1.3 2018/07/14 07:54:04 maxv Exp $ */
/*
* Copyright (c) 2010,2011,2012 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: tprof_analyze.c,v 1.3 2018/07/14 07:54:04 maxv Exp $");
#endif /* not lint */
#include <assert.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <gelf.h>
#include <inttypes.h>
#include <libelf.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <util.h>
#include <dev/tprof/tprof_ioctl.h>
#include "tprof.h"
#define _PATH_KSYMS "/dev/ksyms"
#include <sys/rbtree.h>
static bool filter_by_pid;
static pid_t target_pid;
static bool per_symbol;
struct addr {
struct rb_node node;
uint64_t addr; /* address */
uint32_t pid; /* process id */
uint32_t lwpid; /* lwp id */
uint32_t cpuid; /* cpu id */
bool in_kernel; /* if addr is in the kernel address space */
unsigned int nsamples; /* number of samples taken for the address */
};
static rb_tree_t addrtree;
struct sym {
char *name;
uint64_t value;
uint64_t size;
};
static struct sym **syms = NULL;
static size_t nsyms = 0;
static int
compare_value(const void *p1, const void *p2)
{
const struct sym *s1 = *(const struct sym * const *)p1;
const struct sym *s2 = *(const struct sym * const *)p2;
if (s1->value > s2->value) {
return -1;
} else if (s1->value < s2->value) {
return 1;
}
/*
* to produce a stable result, it's better not to return 0
* even for __strong_alias.
*/
if (s1->size > s2->size) {
return -1;
} else if (s1->size < s2->size) {
return 1;
}
return strcmp(s1->name, s2->name);
}
static void
ksymload(void)
{
Elf *e;
Elf_Scn *s;
GElf_Shdr sh_store;
GElf_Shdr *sh;
Elf_Data *d;
int fd;
size_t size, i;
fd = open(_PATH_KSYMS, O_RDONLY);
if (fd == -1) {
err(EXIT_FAILURE, "open");
}
if (elf_version(EV_CURRENT) == EV_NONE) {
goto elffail;
}
e = elf_begin(fd, ELF_C_READ, NULL);
if (e == NULL) {
goto elffail;
}
for (s = elf_nextscn(e, NULL); s != NULL; s = elf_nextscn(e, s)) {
sh = gelf_getshdr(s, &sh_store);
if (sh == NULL) {
goto elffail;
}
if (sh->sh_type == SHT_SYMTAB) {
break;
}
}
if (s == NULL) {
errx(EXIT_FAILURE, "no symtab");
}
d = elf_getdata(s, NULL);
if (d == NULL) {
goto elffail;
}
assert(sh->sh_size == d->d_size);
size = sh->sh_size / sh->sh_entsize;
for (i = 1; i < size; i++) {
GElf_Sym st_store;
GElf_Sym *st;
struct sym *sym;
st = gelf_getsym(d, (int)i, &st_store);
if (st == NULL) {
goto elffail;
}
if (ELF_ST_TYPE(st->st_info) != STT_FUNC) {
continue;
}
sym = emalloc(sizeof(*sym));
sym->name = estrdup(elf_strptr(e, sh->sh_link, st->st_name));
sym->value = (uint64_t)st->st_value;
sym->size = st->st_size;
nsyms++;
syms = erealloc(syms, sizeof(*syms) * nsyms);
syms[nsyms - 1] = sym;
}
qsort(syms, nsyms, sizeof(*syms), compare_value);
return;
elffail:
errx(EXIT_FAILURE, "libelf: %s", elf_errmsg(elf_errno()));
}
static const char *
ksymlookup(uint64_t value, uint64_t *offset)
{
size_t hi;
size_t lo;
size_t i;
/*
* try to find the smallest i for which syms[i]->value <= value.
* syms[] is ordered by syms[]->value in the descending order.
*/
hi = nsyms - 1;
lo = 0;
while (lo < hi) {
const size_t mid = (lo + hi) / 2;
const struct sym *sym = syms[mid];
assert(syms[lo]->value >= sym->value);
assert(sym->value >= syms[hi]->value);
if (sym->value <= value) {
hi = mid;
continue;
}
lo = mid + 1;
}
assert(lo == nsyms - 1 || syms[lo]->value <= value);
assert(lo == 0 || syms[lo - 1]->value > value);
for (i = lo; i < nsyms; i++) {
const struct sym *sym = syms[i];
if (sym->value <= value &&
(sym->size == 0 || value - sym->value <= sym->size )) {
*offset = value - sym->value;
return sym->name;
}
if (sym->size != 0 && sym->value + sym->size < value) {
break;
}
}
return NULL;
}
static signed int
addrtree_compare_key(void *ctx, const void *n1, const void *keyp)
{
const struct addr *a1 = n1;
const struct addr *a2 = (const struct addr *)keyp;
if (a1->addr > a2->addr) {
return 1;
} else if (a1->addr < a2->addr) {
return -1;
}
if (a1->pid > a2->pid) {
return -1;
} else if (a1->pid < a2->pid) {
return 1;
}
if (a1->lwpid > a2->lwpid) {
return -1;
} else if (a1->lwpid < a2->lwpid) {
return 1;
}
if (a1->cpuid > a2->cpuid) {
return -1;
} else if (a1->cpuid < a2->cpuid) {
return 1;
}
if (a1->in_kernel > a2->in_kernel) {
return -1;
} else if (a1->in_kernel < a2->in_kernel) {
return 1;
}
return 0;
}
static signed int
addrtree_compare_nodes(void *ctx, const void *n1, const void *n2)
{
const struct addr *a2 = n2;
return addrtree_compare_key(ctx, n1, a2);
}
static const rb_tree_ops_t addrtree_ops = {
.rbto_compare_nodes = addrtree_compare_nodes,
.rbto_compare_key = addrtree_compare_key,
};
static int
compare_nsamples(const void *p1, const void *p2)
{
const struct addr *a1 = *(const struct addr * const *)p1;
const struct addr *a2 = *(const struct addr * const *)p2;
if (a1->nsamples > a2->nsamples) {
return -1;
} else if (a1->nsamples < a2->nsamples) {
return 1;
}
return 0;
}
void
tprof_analyze(int argc, char **argv)
{
struct addr *a;
struct addr **l;
struct addr **p;
size_t naddrs, nsamples, i;
float perc;
int ch;
bool distinguish_processes = true;
bool distinguish_cpus = true;
bool distinguish_lwps = true;
bool kernel_only = false;
extern char *optarg;
extern int optind;
FILE *f;
while ((ch = getopt(argc, argv, "CkLPp:s")) != -1) {
uintmax_t val;
char *ep;
switch (ch) {
case 'C': /* don't distinguish cpus */
distinguish_cpus = false;
break;
case 'k': /* kernel only */
kernel_only = true;
break;
case 'L': /* don't distinguish lwps */
distinguish_lwps = false;
break;
case 'p': /* only for the process for the given pid */
errno = 0;
val = strtoumax(optarg, &ep, 10);
if (optarg[0] == 0 || *ep != 0 ||
val > INT32_MAX) {
errx(EXIT_FAILURE, "invalid p option");
}
target_pid = val;
filter_by_pid = true;
break;
case 'P': /* don't distinguish processes */
distinguish_processes = false;
break;
case 's': /* per symbol */
per_symbol = true;
break;
default:
exit(EXIT_FAILURE);
}
}
argc -= optind;
argv += optind;
if (argc == 0) {
errx(EXIT_FAILURE, "missing file name");
}
f = fopen(argv[0], "rb");
if (f == NULL) {
errx(EXIT_FAILURE, "fopen");
}
ksymload();
rb_tree_init(&addrtree, &addrtree_ops);
/*
* read and count samples.
*/
naddrs = 0;
nsamples = 0;
while (/*CONSTCOND*/true) {
struct addr *o;
tprof_sample_t sample;
size_t n = fread(&sample, sizeof(sample), 1, f);
bool in_kernel;
if (n == 0) {
if (feof(f)) {
break;
}
if (ferror(f)) {
err(EXIT_FAILURE, "fread");
}
}
if (filter_by_pid && (pid_t)sample.s_pid != target_pid) {
continue;
}
in_kernel = (sample.s_flags & TPROF_SAMPLE_INKERNEL) != 0;
if (kernel_only && !in_kernel) {
continue;
}
a = emalloc(sizeof(*a));
a->addr = (uint64_t)sample.s_pc;
if (distinguish_processes) {
a->pid = sample.s_pid;
} else {
a->pid = 0;
}
if (distinguish_lwps) {
a->lwpid = sample.s_lwpid;
} else {
a->lwpid = 0;
}
if (distinguish_cpus) {
a->cpuid = sample.s_cpuid;
} else {
a->cpuid = 0;
}
a->in_kernel = in_kernel;
if (per_symbol) {
const char *name;
uint64_t offset;
name = ksymlookup(a->addr, &offset);
if (name != NULL) {
a->addr -= offset;
}
}
a->nsamples = 1;
o = rb_tree_insert_node(&addrtree, a);
if (o != a) {
assert(a->addr == o->addr);
assert(a->pid == o->pid);
assert(a->lwpid == o->lwpid);
assert(a->cpuid == o->cpuid);
assert(a->in_kernel == o->in_kernel);
free(a);
o->nsamples++;
} else {
naddrs++;
}
nsamples++;
}
/*
* sort samples by addresses.
*/
l = emalloc(naddrs * sizeof(*l));
p = l;
RB_TREE_FOREACH(a, &addrtree) {
*p++ = a;
}
assert(l + naddrs == p);
qsort(l, naddrs, sizeof(*l), compare_nsamples);
/*
* print addresses and number of samples, preferably with
* resolved symbol names.
*/
printf("File: %s\n", argv[0]);
printf("Number of samples: %zu\n\n", nsamples);
printf("percentage nsamples pid lwp cpu k address symbol\n");
printf("------------ -------- ------ ---- ---- - ---------------- ------\n");
for (i = 0; i < naddrs; i++) {
const char *name;
char buf[100];
uint64_t offset;
a = l[i];
if (a->in_kernel) {
name = ksymlookup(a->addr, &offset);
} else {
name = NULL;
}
if (name == NULL) {
(void)snprintf(buf, sizeof(buf), "<%016" PRIx64 ">",
a->addr);
name = buf;
} else if (offset != 0) {
(void)snprintf(buf, sizeof(buf), "%s+0x%" PRIx64, name,
offset);
name = buf;
}
perc = ((float)a->nsamples / (float)nsamples) * 100.0;
printf("%11f%% %8u %6" PRIu32 " %4" PRIu32 " %4" PRIu32 " %u %016"
PRIx64 " %s\n",
perc,
a->nsamples, a->pid, a->lwpid, a->cpuid, a->in_kernel,
a->addr, name);
}
fclose(f);
}