290 lines
10 KiB
C
290 lines
10 KiB
C
/* $NetBSD: if_bgevar.h,v 1.1 2009/04/23 10:47:44 msaitoh Exp $ */
|
|
/*
|
|
* Copyright (c) 2001 Wind River Systems
|
|
* Copyright (c) 1997, 1998, 1999, 2001
|
|
* Bill Paul <wpaul@windriver.com>. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Bill Paul.
|
|
* 4. Neither the name of the author nor the names of any co-contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $FreeBSD: if_bgereg.h,v 1.1.2.7 2002/11/02 18:17:55 mp Exp $
|
|
*/
|
|
|
|
/*
|
|
* BCM570x memory map. The internal memory layout varies somewhat
|
|
* depending on whether or not we have external SSRAM attached.
|
|
* The BCM5700 can have up to 16MB of external memory. The BCM5701
|
|
* is apparently not designed to use external SSRAM. The mappings
|
|
* up to the first 4 send rings are the same for both internal and
|
|
* external memory configurations. Note that mini RX ring space is
|
|
* only available with external SSRAM configurations, which means
|
|
* the mini RX ring is not supported on the BCM5701.
|
|
*
|
|
* The NIC's memory can be accessed by the host in one of 3 ways:
|
|
*
|
|
* 1) Indirect register access. The MEMWIN_BASEADDR and MEMWIN_DATA
|
|
* registers in PCI config space can be used to read any 32-bit
|
|
* address within the NIC's memory.
|
|
*
|
|
* 2) Memory window access. The MEMWIN_BASEADDR register in PCI config
|
|
* space can be used in conjunction with the memory window in the
|
|
* device register space at offset 0x8000 to read any 32K chunk
|
|
* of NIC memory.
|
|
*
|
|
* 3) Flat mode. If the 'flat mode' bit in the PCI state register is
|
|
* set, the device I/O mapping consumes 32MB of host address space,
|
|
* allowing all of the registers and internal NIC memory to be
|
|
* accessed directly. NIC memory addresses are offset by 0x01000000.
|
|
* Flat mode consumes so much host address space that it is not
|
|
* recommended.
|
|
*/
|
|
|
|
#ifndef _DEV_PCI_IF_BGEVAR_H_
|
|
#define _DEV_PCI_IF_BGEVAR_H_
|
|
|
|
#include <machine/bus.h>
|
|
#include <net/if_ether.h>
|
|
#include <dev/pci/pcivar.h>
|
|
|
|
static __inline void
|
|
bge_set_hostaddr(volatile bge_hostaddr *x, bus_addr_t y)
|
|
{
|
|
x->bge_addr_lo = y & 0xffffffff;
|
|
if (sizeof (bus_addr_t) == 8)
|
|
x->bge_addr_hi = (u_int64_t)y >> 32;
|
|
else
|
|
x->bge_addr_hi = 0;
|
|
}
|
|
|
|
#define RCB_WRITE_4(sc, rcb, offset, val) \
|
|
bus_space_write_4(sc->bge_btag, sc->bge_bhandle, \
|
|
rcb + offsetof(struct bge_rcb, offset), val)
|
|
|
|
/*
|
|
* Other utility macros.
|
|
*/
|
|
#define BGE_INC(x, y) (x) = (x + 1) % y
|
|
|
|
/*
|
|
* Register access macros. The Tigon always uses memory mapped register
|
|
* accesses and all registers must be accessed with 32 bit operations.
|
|
*/
|
|
|
|
#define CSR_WRITE_4(sc, reg, val) \
|
|
bus_space_write_4(sc->bge_btag, sc->bge_bhandle, reg, val)
|
|
|
|
#define CSR_READ_4(sc, reg) \
|
|
bus_space_read_4(sc->bge_btag, sc->bge_bhandle, reg)
|
|
|
|
#define BGE_SETBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, (CSR_READ_4(sc, reg) | x))
|
|
#define BGE_CLRBIT(sc, reg, x) \
|
|
CSR_WRITE_4(sc, reg, (CSR_READ_4(sc, reg) & ~x))
|
|
|
|
#define PCI_SETBIT(pc, tag, reg, x) \
|
|
pci_conf_write(pc, tag, reg, (pci_conf_read(pc, tag, reg) | x))
|
|
#define PCI_CLRBIT(pc, tag, reg, x) \
|
|
pci_conf_write(pc, tag, reg, (pci_conf_read(pc, tag, reg) & ~x))
|
|
|
|
/*
|
|
* Memory management stuff. Note: the SSLOTS, MSLOTS and JSLOTS
|
|
* values are tuneable. They control the actual amount of buffers
|
|
* allocated for the standard, mini and jumbo receive rings.
|
|
*/
|
|
|
|
#define BGE_SSLOTS 256
|
|
#define BGE_MSLOTS 256
|
|
#define BGE_JSLOTS 384
|
|
#define BGE_RSLOTS 256
|
|
|
|
#define BGE_JRAWLEN (BGE_JUMBO_FRAMELEN + ETHER_ALIGN)
|
|
#define BGE_JLEN (BGE_JRAWLEN + (sizeof(u_int64_t) - \
|
|
(BGE_JRAWLEN % sizeof(u_int64_t))))
|
|
#define BGE_JPAGESZ PAGE_SIZE
|
|
#define BGE_RESID (BGE_JPAGESZ - (BGE_JLEN * BGE_JSLOTS) % BGE_JPAGESZ)
|
|
#define BGE_JMEM ((BGE_JLEN * BGE_JSLOTS) + BGE_RESID)
|
|
|
|
/*
|
|
* Ring structures. Most of these reside in host memory and we tell
|
|
* the NIC where they are via the ring control blocks. The exceptions
|
|
* are the tx and command rings, which live in NIC memory and which
|
|
* we access via the shared memory window.
|
|
*/
|
|
struct bge_ring_data {
|
|
struct bge_rx_bd bge_rx_std_ring[BGE_STD_RX_RING_CNT];
|
|
struct bge_rx_bd bge_rx_jumbo_ring[BGE_JUMBO_RX_RING_CNT];
|
|
struct bge_rx_bd bge_rx_return_ring[BGE_RETURN_RING_CNT];
|
|
struct bge_tx_bd bge_tx_ring[BGE_TX_RING_CNT];
|
|
struct bge_status_block bge_status_block;
|
|
struct bge_tx_desc *bge_tx_ring_nic;/* pointer to shared mem */
|
|
struct bge_cmd_desc *bge_cmd_ring; /* pointer to shared mem */
|
|
struct bge_gib bge_info;
|
|
};
|
|
|
|
#define BGE_RING_DMA_ADDR(sc, offset) \
|
|
((sc)->bge_ring_map->dm_segs[0].ds_addr + \
|
|
offsetof(struct bge_ring_data, offset))
|
|
|
|
/*
|
|
* Number of DMA segments in a TxCB. Note that this is carefully
|
|
* chosen to make the total struct size an even power of two. It's
|
|
* critical that no TxCB be split across a page boundary since
|
|
* no attempt is made to allocate physically contiguous memory.
|
|
*
|
|
*/
|
|
#if 0 /* pre-TSO values */
|
|
#define BGE_TXDMA_MAX ETHER_MAX_LEN_JUMBO
|
|
#ifdef _LP64
|
|
#define BGE_NTXSEG 30
|
|
#else
|
|
#define BGE_NTXSEG 31
|
|
#endif
|
|
#else /* TSO values */
|
|
#define BGE_TXDMA_MAX (round_page(IP_MAXPACKET)) /* for TSO */
|
|
#ifdef _LP64
|
|
#define BGE_NTXSEG 120 /* XXX just a guess */
|
|
#else
|
|
#define BGE_NTXSEG 124 /* XXX just a guess */
|
|
#endif
|
|
#endif /* TSO values */
|
|
|
|
|
|
/*
|
|
* Mbuf pointers. We need these to keep track of the virtual addresses
|
|
* of our mbuf chains since we can only convert from physical to virtual,
|
|
* not the other way around.
|
|
*/
|
|
struct bge_chain_data {
|
|
struct mbuf *bge_tx_chain[BGE_TX_RING_CNT];
|
|
struct mbuf *bge_rx_std_chain[BGE_STD_RX_RING_CNT];
|
|
struct mbuf *bge_rx_jumbo_chain[BGE_JUMBO_RX_RING_CNT];
|
|
struct mbuf *bge_rx_mini_chain[BGE_MINI_RX_RING_CNT];
|
|
bus_dmamap_t bge_rx_std_map[BGE_STD_RX_RING_CNT];
|
|
bus_dmamap_t bge_rx_jumbo_map;
|
|
/* Stick the jumbo mem management stuff here too. */
|
|
void * bge_jslots[BGE_JSLOTS];
|
|
void * bge_jumbo_buf;
|
|
};
|
|
|
|
#define BGE_JUMBO_DMA_ADDR(sc, m) \
|
|
((sc)->bge_cdata.bge_rx_jumbo_map->dm_segs[0].ds_addr + \
|
|
(mtod((m), char *) - (char *)(sc)->bge_cdata.bge_jumbo_buf))
|
|
|
|
struct bge_type {
|
|
u_int16_t bge_vid;
|
|
u_int16_t bge_did;
|
|
char *bge_name;
|
|
};
|
|
|
|
#define BGE_TIMEOUT 1000
|
|
#define BGE_TXCONS_UNSET 0xFFFF /* impossible value */
|
|
|
|
struct bge_jpool_entry {
|
|
int slot;
|
|
SLIST_ENTRY(bge_jpool_entry) jpool_entries;
|
|
};
|
|
|
|
struct bge_bcom_hack {
|
|
int reg;
|
|
int val;
|
|
};
|
|
|
|
struct txdmamap_pool_entry {
|
|
bus_dmamap_t dmamap;
|
|
SLIST_ENTRY(txdmamap_pool_entry) link;
|
|
};
|
|
|
|
struct bge_softc {
|
|
device_t bge_dev;
|
|
struct ethercom ethercom; /* interface info */
|
|
bus_space_handle_t bge_bhandle;
|
|
bus_space_tag_t bge_btag;
|
|
void *bge_intrhand;
|
|
pci_chipset_tag_t sc_pc;
|
|
pcitag_t sc_pcitag;
|
|
|
|
struct mii_data bge_mii;
|
|
struct ifmedia bge_ifmedia; /* media info */
|
|
u_int8_t bge_extram; /* has external SSRAM */
|
|
u_int32_t bge_return_ring_cnt;
|
|
u_int32_t bge_tx_prodidx;
|
|
bus_dma_tag_t bge_dmatag;
|
|
u_int32_t bge_chipid;
|
|
u_int32_t bge_local_ctrl_reg;
|
|
struct bge_ring_data *bge_rdata; /* rings */
|
|
struct bge_chain_data bge_cdata; /* mbufs */
|
|
bus_dmamap_t bge_ring_map;
|
|
u_int16_t bge_tx_saved_considx;
|
|
u_int16_t bge_rx_saved_considx;
|
|
u_int16_t bge_ev_saved_considx;
|
|
u_int16_t bge_std; /* current std ring head */
|
|
u_int16_t bge_jumbo; /* current jumo ring head */
|
|
SLIST_HEAD(__bge_jfreehead, bge_jpool_entry) bge_jfree_listhead;
|
|
SLIST_HEAD(__bge_jinusehead, bge_jpool_entry) bge_jinuse_listhead;
|
|
u_int32_t bge_stat_ticks;
|
|
u_int32_t bge_rx_coal_ticks;
|
|
u_int32_t bge_tx_coal_ticks;
|
|
u_int32_t bge_rx_max_coal_bds;
|
|
u_int32_t bge_tx_max_coal_bds;
|
|
u_int32_t bge_tx_buf_ratio;
|
|
uint32_t bge_sts;
|
|
#define BGE_STS_LINK 0x00000001 /* MAC link status */
|
|
#define BGE_STS_LINK_EVT 0x00000002 /* pending link event */
|
|
#define BGE_STS_AUTOPOLL 0x00000004 /* PHY auto-polling */
|
|
#define BGE_STS_BIT(sc, x) ((sc)->bge_sts & (x))
|
|
#define BGE_STS_SETBIT(sc, x) ((sc)->bge_sts |= (x))
|
|
#define BGE_STS_CLRBIT(sc, x) ((sc)->bge_sts &= ~(x))
|
|
int bge_if_flags;
|
|
uint32_t bge_flags;
|
|
int bge_flowflags;
|
|
#ifdef BGE_EVENT_COUNTERS
|
|
/*
|
|
* Event counters.
|
|
*/
|
|
struct evcnt bge_ev_intr; /* interrupts */
|
|
struct evcnt bge_ev_tx_xoff; /* send PAUSE(len>0) packets */
|
|
struct evcnt bge_ev_tx_xon; /* send PAUSE(len=0) packets */
|
|
struct evcnt bge_ev_rx_xoff; /* receive PAUSE(len>0) packets */
|
|
struct evcnt bge_ev_rx_xon; /* receive PAUSE(len=0) packets */
|
|
struct evcnt bge_ev_rx_macctl; /* receive MAC control packets */
|
|
struct evcnt bge_ev_xoffentered;/* XOFF state entered */
|
|
#endif /* BGE_EVENT_COUNTERS */
|
|
int bge_txcnt;
|
|
struct callout bge_timeout;
|
|
char *bge_vpd_prodname;
|
|
char *bge_vpd_readonly;
|
|
int bge_pending_rxintr_change;
|
|
SLIST_HEAD(, txdmamap_pool_entry) txdma_list;
|
|
struct txdmamap_pool_entry *txdma[BGE_TX_RING_CNT];
|
|
|
|
#if NRND > 0
|
|
rndsource_element_t rnd_source; /* random source */
|
|
#endif
|
|
};
|
|
|
|
#endif /* _DEV_PCI_IF_BGEVAR_H_ */
|