NetBSD/sys/dev/pci/pci_subr.c
2020-05-30 10:43:46 +00:00

4946 lines
150 KiB
C

/* $NetBSD: pci_subr.c,v 1.224 2020/05/30 10:43:46 jdolecek Exp $ */
/*
* Copyright (c) 1997 Zubin D. Dittia. All rights reserved.
* Copyright (c) 1995, 1996, 1998, 2000
* Christopher G. Demetriou. All rights reserved.
* Copyright (c) 1994 Charles M. Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* PCI autoconfiguration support functions.
*
* Note: This file is also built into a userland library (libpci).
* Pay attention to this when you make modifications.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pci_subr.c,v 1.224 2020/05/30 10:43:46 jdolecek Exp $");
#ifdef _KERNEL_OPT
#include "opt_pci.h"
#endif
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/intr.h>
#include <sys/module.h>
#include <sys/kmem.h>
#define MALLOC(sz) kmem_alloc(sz, KM_SLEEP)
#define FREE(p, sz) kmem_free(p, sz)
#else
#include <pci.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define MALLOC(sz) malloc(sz)
#define FREE(p, sz) free(p)
#endif
#include <dev/pci/pcireg.h>
#ifdef _KERNEL
#include <dev/pci/pcivar.h>
#else
#include <dev/pci/pci_verbose.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/pcidevs_data.h>
#endif
static int pci_conf_find_cap(const pcireg_t *, unsigned int, int *);
static int pci_conf_find_extcap(const pcireg_t *, unsigned int, int *);
static void pci_conf_print_pcie_power(uint8_t, unsigned int);
#define PCIREG_SHIFTOUT(a, b) ((pcireg_t)__SHIFTOUT((a), (b)))
/*
* Descriptions of known PCI classes and subclasses.
*
* Subclasses are described in the same way as classes, but have a
* NULL subclass pointer.
*/
struct pci_class {
const char *name;
u_int val; /* as wide as pci_{,sub}class_t */
const struct pci_class *subclasses;
};
/*
* Class 0x00.
* Before rev. 2.0.
*/
static const struct pci_class pci_subclass_prehistoric[] = {
{ "miscellaneous", PCI_SUBCLASS_PREHISTORIC_MISC, NULL, },
{ "VGA", PCI_SUBCLASS_PREHISTORIC_VGA, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x01.
* Mass storage controller
*/
/* ATA programming interface */
static const struct pci_class pci_interface_ata[] = {
{ "with single DMA", PCI_INTERFACE_ATA_SINGLEDMA, NULL, },
{ "with chained DMA", PCI_INTERFACE_ATA_CHAINEDDMA, NULL, },
{ NULL, 0, NULL, },
};
/* SATA programming interface */
static const struct pci_class pci_interface_sata[] = {
{ "vendor specific", PCI_INTERFACE_SATA_VND, NULL, },
{ "AHCI 1.0", PCI_INTERFACE_SATA_AHCI10, NULL, },
{ "Serial Storage Bus Interface", PCI_INTERFACE_SATA_SSBI, NULL, },
{ NULL, 0, NULL, },
};
/* Flash programming interface */
static const struct pci_class pci_interface_nvm[] = {
{ "vendor specific", PCI_INTERFACE_NVM_VND, NULL, },
{ "NVMHCI 1.0", PCI_INTERFACE_NVM_NVMHCI10, NULL, },
{ "NVMe", PCI_INTERFACE_NVM_NVME, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_mass_storage[] = {
{ "SCSI", PCI_SUBCLASS_MASS_STORAGE_SCSI, NULL, },
{ "IDE", PCI_SUBCLASS_MASS_STORAGE_IDE, NULL, },
{ "floppy", PCI_SUBCLASS_MASS_STORAGE_FLOPPY, NULL, },
{ "IPI", PCI_SUBCLASS_MASS_STORAGE_IPI, NULL, },
{ "RAID", PCI_SUBCLASS_MASS_STORAGE_RAID, NULL, },
{ "ATA", PCI_SUBCLASS_MASS_STORAGE_ATA,
pci_interface_ata, },
{ "SATA", PCI_SUBCLASS_MASS_STORAGE_SATA,
pci_interface_sata, },
{ "SAS", PCI_SUBCLASS_MASS_STORAGE_SAS, NULL, },
{ "Flash", PCI_SUBCLASS_MASS_STORAGE_NVM,
pci_interface_nvm, },
{ "miscellaneous", PCI_SUBCLASS_MASS_STORAGE_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x02.
* Network controller.
*/
static const struct pci_class pci_subclass_network[] = {
{ "ethernet", PCI_SUBCLASS_NETWORK_ETHERNET, NULL, },
{ "token ring", PCI_SUBCLASS_NETWORK_TOKENRING, NULL, },
{ "FDDI", PCI_SUBCLASS_NETWORK_FDDI, NULL, },
{ "ATM", PCI_SUBCLASS_NETWORK_ATM, NULL, },
{ "ISDN", PCI_SUBCLASS_NETWORK_ISDN, NULL, },
{ "WorldFip", PCI_SUBCLASS_NETWORK_WORLDFIP, NULL, },
{ "PCMIG Multi Computing", PCI_SUBCLASS_NETWORK_PCIMGMULTICOMP, NULL, },
{ "miscellaneous", PCI_SUBCLASS_NETWORK_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x03.
* Display controller.
*/
/* VGA programming interface */
static const struct pci_class pci_interface_vga[] = {
{ "", PCI_INTERFACE_VGA_VGA, NULL, },
{ "8514-compat", PCI_INTERFACE_VGA_8514, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_display[] = {
{ "VGA", PCI_SUBCLASS_DISPLAY_VGA, pci_interface_vga,},
{ "XGA", PCI_SUBCLASS_DISPLAY_XGA, NULL, },
{ "3D", PCI_SUBCLASS_DISPLAY_3D, NULL, },
{ "miscellaneous", PCI_SUBCLASS_DISPLAY_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x04.
* Multimedia device.
*/
static const struct pci_class pci_subclass_multimedia[] = {
{ "video", PCI_SUBCLASS_MULTIMEDIA_VIDEO, NULL, },
{ "audio", PCI_SUBCLASS_MULTIMEDIA_AUDIO, NULL, },
{ "telephony", PCI_SUBCLASS_MULTIMEDIA_TELEPHONY, NULL,},
{ "mixed mode", PCI_SUBCLASS_MULTIMEDIA_HDAUDIO, NULL, },
{ "miscellaneous", PCI_SUBCLASS_MULTIMEDIA_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x05.
* Memory controller.
*/
static const struct pci_class pci_subclass_memory[] = {
{ "RAM", PCI_SUBCLASS_MEMORY_RAM, NULL, },
{ "flash", PCI_SUBCLASS_MEMORY_FLASH, NULL, },
{ "miscellaneous", PCI_SUBCLASS_MEMORY_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x06.
* Bridge device.
*/
/* PCI bridge programming interface */
static const struct pci_class pci_interface_pcibridge[] = {
{ "", PCI_INTERFACE_BRIDGE_PCI_PCI, NULL, },
{ "subtractive decode", PCI_INTERFACE_BRIDGE_PCI_SUBDEC, NULL, },
{ NULL, 0, NULL, },
};
/* Semi-transparent PCI-to-PCI bridge programming interface */
static const struct pci_class pci_interface_stpci[] = {
{ "primary side facing host", PCI_INTERFACE_STPCI_PRIMARY, NULL, },
{ "secondary side facing host", PCI_INTERFACE_STPCI_SECONDARY, NULL, },
{ NULL, 0, NULL, },
};
/* Advanced Switching programming interface */
static const struct pci_class pci_interface_advsw[] = {
{ "custom interface", PCI_INTERFACE_ADVSW_CUSTOM, NULL, },
{ "ASI-SIG", PCI_INTERFACE_ADVSW_ASISIG, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_bridge[] = {
{ "host", PCI_SUBCLASS_BRIDGE_HOST, NULL, },
{ "ISA", PCI_SUBCLASS_BRIDGE_ISA, NULL, },
{ "EISA", PCI_SUBCLASS_BRIDGE_EISA, NULL, },
{ "MicroChannel", PCI_SUBCLASS_BRIDGE_MC, NULL, },
{ "PCI", PCI_SUBCLASS_BRIDGE_PCI,
pci_interface_pcibridge, },
{ "PCMCIA", PCI_SUBCLASS_BRIDGE_PCMCIA, NULL, },
{ "NuBus", PCI_SUBCLASS_BRIDGE_NUBUS, NULL, },
{ "CardBus", PCI_SUBCLASS_BRIDGE_CARDBUS, NULL, },
{ "RACEway", PCI_SUBCLASS_BRIDGE_RACEWAY, NULL, },
{ "Semi-transparent PCI", PCI_SUBCLASS_BRIDGE_STPCI,
pci_interface_stpci, },
{ "InfiniBand", PCI_SUBCLASS_BRIDGE_INFINIBAND, NULL, },
{ "advanced switching", PCI_SUBCLASS_BRIDGE_ADVSW,
pci_interface_advsw, },
{ "miscellaneous", PCI_SUBCLASS_BRIDGE_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x07.
* Simple communications controller.
*/
/* Serial controller programming interface */
static const struct pci_class pci_interface_serial[] = {
{ "generic XT-compat", PCI_INTERFACE_SERIAL_XT, NULL, },
{ "16450-compat", PCI_INTERFACE_SERIAL_16450, NULL, },
{ "16550-compat", PCI_INTERFACE_SERIAL_16550, NULL, },
{ "16650-compat", PCI_INTERFACE_SERIAL_16650, NULL, },
{ "16750-compat", PCI_INTERFACE_SERIAL_16750, NULL, },
{ "16850-compat", PCI_INTERFACE_SERIAL_16850, NULL, },
{ "16950-compat", PCI_INTERFACE_SERIAL_16950, NULL, },
{ NULL, 0, NULL, },
};
/* Parallel controller programming interface */
static const struct pci_class pci_interface_parallel[] = {
{ "", PCI_INTERFACE_PARALLEL, NULL,},
{ "bi-directional", PCI_INTERFACE_PARALLEL_BIDIRECTIONAL, NULL,},
{ "ECP 1.X-compat", PCI_INTERFACE_PARALLEL_ECP1X, NULL,},
{ "IEEE1284 controller", PCI_INTERFACE_PARALLEL_IEEE1284_CNTRL, NULL,},
{ "IEEE1284 target", PCI_INTERFACE_PARALLEL_IEEE1284_TGT, NULL,},
{ NULL, 0, NULL,},
};
/* Modem programming interface */
static const struct pci_class pci_interface_modem[] = {
{ "", PCI_INTERFACE_MODEM, NULL,},
{ "Hayes&16450-compat", PCI_INTERFACE_MODEM_HAYES16450, NULL,},
{ "Hayes&16550-compat", PCI_INTERFACE_MODEM_HAYES16550, NULL,},
{ "Hayes&16650-compat", PCI_INTERFACE_MODEM_HAYES16650, NULL,},
{ "Hayes&16750-compat", PCI_INTERFACE_MODEM_HAYES16750, NULL,},
{ NULL, 0, NULL,},
};
/* Subclasses */
static const struct pci_class pci_subclass_communications[] = {
{ "serial", PCI_SUBCLASS_COMMUNICATIONS_SERIAL,
pci_interface_serial, },
{ "parallel", PCI_SUBCLASS_COMMUNICATIONS_PARALLEL,
pci_interface_parallel, },
{ "multi-port serial", PCI_SUBCLASS_COMMUNICATIONS_MPSERIAL, NULL,},
{ "modem", PCI_SUBCLASS_COMMUNICATIONS_MODEM,
pci_interface_modem, },
{ "GPIB", PCI_SUBCLASS_COMMUNICATIONS_GPIB, NULL,},
{ "smartcard", PCI_SUBCLASS_COMMUNICATIONS_SMARTCARD, NULL,},
{ "miscellaneous", PCI_SUBCLASS_COMMUNICATIONS_MISC, NULL,},
{ NULL, 0, NULL,},
};
/*
* Class 0x08.
* Base system peripheral.
*/
/* PIC programming interface */
static const struct pci_class pci_interface_pic[] = {
{ "generic 8259", PCI_INTERFACE_PIC_8259, NULL, },
{ "ISA PIC", PCI_INTERFACE_PIC_ISA, NULL, },
{ "EISA PIC", PCI_INTERFACE_PIC_EISA, NULL, },
{ "IO APIC", PCI_INTERFACE_PIC_IOAPIC, NULL, },
{ "IO(x) APIC", PCI_INTERFACE_PIC_IOXAPIC, NULL, },
{ NULL, 0, NULL, },
};
/* DMA programming interface */
static const struct pci_class pci_interface_dma[] = {
{ "generic 8237", PCI_INTERFACE_DMA_8237, NULL, },
{ "ISA", PCI_INTERFACE_DMA_ISA, NULL, },
{ "EISA", PCI_INTERFACE_DMA_EISA, NULL, },
{ NULL, 0, NULL, },
};
/* Timer programming interface */
static const struct pci_class pci_interface_tmr[] = {
{ "generic 8254", PCI_INTERFACE_TIMER_8254, NULL, },
{ "ISA", PCI_INTERFACE_TIMER_ISA, NULL, },
{ "EISA", PCI_INTERFACE_TIMER_EISA, NULL, },
{ "HPET", PCI_INTERFACE_TIMER_HPET, NULL, },
{ NULL, 0, NULL, },
};
/* RTC programming interface */
static const struct pci_class pci_interface_rtc[] = {
{ "generic", PCI_INTERFACE_RTC_GENERIC, NULL, },
{ "ISA", PCI_INTERFACE_RTC_ISA, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_system[] = {
{ "interrupt", PCI_SUBCLASS_SYSTEM_PIC, pci_interface_pic,},
{ "DMA", PCI_SUBCLASS_SYSTEM_DMA, pci_interface_dma,},
{ "timer", PCI_SUBCLASS_SYSTEM_TIMER, pci_interface_tmr,},
{ "RTC", PCI_SUBCLASS_SYSTEM_RTC, pci_interface_rtc,},
{ "PCI Hot-Plug", PCI_SUBCLASS_SYSTEM_PCIHOTPLUG, NULL, },
{ "SD Host Controller", PCI_SUBCLASS_SYSTEM_SDHC, NULL, },
{ "IOMMU", PCI_SUBCLASS_SYSTEM_IOMMU, NULL, },
{ "Root Complex Event Collector", PCI_SUBCLASS_SYSTEM_RCEC, NULL, },
{ "miscellaneous", PCI_SUBCLASS_SYSTEM_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x09.
* Input device.
*/
/* Gameport programming interface */
static const struct pci_class pci_interface_game[] = {
{ "generic", PCI_INTERFACE_GAMEPORT_GENERIC, NULL, },
{ "legacy", PCI_INTERFACE_GAMEPORT_LEGACY, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_input[] = {
{ "keyboard", PCI_SUBCLASS_INPUT_KEYBOARD, NULL, },
{ "digitizer", PCI_SUBCLASS_INPUT_DIGITIZER, NULL, },
{ "mouse", PCI_SUBCLASS_INPUT_MOUSE, NULL, },
{ "scanner", PCI_SUBCLASS_INPUT_SCANNER, NULL, },
{ "game port", PCI_SUBCLASS_INPUT_GAMEPORT,
pci_interface_game, },
{ "miscellaneous", PCI_SUBCLASS_INPUT_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x0a.
* Docking station.
*/
static const struct pci_class pci_subclass_dock[] = {
{ "generic", PCI_SUBCLASS_DOCK_GENERIC, NULL, },
{ "miscellaneous", PCI_SUBCLASS_DOCK_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x0b.
* Processor.
*/
static const struct pci_class pci_subclass_processor[] = {
{ "386", PCI_SUBCLASS_PROCESSOR_386, NULL, },
{ "486", PCI_SUBCLASS_PROCESSOR_486, NULL, },
{ "Pentium", PCI_SUBCLASS_PROCESSOR_PENTIUM, NULL, },
{ "Alpha", PCI_SUBCLASS_PROCESSOR_ALPHA, NULL, },
{ "PowerPC", PCI_SUBCLASS_PROCESSOR_POWERPC, NULL, },
{ "MIPS", PCI_SUBCLASS_PROCESSOR_MIPS, NULL, },
{ "Co-processor", PCI_SUBCLASS_PROCESSOR_COPROC, NULL, },
{ "miscellaneous", PCI_SUBCLASS_PROCESSOR_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x0c.
* Serial bus controller.
*/
/* IEEE1394 programming interface */
static const struct pci_class pci_interface_ieee1394[] = {
{ "Firewire", PCI_INTERFACE_IEEE1394_FIREWIRE, NULL,},
{ "OpenHCI", PCI_INTERFACE_IEEE1394_OPENHCI, NULL,},
{ NULL, 0, NULL,},
};
/* USB programming interface */
static const struct pci_class pci_interface_usb[] = {
{ "UHCI", PCI_INTERFACE_USB_UHCI, NULL, },
{ "OHCI", PCI_INTERFACE_USB_OHCI, NULL, },
{ "EHCI", PCI_INTERFACE_USB_EHCI, NULL, },
{ "xHCI", PCI_INTERFACE_USB_XHCI, NULL, },
{ "other HC", PCI_INTERFACE_USB_OTHERHC, NULL, },
{ "device", PCI_INTERFACE_USB_DEVICE, NULL, },
{ NULL, 0, NULL, },
};
/* IPMI programming interface */
static const struct pci_class pci_interface_ipmi[] = {
{ "SMIC", PCI_INTERFACE_IPMI_SMIC, NULL, },
{ "keyboard", PCI_INTERFACE_IPMI_KBD, NULL, },
{ "block transfer", PCI_INTERFACE_IPMI_BLOCKXFER, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_serialbus[] = {
{ "IEEE1394", PCI_SUBCLASS_SERIALBUS_FIREWIRE,
pci_interface_ieee1394, },
{ "ACCESS.bus", PCI_SUBCLASS_SERIALBUS_ACCESS, NULL, },
{ "SSA", PCI_SUBCLASS_SERIALBUS_SSA, NULL, },
{ "USB", PCI_SUBCLASS_SERIALBUS_USB,
pci_interface_usb, },
/* XXX Fiber Channel/_FIBRECHANNEL */
{ "Fiber Channel", PCI_SUBCLASS_SERIALBUS_FIBER, NULL, },
{ "SMBus", PCI_SUBCLASS_SERIALBUS_SMBUS, NULL, },
{ "InfiniBand", PCI_SUBCLASS_SERIALBUS_INFINIBAND, NULL,},
{ "IPMI", PCI_SUBCLASS_SERIALBUS_IPMI,
pci_interface_ipmi, },
{ "SERCOS", PCI_SUBCLASS_SERIALBUS_SERCOS, NULL, },
{ "CANbus", PCI_SUBCLASS_SERIALBUS_CANBUS, NULL, },
{ "miscellaneous", PCI_SUBCLASS_SERIALBUS_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x0d.
* Wireless Controller.
*/
static const struct pci_class pci_subclass_wireless[] = {
{ "IrDA", PCI_SUBCLASS_WIRELESS_IRDA, NULL, },
{ "Consumer IR",/*XXX*/ PCI_SUBCLASS_WIRELESS_CONSUMERIR, NULL, },
{ "RF", PCI_SUBCLASS_WIRELESS_RF, NULL, },
{ "bluetooth", PCI_SUBCLASS_WIRELESS_BLUETOOTH, NULL, },
{ "broadband", PCI_SUBCLASS_WIRELESS_BROADBAND, NULL, },
{ "802.11a (5 GHz)", PCI_SUBCLASS_WIRELESS_802_11A, NULL, },
{ "802.11b (2.4 GHz)", PCI_SUBCLASS_WIRELESS_802_11B, NULL, },
{ "miscellaneous", PCI_SUBCLASS_WIRELESS_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x0e.
* Intelligent IO controller.
*/
/* Intelligent IO programming interface */
static const struct pci_class pci_interface_i2o[] = {
{ "FIFO at offset 0x40", PCI_INTERFACE_I2O_FIFOAT40, NULL, },
{ NULL, 0, NULL, },
};
/* Subclasses */
static const struct pci_class pci_subclass_i2o[] = {
{ "standard", PCI_SUBCLASS_I2O_STANDARD, pci_interface_i2o,},
{ "miscellaneous", PCI_SUBCLASS_I2O_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x0f.
* Satellite communication controller.
*/
static const struct pci_class pci_subclass_satcom[] = {
{ "TV", PCI_SUBCLASS_SATCOM_TV, NULL, },
{ "audio", PCI_SUBCLASS_SATCOM_AUDIO, NULL, },
{ "voice", PCI_SUBCLASS_SATCOM_VOICE, NULL, },
{ "data", PCI_SUBCLASS_SATCOM_DATA, NULL, },
{ "miscellaneous", PCI_SUBCLASS_SATCOM_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x10.
* Encryption/Decryption controller.
*/
static const struct pci_class pci_subclass_crypto[] = {
{ "network/computing", PCI_SUBCLASS_CRYPTO_NETCOMP, NULL, },
{ "entertainment", PCI_SUBCLASS_CRYPTO_ENTERTAINMENT, NULL,},
{ "miscellaneous", PCI_SUBCLASS_CRYPTO_MISC, NULL, },
{ NULL, 0, NULL, },
};
/*
* Class 0x11.
* Data aquuisition and signal processing controller.
*/
static const struct pci_class pci_subclass_dasp[] = {
{ "DPIO", PCI_SUBCLASS_DASP_DPIO, NULL, },
{ "performance counters", PCI_SUBCLASS_DASP_TIMEFREQ, NULL, },
{ "synchronization", PCI_SUBCLASS_DASP_SYNC, NULL, },
{ "management", PCI_SUBCLASS_DASP_MGMT, NULL, },
{ "miscellaneous", PCI_SUBCLASS_DASP_MISC, NULL, },
{ NULL, 0, NULL, },
};
/* List of classes */
static const struct pci_class pci_classes[] = {
{ "prehistoric", PCI_CLASS_PREHISTORIC,
pci_subclass_prehistoric, },
{ "mass storage", PCI_CLASS_MASS_STORAGE,
pci_subclass_mass_storage, },
{ "network", PCI_CLASS_NETWORK,
pci_subclass_network, },
{ "display", PCI_CLASS_DISPLAY,
pci_subclass_display, },
{ "multimedia", PCI_CLASS_MULTIMEDIA,
pci_subclass_multimedia, },
{ "memory", PCI_CLASS_MEMORY,
pci_subclass_memory, },
{ "bridge", PCI_CLASS_BRIDGE,
pci_subclass_bridge, },
{ "communications", PCI_CLASS_COMMUNICATIONS,
pci_subclass_communications, },
{ "system", PCI_CLASS_SYSTEM,
pci_subclass_system, },
{ "input", PCI_CLASS_INPUT,
pci_subclass_input, },
{ "dock", PCI_CLASS_DOCK,
pci_subclass_dock, },
{ "processor", PCI_CLASS_PROCESSOR,
pci_subclass_processor, },
{ "serial bus", PCI_CLASS_SERIALBUS,
pci_subclass_serialbus, },
{ "wireless", PCI_CLASS_WIRELESS,
pci_subclass_wireless, },
{ "I2O", PCI_CLASS_I2O,
pci_subclass_i2o, },
{ "satellite comm", PCI_CLASS_SATCOM,
pci_subclass_satcom, },
{ "crypto", PCI_CLASS_CRYPTO,
pci_subclass_crypto, },
{ "DASP", PCI_CLASS_DASP,
pci_subclass_dasp, },
{ "processing accelerators", PCI_CLASS_ACCEL,
NULL, },
{ "non-essential instrumentation", PCI_CLASS_INSTRUMENT,
NULL, },
{ "undefined", PCI_CLASS_UNDEFINED,
NULL, },
{ NULL, 0,
NULL, },
};
DEV_VERBOSE_DEFINE(pci);
/*
* Append a formatted string to dest without writing more than len
* characters (including the trailing NUL character). dest and len
* are updated for use in subsequent calls to snappendf().
*
* Returns 0 on success, a negative value if vnsprintf() fails, or
* a positive value if the dest buffer would have overflowed.
*/
static int __printflike(3, 4)
snappendf(char **dest, size_t *len, const char * restrict fmt, ...)
{
va_list ap;
int count;
va_start(ap, fmt);
count = vsnprintf(*dest, *len, fmt, ap);
va_end(ap);
/* Let vsnprintf() errors bubble up to caller */
if (count < 0 || *len == 0)
return count;
/* Handle overflow */
if ((size_t)count >= *len) {
*dest += *len - 1;
*len = 1;
return 1;
}
/* Update dest & len to point at trailing NUL */
*dest += count;
*len -= count;
return 0;
}
void
pci_devinfo(pcireg_t id_reg, pcireg_t class_reg, int showclass, char *cp,
size_t l)
{
pci_class_t class;
pci_subclass_t subclass;
pci_interface_t interface;
pci_revision_t revision;
char vendor[PCI_VENDORSTR_LEN], product[PCI_PRODUCTSTR_LEN];
const struct pci_class *classp, *subclassp, *interfacep;
class = PCI_CLASS(class_reg);
subclass = PCI_SUBCLASS(class_reg);
interface = PCI_INTERFACE(class_reg);
revision = PCI_REVISION(class_reg);
pci_findvendor(vendor, sizeof(vendor), PCI_VENDOR(id_reg));
pci_findproduct(product, sizeof(product), PCI_VENDOR(id_reg),
PCI_PRODUCT(id_reg));
classp = pci_classes;
while (classp->name != NULL) {
if (class == classp->val)
break;
classp++;
}
subclassp = (classp->name != NULL) ? classp->subclasses : NULL;
while (subclassp && subclassp->name != NULL) {
if (subclass == subclassp->val)
break;
subclassp++;
}
interfacep = (subclassp && subclassp->name != NULL) ?
subclassp->subclasses : NULL;
while (interfacep && interfacep->name != NULL) {
if (interface == interfacep->val)
break;
interfacep++;
}
(void)snappendf(&cp, &l, "%s %s", vendor, product);
if (showclass) {
(void)snappendf(&cp, &l, " (");
if (classp->name == NULL)
(void)snappendf(&cp, &l,
"class 0x%02x, subclass 0x%02x",
class, subclass);
else {
if (subclassp == NULL || subclassp->name == NULL)
(void)snappendf(&cp, &l,
"%s, subclass 0x%02x",
classp->name, subclass);
else
(void)snappendf(&cp, &l, "%s %s",
subclassp->name, classp->name);
}
if ((interfacep == NULL) || (interfacep->name == NULL)) {
if (interface != 0)
(void)snappendf(&cp, &l, ", interface 0x%02x",
interface);
} else if (strncmp(interfacep->name, "", 1) != 0)
(void)snappendf(&cp, &l, ", %s", interfacep->name);
if (revision != 0)
(void)snappendf(&cp, &l, ", revision 0x%02x", revision);
(void)snappendf(&cp, &l, ")");
}
}
#ifdef _KERNEL
void
pci_aprint_devinfo_fancy(const struct pci_attach_args *pa, const char *naive,
const char *known, int addrev)
{
char devinfo[256];
if (known) {
aprint_normal(": %s", known);
if (addrev)
aprint_normal(" (rev. 0x%02x)",
PCI_REVISION(pa->pa_class));
aprint_normal("\n");
} else {
pci_devinfo(pa->pa_id, pa->pa_class, 0,
devinfo, sizeof(devinfo));
aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
PCI_REVISION(pa->pa_class));
}
if (naive)
aprint_naive(": %s\n", naive);
else
aprint_naive("\n");
}
#endif
/*
* Print out most of the PCI configuration registers. Typically used
* in a device attach routine like this:
*
* #ifdef MYDEV_DEBUG
* printf("%s: ", device_xname(sc->sc_dev));
* pci_conf_print(pa->pa_pc, pa->pa_tag, NULL);
* #endif
*/
#define i2o(i) ((i) * 4)
#define o2i(o) ((o) / 4)
#define onoff2(str, rval, bit, onstr, offstr) \
/*CONSTCOND*/ \
printf(" %s: %s\n", (str), ((rval) & (bit)) ? onstr : offstr);
#define onoff(str, rval, bit) onoff2(str, rval, bit, "on", "off")
static void
pci_conf_print_common(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs)
{
pci_class_t class;
pci_subclass_t subclass;
pci_interface_t interface;
pci_revision_t revision;
char vendor[PCI_VENDORSTR_LEN], product[PCI_PRODUCTSTR_LEN];
const struct pci_class *classp, *subclassp, *interfacep;
const char *name;
pcireg_t rval;
unsigned int num;
rval = regs[o2i(PCI_CLASS_REG)];
class = PCI_CLASS(rval);
subclass = PCI_SUBCLASS(rval);
interface = PCI_INTERFACE(rval);
revision = PCI_REVISION(rval);
rval = regs[o2i(PCI_ID_REG)];
name = pci_findvendor(vendor, sizeof(vendor), PCI_VENDOR(rval));
if (name)
printf(" Vendor Name: %s (0x%04x)\n", name,
PCI_VENDOR(rval));
else
printf(" Vendor ID: 0x%04x\n", PCI_VENDOR(rval));
name = pci_findproduct(product, sizeof(product), PCI_VENDOR(rval),
PCI_PRODUCT(rval));
if (name)
printf(" Device Name: %s (0x%04x)\n", name,
PCI_PRODUCT(rval));
else
printf(" Device ID: 0x%04x\n", PCI_PRODUCT(rval));
rval = regs[o2i(PCI_COMMAND_STATUS_REG)];
printf(" Command register: 0x%04x\n", rval & 0xffff);
onoff("I/O space accesses", rval, PCI_COMMAND_IO_ENABLE);
onoff("Memory space accesses", rval, PCI_COMMAND_MEM_ENABLE);
onoff("Bus mastering", rval, PCI_COMMAND_MASTER_ENABLE);
onoff("Special cycles", rval, PCI_COMMAND_SPECIAL_ENABLE);
onoff("MWI transactions", rval, PCI_COMMAND_INVALIDATE_ENABLE);
onoff("Palette snooping", rval, PCI_COMMAND_PALETTE_ENABLE);
onoff("Parity error checking", rval, PCI_COMMAND_PARITY_ENABLE);
onoff("Address/data stepping", rval, PCI_COMMAND_STEPPING_ENABLE);
onoff("System error (SERR)", rval, PCI_COMMAND_SERR_ENABLE);
onoff("Fast back-to-back transactions", rval,
PCI_COMMAND_BACKTOBACK_ENABLE);
onoff("Interrupt disable", rval, PCI_COMMAND_INTERRUPT_DISABLE);
printf(" Status register: 0x%04x\n", (rval >> 16) & 0xffff);
onoff("Immediate Readiness", rval, PCI_STATUS_IMMD_READNESS);
onoff2("Interrupt status", rval, PCI_STATUS_INT_STATUS, "active",
"inactive");
onoff("Capability List support", rval, PCI_STATUS_CAPLIST_SUPPORT);
onoff("66 MHz capable", rval, PCI_STATUS_66MHZ_SUPPORT);
onoff("User Definable Features (UDF) support", rval,
PCI_STATUS_UDF_SUPPORT);
onoff("Fast back-to-back capable", rval,
PCI_STATUS_BACKTOBACK_SUPPORT);
onoff("Data parity error detected", rval, PCI_STATUS_PARITY_ERROR);
printf(" DEVSEL timing: ");
switch (rval & PCI_STATUS_DEVSEL_MASK) {
case PCI_STATUS_DEVSEL_FAST:
printf("fast");
break;
case PCI_STATUS_DEVSEL_MEDIUM:
printf("medium");
break;
case PCI_STATUS_DEVSEL_SLOW:
printf("slow");
break;
default:
printf("unknown/reserved"); /* XXX */
break;
}
printf(" (0x%x)\n", PCIREG_SHIFTOUT(rval, PCI_STATUS_DEVSEL_MASK));
onoff("Slave signaled Target Abort", rval,
PCI_STATUS_TARGET_TARGET_ABORT);
onoff("Master received Target Abort", rval,
PCI_STATUS_MASTER_TARGET_ABORT);
onoff("Master received Master Abort", rval, PCI_STATUS_MASTER_ABORT);
onoff("Asserted System Error (SERR)", rval, PCI_STATUS_SPECIAL_ERROR);
onoff("Parity error detected", rval, PCI_STATUS_PARITY_DETECT);
rval = regs[o2i(PCI_CLASS_REG)];
for (classp = pci_classes; classp->name != NULL; classp++) {
if (class == classp->val)
break;
}
/*
* ECN: Change Root Complex Event Collector Class Code
* Old RCEC has subclass 0x06. It's the same as IOMMU. Read the type
* in PCIe extend capability to know whether it's RCEC or IOMMU.
*/
if ((class == PCI_CLASS_SYSTEM)
&& (subclass == PCI_SUBCLASS_SYSTEM_IOMMU)) {
int pcie_capoff;
pcireg_t reg;
if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
reg = regs[o2i(pcie_capoff + PCIE_XCAP)];
if (PCIE_XCAP_TYPE(reg) == PCIE_XCAP_TYPE_ROOT_EVNTC)
subclass = PCI_SUBCLASS_SYSTEM_RCEC;
}
}
subclassp = (classp->name != NULL) ? classp->subclasses : NULL;
while (subclassp && subclassp->name != NULL) {
if (subclass == subclassp->val)
break;
subclassp++;
}
interfacep = (subclassp && subclassp->name != NULL) ?
subclassp->subclasses : NULL;
while (interfacep && interfacep->name != NULL) {
if (interface == interfacep->val)
break;
interfacep++;
}
if (classp->name != NULL)
printf(" Class Name: %s (0x%02x)\n", classp->name, class);
else
printf(" Class ID: 0x%02x\n", class);
if (subclassp != NULL && subclassp->name != NULL)
printf(" Subclass Name: %s (0x%02x)\n",
subclassp->name, PCI_SUBCLASS(rval));
else
printf(" Subclass ID: 0x%02x\n", PCI_SUBCLASS(rval));
if ((interfacep != NULL) && (interfacep->name != NULL)
&& (strncmp(interfacep->name, "", 1) != 0))
printf(" Interface Name: %s (0x%02x)\n",
interfacep->name, interface);
else
printf(" Interface: 0x%02x\n", interface);
printf(" Revision ID: 0x%02x\n", revision);
rval = regs[o2i(PCI_BHLC_REG)];
printf(" BIST: 0x%02x\n", PCI_BIST(rval));
printf(" Header Type: 0x%02x%s (0x%02x)\n", PCI_HDRTYPE_TYPE(rval),
PCI_HDRTYPE_MULTIFN(rval) ? "+multifunction" : "",
PCI_HDRTYPE(rval));
printf(" Latency Timer: 0x%02x\n", PCI_LATTIMER(rval));
num = PCI_CACHELINE(rval);
printf(" Cache Line Size: %ubytes (0x%02x)\n", num * 4, num);
}
static int
pci_conf_print_bar(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs, int reg, const char *name)
{
int width;
pcireg_t rval, rval64h;
bool ioen, memen;
#ifdef _KERNEL
pcireg_t mask, mask64h = 0;
#endif
rval = regs[o2i(PCI_COMMAND_STATUS_REG)];
ioen = rval & PCI_COMMAND_IO_ENABLE;
memen = rval & PCI_COMMAND_MEM_ENABLE;
width = 4;
/*
* Section 6.2.5.1, `Address Maps', tells us that:
*
* 1) The builtin software should have already mapped the
* device in a reasonable way.
*
* 2) A device which wants 2^n bytes of memory will hardwire
* the bottom n bits of the address to 0. As recommended,
* we write all 1s and see what we get back.
*/
rval = regs[o2i(reg)];
if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM &&
PCI_MAPREG_MEM_TYPE(rval) == PCI_MAPREG_MEM_TYPE_64BIT) {
rval64h = regs[o2i(reg + 4)];
width = 8;
} else
rval64h = 0;
#ifdef _KERNEL
if (rval != 0 && memen) {
int s;
/*
* The following sequence seems to make some devices
* (e.g. host bus bridges, which don't normally
* have their space mapped) very unhappy, to
* the point of crashing the system.
*
* Therefore, if the mapping register is zero to
* start out with, don't bother trying.
*/
s = splhigh();
pci_conf_write(pc, tag, reg, 0xffffffff);
mask = pci_conf_read(pc, tag, reg);
pci_conf_write(pc, tag, reg, rval);
if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM &&
PCI_MAPREG_MEM_TYPE(rval) == PCI_MAPREG_MEM_TYPE_64BIT) {
pci_conf_write(pc, tag, reg + 4, 0xffffffff);
mask64h = pci_conf_read(pc, tag, reg + 4);
pci_conf_write(pc, tag, reg + 4, rval64h);
}
splx(s);
} else
mask = mask64h = 0;
#endif /* _KERNEL */
printf(" Base address register at 0x%02x", reg);
if (name)
printf(" (%s)", name);
printf("\n ");
if (rval == 0) {
printf("not implemented\n");
return width;
}
printf("type: ");
if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM) {
const char *type, *prefetch;
switch (PCI_MAPREG_MEM_TYPE(rval)) {
case PCI_MAPREG_MEM_TYPE_32BIT:
type = "32-bit";
break;
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
type = "32-bit-1M";
break;
case PCI_MAPREG_MEM_TYPE_64BIT:
type = "64-bit";
break;
default:
type = "unknown (XXX)";
break;
}
if (PCI_MAPREG_MEM_PREFETCHABLE(rval))
prefetch = "";
else
prefetch = "non";
printf("%s %sprefetchable memory\n", type, prefetch);
switch (PCI_MAPREG_MEM_TYPE(rval)) {
case PCI_MAPREG_MEM_TYPE_64BIT:
printf(" base: 0x%016llx",
PCI_MAPREG_MEM64_ADDR(
((((long long) rval64h) << 32) | rval)));
if (!memen)
printf(", disabled");
printf("\n");
#ifdef _KERNEL
printf(" size: 0x%016llx\n",
PCI_MAPREG_MEM64_SIZE(
((((long long) mask64h) << 32) | mask)));
#endif
break;
case PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
default:
printf(" base: 0x%08x",
PCI_MAPREG_MEM_ADDR(rval));
if (!memen)
printf(", disabled");
printf("\n");
#ifdef _KERNEL
printf(" size: 0x%08x\n",
PCI_MAPREG_MEM_SIZE(mask));
#endif
break;
}
} else {
#ifdef _KERNEL
if (ioen)
printf("%d-bit ", mask & ~0x0000ffff ? 32 : 16);
#endif
printf("I/O\n");
printf(" base: 0x%08x", PCI_MAPREG_IO_ADDR(rval));
if (!ioen)
printf(", disabled");
printf("\n");
#ifdef _KERNEL
printf(" size: 0x%08x\n", PCI_MAPREG_IO_SIZE(mask));
#endif
}
return width;
}
static void
pci_conf_print_regs(const pcireg_t *regs, int first, int pastlast)
{
int off, needaddr, neednl;
needaddr = 1;
neednl = 0;
for (off = first; off < pastlast; off += 4) {
if ((off % 16) == 0 || needaddr) {
printf(" 0x%02x:", off);
needaddr = 0;
}
printf(" 0x%08x", regs[o2i(off)]);
neednl = 1;
if ((off % 16) == 12) {
printf("\n");
neednl = 0;
}
}
if (neednl)
printf("\n");
}
static const char *
pci_conf_print_agp_calcycle(uint8_t cal)
{
switch (cal) {
case 0x0:
return "4ms";
case 0x1:
return "16ms";
case 0x2:
return "64ms";
case 0x3:
return "256ms";
case 0x7:
return "Calibration Cycle Not Needed";
default:
return "(reserved)";
}
}
static void
pci_conf_print_agp_datarate(pcireg_t reg, bool isagp3)
{
if (isagp3) {
/* AGP 3.0 */
if (reg & AGP_MODE_V3_RATE_4x)
printf("x4");
if (reg & AGP_MODE_V3_RATE_8x)
printf("x8");
} else {
/* AGP 2.0 */
if (reg & AGP_MODE_V2_RATE_1x)
printf("x1");
if (reg & AGP_MODE_V2_RATE_2x)
printf("x2");
if (reg & AGP_MODE_V2_RATE_4x)
printf("x4");
}
printf("\n");
}
static void
pci_conf_print_agp_cap(const pcireg_t *regs, int capoff)
{
pcireg_t rval;
bool isagp3;
printf("\n AGP Capabilities Register\n");
rval = regs[o2i(capoff)];
printf(" Revision: %d.%d\n",
PCI_CAP_AGP_MAJOR(rval), PCI_CAP_AGP_MINOR(rval));
rval = regs[o2i(capoff + PCI_AGP_STATUS)];
printf(" Status register: 0x%04x\n", rval);
printf(" RQ: %u\n",
PCIREG_SHIFTOUT(rval, AGP_MODE_RQ) + 1);
printf(" ARQSZ: %u\n",
PCIREG_SHIFTOUT(rval, AGP_MODE_ARQSZ));
printf(" CAL cycle: %s\n",
pci_conf_print_agp_calcycle(PCIREG_SHIFTOUT(rval, AGP_MODE_CAL)));
onoff("SBA", rval, AGP_MODE_SBA);
onoff("htrans#", rval, AGP_MODE_HTRANS);
onoff("Over 4G", rval, AGP_MODE_4G);
onoff("Fast Write", rval, AGP_MODE_FW);
onoff("AGP 3.0 Mode", rval, AGP_MODE_MODE_3);
isagp3 = rval & AGP_MODE_MODE_3;
printf(" Data Rate Support: ");
pci_conf_print_agp_datarate(rval, isagp3);
rval = regs[o2i(capoff + PCI_AGP_COMMAND)];
printf(" Command register: 0x%08x\n", rval);
printf(" PRQ: %u\n",
PCIREG_SHIFTOUT(rval, AGP_MODE_RQ) + 1);
printf(" PARQSZ: %u\n",
PCIREG_SHIFTOUT(rval, AGP_MODE_ARQSZ));
printf(" PCAL cycle: %s\n",
pci_conf_print_agp_calcycle(PCIREG_SHIFTOUT(rval, AGP_MODE_CAL)));
onoff("SBA", rval, AGP_MODE_SBA);
onoff("AGP", rval, AGP_MODE_AGP);
onoff("Over 4G", rval, AGP_MODE_4G);
onoff("Fast Write", rval, AGP_MODE_FW);
if (isagp3) {
printf(" Data Rate Enable: ");
/*
* The Data Rate Enable bits are used only on 3.0 and the
* Command register has no AGP_MODE_MODE_3 bit, so pass the
* flag to print correctly.
*/
pci_conf_print_agp_datarate(rval, isagp3);
}
}
static const char *
pci_conf_print_pcipm_cap_aux(uint16_t caps)
{
switch ((caps >> 6) & 7) {
case 0: return "self-powered";
case 1: return "55 mA";
case 2: return "100 mA";
case 3: return "160 mA";
case 4: return "220 mA";
case 5: return "270 mA";
case 6: return "320 mA";
case 7:
default: return "375 mA";
}
}
static const char *
pci_conf_print_pcipm_cap_pmrev(uint8_t val)
{
static const char unk[] = "unknown";
static const char *pmrev[8] = {
unk, "1.0", "1.1", "1.2", unk, unk, unk, unk
};
if (val > 7)
return unk;
return pmrev[val];
}
static void
pci_conf_print_pcipm_cap(const pcireg_t *regs, int capoff)
{
uint16_t caps, pmcsr;
caps = regs[o2i(capoff)] >> PCI_PMCR_SHIFT;
pmcsr = regs[o2i(capoff + PCI_PMCSR)];
printf("\n PCI Power Management Capabilities Register\n");
printf(" Capabilities register: 0x%04x\n", caps);
printf(" Version: %s\n",
pci_conf_print_pcipm_cap_pmrev(caps & PCI_PMCR_VERSION_MASK));
onoff("PME# clock", caps, PCI_PMCR_PME_CLOCK);
onoff("Device specific initialization", caps, PCI_PMCR_DSI);
printf(" 3.3V auxiliary current: %s\n",
pci_conf_print_pcipm_cap_aux(caps));
onoff("D1 power management state support", caps, PCI_PMCR_D1SUPP);
onoff("D2 power management state support", caps, PCI_PMCR_D2SUPP);
onoff("PME# support D0", caps, PCI_PMCR_PME_D0);
onoff("PME# support D1", caps, PCI_PMCR_PME_D1);
onoff("PME# support D2", caps, PCI_PMCR_PME_D2);
onoff("PME# support D3 hot", caps, PCI_PMCR_PME_D3HOT);
onoff("PME# support D3 cold", caps, PCI_PMCR_PME_D3COLD);
printf(" Control/status register: 0x%08x\n", pmcsr);
printf(" Power state: D%d\n", pmcsr & PCI_PMCSR_STATE_MASK);
onoff("PCI Express reserved", (pmcsr >> 2), 1);
onoff("No soft reset", pmcsr, PCI_PMCSR_NO_SOFTRST);
printf(" PME# assertion: %sabled\n",
(pmcsr & PCI_PMCSR_PME_EN) ? "en" : "dis");
printf(" Data Select: %d\n",
PCIREG_SHIFTOUT(pmcsr, PCI_PMCSR_DATASEL_MASK));
printf(" Data Scale: %d\n",
PCIREG_SHIFTOUT(pmcsr, PCI_PMCSR_DATASCL_MASK));
onoff("PME# status", pmcsr, PCI_PMCSR_PME_STS);
printf(" Bridge Support Extensions register: 0x%02x\n",
(pmcsr >> 16) & 0xff);
onoff("B2/B3 support", pmcsr, PCI_PMCSR_B2B3_SUPPORT);
onoff("Bus Power/Clock Control Enable", pmcsr, PCI_PMCSR_BPCC_EN);
printf(" Data register: 0x%02x\n",
PCIREG_SHIFTOUT(pmcsr, PCI_PMCSR_DATA));
}
/* XXX pci_conf_print_vpd_cap */
/* XXX pci_conf_print_slotid_cap */
static void
pci_conf_print_msi_cap(const pcireg_t *regs, int capoff)
{
uint32_t ctl, mmc, mme;
regs += o2i(capoff);
ctl = *regs++;
mmc = PCIREG_SHIFTOUT(ctl, PCI_MSI_CTL_MMC_MASK);
mme = PCIREG_SHIFTOUT(ctl, PCI_MSI_CTL_MME_MASK);
printf("\n PCI Message Signaled Interrupt\n");
printf(" Message Control register: 0x%04x\n", ctl >> 16);
onoff("MSI Enabled", ctl, PCI_MSI_CTL_MSI_ENABLE);
printf(" Multiple Message Capable: %s (%d vector%s)\n",
mmc > 0 ? "yes" : "no", 1 << mmc, mmc > 0 ? "s" : "");
printf(" Multiple Message Enabled: %s (%d vector%s)\n",
mme > 0 ? "on" : "off", 1 << mme, mme > 0 ? "s" : "");
onoff("64 Bit Address Capable", ctl, PCI_MSI_CTL_64BIT_ADDR);
onoff("Per-Vector Masking Capable", ctl, PCI_MSI_CTL_PERVEC_MASK);
onoff("Extended Message Data Capable", ctl, PCI_MSI_CTL_EXTMDATA_CAP);
onoff("Extended Message Data Enable", ctl, PCI_MSI_CTL_EXTMDATA_EN);
printf(" Message Address %sregister: 0x%08x\n",
ctl & PCI_MSI_CTL_64BIT_ADDR ? "(lower) " : "", *regs++);
if (ctl & PCI_MSI_CTL_64BIT_ADDR) {
printf(" Message Address %sregister: 0x%08x\n",
"(upper) ", *regs++);
}
printf(" Message Data register: ");
if (ctl & PCI_MSI_CTL_EXTMDATA_CAP)
printf("0x%08x\n", *regs);
else
printf("0x%04x\n", *regs & 0xffff);
regs++;
if (ctl & PCI_MSI_CTL_PERVEC_MASK) {
printf(" Vector Mask register: 0x%08x\n", *regs++);
printf(" Vector Pending register: 0x%08x\n", *regs++);
}
}
/* XXX pci_conf_print_cpci_hostwap_cap */
/*
* For both command register and status register.
* The argument "idx" is index number (0 to 7).
*/
static int
pcix_split_trans(unsigned int idx)
{
static int table[8] = {
1, 2, 3, 4, 8, 12, 16, 32
};
if (idx >= __arraycount(table))
return -1;
return table[idx];
}
static void
pci_conf_print_pcix_cap_2ndbusmode(int num)
{
const char *maxfreq, *maxperiod;
printf(" Mode: ");
if (num <= 0x07)
printf("PCI-X Mode 1\n");
else if (num <= 0x0b)
printf("PCI-X 266 (Mode 2)\n");
else
printf("PCI-X 533 (Mode 2)\n");
printf(" Error protection: %s\n", (num <= 3) ? "parity" : "ECC");
switch (num & 0x03) {
default:
case 0:
maxfreq = "N/A";
maxperiod = "N/A";
break;
case 1:
maxfreq = "66MHz";
maxperiod = "15ns";
break;
case 2:
maxfreq = "100MHz";
maxperiod = "10ns";
break;
case 3:
maxfreq = "133MHz";
maxperiod = "7.5ns";
break;
}
printf(" Max Clock Freq: %s\n", maxfreq);
printf(" Min Clock Period: %s\n", maxperiod);
}
static void
pci_conf_print_pcix_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg;
int isbridge;
int i;
isbridge = (PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)])
& PCI_HDRTYPE_PPB) != 0 ? 1 : 0;
printf("\n PCI-X %s Capabilities Register\n",
isbridge ? "Bridge" : "Non-bridge");
reg = regs[o2i(capoff)];
if (isbridge != 0) {
printf(" Secondary status register: 0x%04x\n",
(reg & 0xffff0000) >> 16);
onoff("64bit device", reg, PCIX_STATUS_64BIT);
onoff("133MHz capable", reg, PCIX_STATUS_133);
onoff("Split completion discarded", reg, PCIX_STATUS_SPLDISC);
onoff("Unexpected split completion", reg, PCIX_STATUS_SPLUNEX);
onoff("Split completion overrun", reg, PCIX_BRIDGE_ST_SPLOVRN);
onoff("Split request delayed", reg, PCIX_BRIDGE_ST_SPLRQDL);
pci_conf_print_pcix_cap_2ndbusmode(
PCIREG_SHIFTOUT(reg, PCIX_BRIDGE_2NDST_CLKF));
printf(" Version: 0x%x\n",
(reg & PCIX_BRIDGE_2NDST_VER_MASK)
>> PCIX_BRIDGE_2NDST_VER_SHIFT);
onoff("266MHz capable", reg, PCIX_BRIDGE_ST_266);
onoff("533MHz capable", reg, PCIX_BRIDGE_ST_533);
} else {
printf(" Command register: 0x%04x\n",
(reg & 0xffff0000) >> 16);
onoff("Data Parity Error Recovery", reg,
PCIX_CMD_PERR_RECOVER);
onoff("Enable Relaxed Ordering", reg, PCIX_CMD_RELAXED_ORDER);
printf(" Maximum Burst Read Count: %u\n",
PCIX_CMD_BYTECNT(reg));
printf(" Maximum Split Transactions: %d\n",
pcix_split_trans((reg & PCIX_CMD_SPLTRANS_MASK)
>> PCIX_CMD_SPLTRANS_SHIFT));
}
reg = regs[o2i(capoff+PCIX_STATUS)]; /* Or PCIX_BRIDGE_PRI_STATUS */
printf(" %sStatus register: 0x%08x\n",
isbridge ? "Bridge " : "", reg);
printf(" Function: %d\n", PCIX_STATUS_FN(reg));
printf(" Device: %d\n", PCIX_STATUS_DEV(reg));
printf(" Bus: %d\n", PCIX_STATUS_BUS(reg));
onoff("64bit device", reg, PCIX_STATUS_64BIT);
onoff("133MHz capable", reg, PCIX_STATUS_133);
onoff("Split completion discarded", reg, PCIX_STATUS_SPLDISC);
onoff("Unexpected split completion", reg, PCIX_STATUS_SPLUNEX);
if (isbridge != 0) {
onoff("Split completion overrun", reg, PCIX_BRIDGE_ST_SPLOVRN);
onoff("Split request delayed", reg, PCIX_BRIDGE_ST_SPLRQDL);
} else {
onoff2("Device Complexity", reg, PCIX_STATUS_DEVCPLX,
"bridge device", "simple device");
printf(" Designed max memory read byte count: %d\n",
512 << ((reg & PCIX_STATUS_MAXB_MASK)
>> PCIX_STATUS_MAXB_SHIFT));
printf(" Designed max outstanding split transaction: %d\n",
pcix_split_trans((reg & PCIX_STATUS_MAXST_MASK)
>> PCIX_STATUS_MAXST_SHIFT));
printf(" MAX cumulative Read Size: %u\n",
8 << ((reg & 0x1c000000) >> PCIX_STATUS_MAXRS_SHIFT));
onoff("Received split completion error", reg,
PCIX_STATUS_SCERR);
}
onoff("266MHz capable", reg, PCIX_STATUS_266);
onoff("533MHz capable", reg, PCIX_STATUS_533);
if (isbridge == 0)
return;
/* Only for bridge */
for (i = 0; i < 2; i++) {
reg = regs[o2i(capoff + PCIX_BRIDGE_UP_STCR + (4 * i))];
printf(" %s split transaction control register: 0x%08x\n",
(i == 0) ? "Upstream" : "Downstream", reg);
printf(" Capacity: %d\n", reg & PCIX_BRIDGE_STCAP);
printf(" Commitment Limit: %d\n",
(reg & PCIX_BRIDGE_STCLIM) >> PCIX_BRIDGE_STCLIM_SHIFT);
}
}
/* pci_conf_print_ht_slave_cap */
/* pci_conf_print_ht_host_cap */
/* pci_conf_print_ht_switch_cap */
/* pci_conf_print_ht_intr_cap */
/* pci_conf_print_ht_revid_cap */
/* pci_conf_print_ht_unitid_cap */
/* pci_conf_print_ht_extcnf_cap */
/* pci_conf_print_ht_addrmap_cap */
/* pci_conf_print_ht_msimap_cap */
static void
pci_conf_print_ht_msimap_cap(const pcireg_t *regs, int capoff)
{
pcireg_t val;
uint32_t lo, hi;
/*
* Print the rest of the command register bits. Others are
* printed in pci_conf_print_ht_cap().
*/
val = regs[o2i(capoff + PCI_HT_CMD)];
onoff("Enable", val, PCI_HT_MSI_ENABLED);
onoff("Fixed", val, PCI_HT_MSI_FIXED);
lo = regs[o2i(capoff + PCI_HT_MSI_ADDR_LO)];
hi = regs[o2i(capoff + PCI_HT_MSI_ADDR_HI)];
printf(" Address Low register: 0x%08x\n", lo);
printf(" Address high register: 0x%08x\n", hi);
printf(" Address: 0x%016" PRIx64 "\n",
(uint64_t)hi << 32 | (lo & PCI_HT_MSI_ADDR_LO_MASK));
}
/* pci_conf_print_ht_droute_cap */
/* pci_conf_print_ht_vcset_cap */
/* pci_conf_print_ht_retry_cap */
/* pci_conf_print_ht_x86enc_cap */
/* pci_conf_print_ht_gen3_cap */
/* pci_conf_print_ht_fle_cap */
/* pci_conf_print_ht_pm_cap */
/* pci_conf_print_ht_hnc_cap */
static const struct ht_types {
pcireg_t cap;
const char *name;
void (*printfunc)(const pcireg_t *, int);
} ht_captab[] = {
{PCI_HT_CAP_SLAVE, "Slave or Primary Interface", NULL },
{PCI_HT_CAP_HOST, "Host or Secondary Interface", NULL },
{PCI_HT_CAP_SWITCH, "Switch", NULL },
{PCI_HT_CAP_INTERRUPT, "Interrupt Discovery and Configuration", NULL},
{PCI_HT_CAP_REVID, "Revision ID", NULL },
{PCI_HT_CAP_UNITID_CLUMP, "UnitID Clumping", NULL },
{PCI_HT_CAP_EXTCNFSPACE, "Extended Configuration Space Access", NULL },
{PCI_HT_CAP_ADDRMAP, "Address Mapping", NULL },
{PCI_HT_CAP_MSIMAP, "MSI Mapping", pci_conf_print_ht_msimap_cap },
{PCI_HT_CAP_DIRECTROUTE, "Direct Route", NULL },
{PCI_HT_CAP_VCSET, "VCSet", NULL },
{PCI_HT_CAP_RETRYMODE, "Retry Mode", NULL },
{PCI_HT_CAP_X86ENCODE, "X86 Encoding", NULL },
{PCI_HT_CAP_GEN3, "Gen3", NULL },
{PCI_HT_CAP_FLE, "Function-Level Extension", NULL },
{PCI_HT_CAP_PM, "Power Management", NULL },
{PCI_HT_CAP_HIGHNODECNT, "High Node Count", NULL },
};
static void
pci_conf_print_ht_cap(const pcireg_t *regs, int capoff)
{
pcireg_t val, foundcap;
unsigned int off;
val = regs[o2i(capoff + PCI_HT_CMD)];
printf("\n HyperTransport Capability Register at 0x%02x\n", capoff);
printf(" Command register: 0x%04x\n", val >> 16);
foundcap = PCI_HT_CAP(val);
for (off = 0; off < __arraycount(ht_captab); off++) {
if (ht_captab[off].cap == foundcap)
break;
}
printf(" Capability Type: 0x%02x ", foundcap);
if (off >= __arraycount(ht_captab)) {
printf("(unknown)\n");
return;
}
printf("(%s)\n", ht_captab[off].name);
if (ht_captab[off].printfunc != NULL)
ht_captab[off].printfunc(regs, capoff);
}
static void
pci_conf_print_vendspec_cap(const pcireg_t *regs, int capoff)
{
uint16_t caps;
caps = regs[o2i(capoff)] >> PCI_VENDORSPECIFIC_SHIFT;
printf("\n PCI Vendor Specific Capabilities Register\n");
printf(" Capabilities length: 0x%02x\n", caps & 0xff);
}
static void
pci_conf_print_debugport_cap(const pcireg_t *regs, int capoff)
{
pcireg_t val;
val = regs[o2i(capoff + PCI_DEBUG_BASER)];
printf("\n Debugport Capability Register\n");
printf(" Debug base Register: 0x%04x\n",
val >> PCI_DEBUG_BASER_SHIFT);
printf(" port offset: 0x%04x\n",
(val & PCI_DEBUG_PORTOFF_MASK) >> PCI_DEBUG_PORTOFF_SHIFT);
printf(" BAR number: %u\n",
(val & PCI_DEBUG_BARNUM_MASK) >> PCI_DEBUG_BARNUM_SHIFT);
}
/* XXX pci_conf_print_cpci_rsrcctl_cap */
/* XXX pci_conf_print_hotplug_cap */
static void
pci_conf_print_subsystem_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg;
reg = regs[o2i(capoff + PCI_CAP_SUBSYS_ID)];
printf("\n Subsystem ID Capability Register\n");
printf(" Subsystem ID: 0x%08x\n", reg);
}
/* XXX pci_conf_print_agp8_cap */
static void
pci_conf_print_secure_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg, reg2, val;
bool havemisc1;
printf("\n Secure Capability Register\n");
reg = regs[o2i(capoff + PCI_SECURE_CAP)];
printf(" Capability Register: 0x%04x\n", reg >> 16);
val = PCIREG_SHIFTOUT(reg, PCI_SECURE_CAP_TYPE);
printf(" Capability block type: ");
/* I know IOMMU Only */
if (val == PCI_SECURE_CAP_TYPE_IOMMU)
printf("IOMMU\n");
else {
printf("0x%x(unknown)\n", val);
return;
}
val = PCIREG_SHIFTOUT(reg, PCI_SECURE_CAP_REV);
printf(" Capability revision: 0x%02x ", val);
if (val == PCI_SECURE_CAP_REV_IOMMU)
printf("(IOMMU)\n");
else {
printf("(unknown)\n");
return;
}
onoff("IOTLB support", reg, PCI_SECURE_CAP_IOTLBSUP);
onoff("HyperTransport tunnel translation support", reg,
PCI_SECURE_CAP_HTTUNNEL);
onoff("Not present table entries cached", reg, PCI_SECURE_CAP_NPCACHE);
onoff("IOMMU Extended Feature Register support", reg,
PCI_SECURE_CAP_EFRSUP);
onoff("IOMMU Miscellaneous Information Register 1", reg,
PCI_SECURE_CAP_EXT);
havemisc1 = reg & PCI_SECURE_CAP_EXT;
reg = regs[o2i(capoff + PCI_SECURE_IOMMU_BAL)];
printf(" Base Address Low Register: 0x%08x\n", reg);
onoff("Enable", reg, PCI_SECURE_IOMMU_BAL_EN);
reg2 = regs[o2i(capoff + PCI_SECURE_IOMMU_BAH)];
printf(" Base Address High Register: 0x%08x\n", reg2);
printf(" Base Address: 0x%016" PRIx64 "\n",
((uint64_t)reg2 << 32)
| (reg & (PCI_SECURE_IOMMU_BAL_H | PCI_SECURE_IOMMU_BAL_L)));
reg = regs[o2i(capoff + PCI_SECURE_IOMMU_RANGE)];
printf(" IOMMU Range Register: 0x%08x\n", reg);
printf(" HyperTransport UnitID: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_UNITID));
onoff("Range valid", reg, PCI_SECURE_IOMMU_RANGE_RNGVALID);
printf(" Device range bus number: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_BUSNUM));
printf(" First device: 0x%04x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_FIRSTDEV));
printf(" Last device: 0x%04x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_RANGE_LASTDEV));
reg = regs[o2i(capoff + PCI_SECURE_IOMMU_MISC0)];
printf(" Miscellaneous Information Register 0: 0x%08x\n", reg);
printf(" MSI Message number: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_MSINUM));
val = PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_GVASIZE);
printf(" Guest Virtual Address size: ");
if (val == PCI_SECURE_IOMMU_MISC0_GVASIZE_48B)
printf("48bits\n");
else
printf("0x%x(unknown)\n", val);
val = PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_PASIZE);
printf(" Physical Address size: %dbits\n", val);
val = PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_VASIZE);
printf(" Virtual Address size: %dbits\n", val);
onoff("ATS response address range reserved", reg,
PCI_SECURE_IOMMU_MISC0_ATSRESV);
printf(" Peripheral Page Request MSI Message number: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC0_MISNPPR));
if (!havemisc1)
return;
reg = regs[o2i(capoff + PCI_SECURE_IOMMU_MISC1)];
printf(" Miscellaneous Information Register 1: 0x%08x\n", reg);
printf(" MSI Message number (GA): 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_SECURE_IOMMU_MISC1_MSINUM));
}
static void
pci_print_pcie_L0s_latency(uint32_t val)
{
switch (val) {
case 0x0:
printf("Less than 64ns\n");
break;
case 0x1:
case 0x2:
case 0x3:
printf("%dns to less than %dns\n", 32 << val, 32 << (val + 1));
break;
case 0x4:
printf("512ns to less than 1us\n");
break;
case 0x5:
printf("1us to less than 2us\n");
break;
case 0x6:
printf("2us - 4us\n");
break;
case 0x7:
printf("More than 4us\n");
break;
}
}
static void
pci_print_pcie_L1_latency(uint32_t val)
{
switch (val) {
case 0x0:
printf("Less than 1us\n");
break;
case 0x6:
printf("32us - 64us\n");
break;
case 0x7:
printf("More than 64us\n");
break;
default:
printf("%dus to less than %dus\n", 1 << (val - 1), 1 << val);
break;
}
}
static void
pci_print_pcie_compl_timeout(uint32_t val)
{
switch (val) {
case 0x0:
printf("50us to 50ms\n");
break;
case 0x5:
printf("16ms to 55ms\n");
break;
case 0x6:
printf("65ms to 210ms\n");
break;
case 0x9:
printf("260ms to 900ms\n");
break;
case 0xa:
printf("1s to 3.5s\n");
break;
default:
printf("unknown %u value\n", val);
break;
}
}
static const char * const pcie_linkspeeds[] = {"2.5", "5.0", "8.0", "16.0"};
/*
* Print link speed. This function is used for the following register bits:
* Maximum Link Speed in LCAP
* Current Link Speed in LCSR
* Target Link Speed in LCSR2
* All of above bitfield's values start from 1.
* For LCSR2, 0 is allowed for a device which supports 2.5GT/s only (and
* this check also works for devices which compliant to versions of the base
* specification prior to 3.0.
*/
static void
pci_print_pcie_linkspeed(int regnum, pcireg_t val)
{
if ((regnum == PCIE_LCSR2) && (val == 0))
printf("2.5GT/s\n");
else if ((val < 1) || (val > __arraycount(pcie_linkspeeds)))
printf("unknown value (%u)\n", val);
else
printf("%sGT/s\n", pcie_linkspeeds[val - 1]);
}
/*
* Print link speed "vector".
* This function is used for the following register bits:
* Supported Link Speeds Vector in LCAP2
* Lower SKP OS Generation Supported Speed Vector in LCAP2
* Lower SKP OS Reception Supported Speed Vector in LCAP2
* Enable Lower SKP OS Generation Vector in LCTL3
* All of above bitfield's values start from 0.
*/
static void
pci_print_pcie_linkspeedvector(pcireg_t val)
{
unsigned int i;
/* Start from 0 */
for (i = 0; i < 16; i++)
if (((val >> i) & 0x01) != 0) {
if (i >= __arraycount(pcie_linkspeeds))
printf(" unknown vector (0x%x)", 1 << i);
else
printf(" %sGT/s", pcie_linkspeeds[i]);
}
}
static void
pci_print_pcie_link_deemphasis(pcireg_t val)
{
switch (val) {
case 0:
printf("-6dB");
break;
case 1:
printf("-3.5dB");
break;
default:
printf("(reserved value)");
}
}
static void
pci_conf_print_pcie_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg; /* for each register */
pcireg_t val; /* for each bitfield */
bool check_slot = false;
unsigned int pcie_devtype;
bool check_upstreamport = false;
unsigned int pciever;
unsigned int i;
printf("\n PCI Express Capabilities Register\n");
/* Capability Register */
reg = regs[o2i(capoff)];
printf(" Capability register: 0x%04x\n", reg >> 16);
pciever = (unsigned int)(PCIE_XCAP_VER(reg));
printf(" Capability version: %u\n", pciever);
printf(" Device type: ");
pcie_devtype = PCIE_XCAP_TYPE(reg);
switch (pcie_devtype) {
case PCIE_XCAP_TYPE_PCIE_DEV: /* 0x0 */
printf("PCI Express Endpoint device\n");
check_upstreamport = true;
break;
case PCIE_XCAP_TYPE_PCI_DEV: /* 0x1 */
printf("Legacy PCI Express Endpoint device\n");
check_upstreamport = true;
break;
case PCIE_XCAP_TYPE_ROOT: /* 0x4 */
printf("Root Port of PCI Express Root Complex\n");
check_slot = true;
break;
case PCIE_XCAP_TYPE_UP: /* 0x5 */
printf("Upstream Port of PCI Express Switch\n");
check_upstreamport = true;
break;
case PCIE_XCAP_TYPE_DOWN: /* 0x6 */
printf("Downstream Port of PCI Express Switch\n");
check_slot = true;
break;
case PCIE_XCAP_TYPE_PCIE2PCI: /* 0x7 */
printf("PCI Express to PCI/PCI-X Bridge\n");
check_upstreamport = true;
break;
case PCIE_XCAP_TYPE_PCI2PCIE: /* 0x8 */
printf("PCI/PCI-X to PCI Express Bridge\n");
/* Upstream port is not PCIe */
check_slot = true;
break;
case PCIE_XCAP_TYPE_ROOT_INTEP: /* 0x9 */
printf("Root Complex Integrated Endpoint\n");
break;
case PCIE_XCAP_TYPE_ROOT_EVNTC: /* 0xa */
printf("Root Complex Event Collector\n");
break;
default:
printf("unknown\n");
break;
}
onoff("Slot implemented", reg, PCIE_XCAP_SI);
printf(" Interrupt Message Number: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCIE_XCAP_IRQ));
/* Device Capability Register */
reg = regs[o2i(capoff + PCIE_DCAP)];
printf(" Device Capabilities Register: 0x%08x\n", reg);
printf(" Max Payload Size Supported: %u bytes max\n",
128 << (unsigned int)(reg & PCIE_DCAP_MAX_PAYLOAD));
printf(" Phantom Functions Supported: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP_PHANTOM_FUNCS)) {
case 0x0:
printf("not available\n");
break;
case 0x1:
printf("MSB\n");
break;
case 0x2:
printf("two MSB\n");
break;
case 0x3:
printf("All three bits\n");
break;
}
printf(" Extended Tag Field Supported: %dbit\n",
(reg & PCIE_DCAP_EXT_TAG_FIELD) == 0 ? 5 : 8);
printf(" Endpoint L0 Acceptable Latency: ");
pci_print_pcie_L0s_latency(PCIREG_SHIFTOUT(reg, PCIE_DCAP_L0S_LATENCY));
printf(" Endpoint L1 Acceptable Latency: ");
pci_print_pcie_L1_latency(PCIREG_SHIFTOUT(reg, PCIE_DCAP_L1_LATENCY));
onoff("Attention Button Present", reg, PCIE_DCAP_ATTN_BUTTON);
onoff("Attention Indicator Present", reg, PCIE_DCAP_ATTN_IND);
onoff("Power Indicator Present", reg, PCIE_DCAP_PWR_IND);
onoff("Role-Based Error Report", reg, PCIE_DCAP_ROLE_ERR_RPT);
if (check_upstreamport) {
printf(" Captured Slot Power Limit: ");
pci_conf_print_pcie_power(
PCIREG_SHIFTOUT(reg, PCIE_DCAP_SLOT_PWR_LIM_VAL),
PCIREG_SHIFTOUT(reg, PCIE_DCAP_SLOT_PWR_LIM_SCALE));
}
onoff("Function-Level Reset Capability", reg, PCIE_DCAP_FLR);
/* Device Control Register */
reg = regs[o2i(capoff + PCIE_DCSR)];
printf(" Device Control Register: 0x%04x\n", reg & 0xffff);
onoff("Correctable Error Reporting Enable", reg,
PCIE_DCSR_ENA_COR_ERR);
onoff("Non Fatal Error Reporting Enable", reg, PCIE_DCSR_ENA_NFER);
onoff("Fatal Error Reporting Enable", reg, PCIE_DCSR_ENA_FER);
onoff("Unsupported Request Reporting Enable", reg, PCIE_DCSR_ENA_URR);
onoff("Enable Relaxed Ordering", reg, PCIE_DCSR_ENA_RELAX_ORD);
printf(" Max Payload Size: %d byte\n",
128 << PCIREG_SHIFTOUT(reg, PCIE_DCSR_MAX_PAYLOAD));
onoff("Extended Tag Field Enable", reg, PCIE_DCSR_EXT_TAG_FIELD);
onoff("Phantom Functions Enable", reg, PCIE_DCSR_PHANTOM_FUNCS);
onoff("Aux Power PM Enable", reg, PCIE_DCSR_AUX_POWER_PM);
onoff("Enable No Snoop", reg, PCIE_DCSR_ENA_NO_SNOOP);
printf(" Max Read Request Size: %d byte\n",
128 << PCIREG_SHIFTOUT(reg, PCIE_DCSR_MAX_READ_REQ));
if (pcie_devtype == PCIE_XCAP_TYPE_PCIE2PCI)
onoff("Bridge Config Retry Enable", reg,
PCIE_DCSR_BRDG_CFG_RETRY);
/* Device Status Register */
reg = regs[o2i(capoff + PCIE_DCSR)];
printf(" Device Status Register: 0x%04x\n", reg >> 16);
onoff("Correctable Error Detected", reg, PCIE_DCSR_CED);
onoff("Non Fatal Error Detected", reg, PCIE_DCSR_NFED);
onoff("Fatal Error Detected", reg, PCIE_DCSR_FED);
onoff("Unsupported Request Detected", reg, PCIE_DCSR_URD);
onoff("Aux Power Detected", reg, PCIE_DCSR_AUX_PWR);
onoff("Transaction Pending", reg, PCIE_DCSR_TRANSACTION_PND);
onoff("Emergency Power Reduction Detected", reg, PCIE_DCSR_EMGPWRREDD);
if (PCIE_HAS_LINKREGS(pcie_devtype)) {
/* Link Capability Register */
reg = regs[o2i(capoff + PCIE_LCAP)];
printf(" Link Capabilities Register: 0x%08x\n", reg);
printf(" Maximum Link Speed: ");
pci_print_pcie_linkspeed(PCIE_LCAP, reg & PCIE_LCAP_MAX_SPEED);
printf(" Maximum Link Width: x%u lanes\n",
PCIREG_SHIFTOUT(reg, PCIE_LCAP_MAX_WIDTH));
printf(" Active State PM Support: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_LCAP_ASPM)) {
case 0x0:
printf("No ASPM support\n");
break;
case 0x1:
printf("L0s supported\n");
break;
case 0x2:
printf("L1 supported\n");
break;
case 0x3:
printf("L0s and L1 supported\n");
break;
}
printf(" L0 Exit Latency: ");
pci_print_pcie_L0s_latency(PCIREG_SHIFTOUT(reg,PCIE_LCAP_L0S_EXIT));
printf(" L1 Exit Latency: ");
pci_print_pcie_L1_latency(PCIREG_SHIFTOUT(reg, PCIE_LCAP_L1_EXIT));
printf(" Port Number: %u\n",
PCIREG_SHIFTOUT(reg, PCIE_LCAP_PORT));
onoff("Clock Power Management", reg, PCIE_LCAP_CLOCK_PM);
onoff("Surprise Down Error Report", reg,
PCIE_LCAP_SURPRISE_DOWN);
onoff("Data Link Layer Link Active", reg, PCIE_LCAP_DL_ACTIVE);
onoff("Link BW Notification Capable", reg,
PCIE_LCAP_LINK_BW_NOTIFY);
onoff("ASPM Optionally Compliance", reg,
PCIE_LCAP_ASPM_COMPLIANCE);
/* Link Control Register */
reg = regs[o2i(capoff + PCIE_LCSR)];
printf(" Link Control Register: 0x%04x\n", reg & 0xffff);
printf(" Active State PM Control: ");
switch (reg & (PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S)) {
case 0:
printf("disabled\n");
break;
case 1:
printf("L0s Entry Enabled\n");
break;
case 2:
printf("L1 Entry Enabled\n");
break;
case 3:
printf("L0s and L1 Entry Enabled\n");
break;
}
onoff2("Read Completion Boundary Control", reg, PCIE_LCSR_RCB,
"128bytes", "64bytes");
onoff("Link Disable", reg, PCIE_LCSR_LINK_DIS);
onoff("Retrain Link", reg, PCIE_LCSR_RETRAIN);
onoff("Common Clock Configuration", reg, PCIE_LCSR_COMCLKCFG);
onoff("Extended Synch", reg, PCIE_LCSR_EXTNDSYNC);
onoff("Enable Clock Power Management", reg, PCIE_LCSR_ENCLKPM);
onoff("Hardware Autonomous Width Disable", reg,PCIE_LCSR_HAWD);
onoff("Link Bandwidth Management Interrupt Enable", reg,
PCIE_LCSR_LBMIE);
onoff("Link Autonomous Bandwidth Interrupt Enable", reg,
PCIE_LCSR_LABIE);
printf(" DRS Signaling Control: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_LCSR_DRSSGNL)) {
case 0:
printf("not reported\n");
break;
case 1:
printf("Interrupt Enabled\n");
break;
case 2:
printf("DRS to FRS Signaling Enabled\n");
break;
default:
printf("reserved\n");
break;
}
/* Link Status Register */
reg = regs[o2i(capoff + PCIE_LCSR)];
printf(" Link Status Register: 0x%04x\n", reg >> 16);
printf(" Negotiated Link Speed: ");
pci_print_pcie_linkspeed(PCIE_LCSR,
PCIREG_SHIFTOUT(reg, PCIE_LCSR_LINKSPEED));
printf(" Negotiated Link Width: x%u lanes\n",
PCIREG_SHIFTOUT(reg, PCIE_LCSR_NLW));
onoff("Training Error", reg, PCIE_LCSR_LINKTRAIN_ERR);
onoff("Link Training", reg, PCIE_LCSR_LINKTRAIN);
onoff("Slot Clock Configuration", reg, PCIE_LCSR_SLOTCLKCFG);
onoff("Data Link Layer Link Active", reg, PCIE_LCSR_DLACTIVE);
onoff("Link Bandwidth Management Status", reg,
PCIE_LCSR_LINK_BW_MGMT);
onoff("Link Autonomous Bandwidth Status", reg,
PCIE_LCSR_LINK_AUTO_BW);
}
if (check_slot == true) {
pcireg_t slcap;
/* Slot Capability Register */
slcap = reg = regs[o2i(capoff + PCIE_SLCAP)];
printf(" Slot Capability Register: 0x%08x\n", reg);
onoff("Attention Button Present", reg, PCIE_SLCAP_ABP);
onoff("Power Controller Present", reg, PCIE_SLCAP_PCP);
onoff("MRL Sensor Present", reg, PCIE_SLCAP_MSP);
onoff("Attention Indicator Present", reg, PCIE_SLCAP_AIP);
onoff("Power Indicator Present", reg, PCIE_SLCAP_PIP);
onoff("Hot-Plug Surprise", reg, PCIE_SLCAP_HPS);
onoff("Hot-Plug Capable", reg, PCIE_SLCAP_HPC);
printf(" Slot Power Limit Value: ");
pci_conf_print_pcie_power(PCIREG_SHIFTOUT(reg, PCIE_SLCAP_SPLV),
PCIREG_SHIFTOUT(reg, PCIE_SLCAP_SPLS));
onoff("Electromechanical Interlock Present", reg,
PCIE_SLCAP_EIP);
onoff("No Command Completed Support", reg, PCIE_SLCAP_NCCS);
printf(" Physical Slot Number: %d\n",
(unsigned int)(reg & PCIE_SLCAP_PSN) >> 19);
/* Slot Control Register */
reg = regs[o2i(capoff + PCIE_SLCSR)];
printf(" Slot Control Register: 0x%04x\n", reg & 0xffff);
onoff("Attention Button Pressed Enabled", reg, PCIE_SLCSR_ABE);
onoff("Power Fault Detected Enabled", reg, PCIE_SLCSR_PFE);
onoff("MRL Sensor Changed Enabled", reg, PCIE_SLCSR_MSE);
onoff("Presence Detect Changed Enabled", reg, PCIE_SLCSR_PDE);
onoff("Command Completed Interrupt Enabled", reg,
PCIE_SLCSR_CCE);
onoff("Hot-Plug Interrupt Enabled", reg, PCIE_SLCSR_HPE);
/*
* For Attention Indicator Control and Power Indicator Control,
* it's allowed to be a read only value 0 if corresponding
* capability register bit is 0.
*/
if (slcap & PCIE_SLCAP_AIP) {
printf(" Attention Indicator Control: ");
switch ((reg & PCIE_SLCSR_AIC) >> 6) {
case 0x0:
printf("reserved\n");
break;
case PCIE_SLCSR_IND_ON:
printf("on\n");
break;
case PCIE_SLCSR_IND_BLINK:
printf("blink\n");
break;
case PCIE_SLCSR_IND_OFF:
printf("off\n");
break;
}
}
if (slcap & PCIE_SLCAP_PIP) {
printf(" Power Indicator Control: ");
switch ((reg & PCIE_SLCSR_PIC) >> 8) {
case 0x0:
printf("reserved\n");
break;
case PCIE_SLCSR_IND_ON:
printf("on\n");
break;
case PCIE_SLCSR_IND_BLINK:
printf("blink\n");
break;
case PCIE_SLCSR_IND_OFF:
printf("off\n");
break;
}
}
printf(" Power Controller Control: Power %s\n",
reg & PCIE_SLCSR_PCC ? "off" : "on");
onoff("Electromechanical Interlock Control",
reg, PCIE_SLCSR_EIC);
onoff("Data Link Layer State Changed Enable", reg,
PCIE_SLCSR_DLLSCE);
onoff("Auto Slot Power Limit Disable", reg,
PCIE_SLCSR_AUTOSPLDIS);
/* Slot Status Register */
printf(" Slot Status Register: 0x%04x\n", reg >> 16);
onoff("Attention Button Pressed", reg, PCIE_SLCSR_ABP);
onoff("Power Fault Detected", reg, PCIE_SLCSR_PFD);
onoff("MRL Sensor Changed", reg, PCIE_SLCSR_MSC);
onoff("Presence Detect Changed", reg, PCIE_SLCSR_PDC);
onoff("Command Completed", reg, PCIE_SLCSR_CC);
onoff("MRL Open", reg, PCIE_SLCSR_MS);
onoff("Card Present in slot", reg, PCIE_SLCSR_PDS);
onoff("Electromechanical Interlock engaged", reg,
PCIE_SLCSR_EIS);
onoff("Data Link Layer State Changed", reg, PCIE_SLCSR_LACS);
}
if (PCIE_HAS_ROOTREGS(pcie_devtype)) {
/* Root Control Register */
reg = regs[o2i(capoff + PCIE_RCR)];
printf(" Root Control Register: 0x%04x\n", reg & 0xffff);
onoff("SERR on Correctable Error Enable", reg,
PCIE_RCR_SERR_CER);
onoff("SERR on Non-Fatal Error Enable", reg,
PCIE_RCR_SERR_NFER);
onoff("SERR on Fatal Error Enable", reg, PCIE_RCR_SERR_FER);
onoff("PME Interrupt Enable", reg, PCIE_RCR_PME_IE);
onoff("CRS Software Visibility Enable", reg, PCIE_RCR_CRS_SVE);
/* Root Capability Register */
printf(" Root Capability Register: 0x%04x\n",
reg >> 16);
onoff("CRS Software Visibility", reg, PCIE_RCR_CRS_SV);
/* Root Status Register */
reg = regs[o2i(capoff + PCIE_RSR)];
printf(" Root Status Register: 0x%08x\n", reg);
printf(" PME Requester ID: 0x%04x\n",
(unsigned int)(reg & PCIE_RSR_PME_REQESTER));
onoff("PME was asserted", reg, PCIE_RSR_PME_STAT);
onoff("another PME is pending", reg, PCIE_RSR_PME_PEND);
}
/* PCIe DW9 to DW14 is for PCIe 2.0 and newer */
if (pciever < 2)
return;
/* Device Capabilities 2 */
reg = regs[o2i(capoff + PCIE_DCAP2)];
printf(" Device Capabilities 2: 0x%08x\n", reg);
printf(" Completion Timeout Ranges Supported: ");
val = reg & PCIE_DCAP2_COMPT_RANGE;
switch (val) {
case 0:
printf("not supported\n");
break;
default:
for (i = 0; i <= 3; i++) {
if (((val >> i) & 0x01) != 0)
printf("%c", 'A' + i);
}
printf("\n");
}
onoff("Completion Timeout Disable Supported", reg,
PCIE_DCAP2_COMPT_DIS);
onoff("ARI Forwarding Supported", reg, PCIE_DCAP2_ARI_FWD);
onoff("AtomicOp Routing Supported", reg, PCIE_DCAP2_ATOM_ROUT);
onoff("32bit AtomicOp Completer Supported", reg, PCIE_DCAP2_32ATOM);
onoff("64bit AtomicOp Completer Supported", reg, PCIE_DCAP2_64ATOM);
onoff("128-bit CAS Completer Supported", reg, PCIE_DCAP2_128CAS);
onoff("No RO-enabled PR-PR passing", reg, PCIE_DCAP2_NO_ROPR_PASS);
onoff("LTR Mechanism Supported", reg, PCIE_DCAP2_LTR_MEC);
printf(" TPH Completer Supported: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_TPH_COMP)) {
case 0:
printf("Not supported\n");
break;
case 1:
printf("TPH\n");
break;
case 3:
printf("TPH and Extended TPH\n");
break;
default:
printf("(reserved value)\n");
break;
}
printf(" LN System CLS: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_LNSYSCLS)) {
case 0x0:
printf("Not supported or not in effect\n");
break;
case 0x1:
printf("64byte cachelines in effect\n");
break;
case 0x2:
printf("128byte cachelines in effect\n");
break;
case 0x3:
printf("Reserved\n");
break;
}
onoff("10-bit Tag Completer Supported", reg, PCIE_DCAP2_TBT_COMP);
onoff("10-bit Tag Requester Supported", reg, PCIE_DCAP2_TBT_REQ);
printf(" OBFF Supported: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_OBFF)) {
case 0x0:
printf("Not supported\n");
break;
case 0x1:
printf("Message only\n");
break;
case 0x2:
printf("WAKE# only\n");
break;
case 0x3:
printf("Both\n");
break;
}
onoff("Extended Fmt Field Supported", reg, PCIE_DCAP2_EXTFMT_FLD);
onoff("End-End TLP Prefix Supported", reg, PCIE_DCAP2_EETLP_PREF);
val = PCIREG_SHIFTOUT(reg, PCIE_DCAP2_MAX_EETLP);
printf(" Max End-End TLP Prefixes: %u\n", (val == 0) ? 4 : val);
printf(" Emergency Power Reduction Supported: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_DCAP2_EMGPWRRED)) {
case 0x0:
printf("Not supported\n");
break;
case 0x1:
printf("Device Specific mechanism\n");
break;
case 0x2:
printf("Form Factor spec or Device Specific mechanism\n");
break;
case 0x3:
printf("Reserved\n");
break;
}
onoff("Emergency Power Reduction Initialization Required", reg,
PCIE_DCAP2_EMGPWRRED_INI);
onoff("FRS Supported", reg, PCIE_DCAP2_FRS);
/* Device Control 2 */
reg = regs[o2i(capoff + PCIE_DCSR2)];
printf(" Device Control 2: 0x%04x\n", reg & 0xffff);
printf(" Completion Timeout Value: ");
pci_print_pcie_compl_timeout(reg & PCIE_DCSR2_COMPT_VAL);
onoff("Completion Timeout Disabled", reg, PCIE_DCSR2_COMPT_DIS);
onoff("ARI Forwarding Enabled", reg, PCIE_DCSR2_ARI_FWD);
onoff("AtomicOp Requester Enabled", reg, PCIE_DCSR2_ATOM_REQ);
onoff("AtomicOp Egress Blocking", reg, PCIE_DCSR2_ATOM_EBLK);
onoff("IDO Request Enabled", reg, PCIE_DCSR2_IDO_REQ);
onoff("IDO Completion Enabled", reg, PCIE_DCSR2_IDO_COMP);
onoff("LTR Mechanism Enabled", reg, PCIE_DCSR2_LTR_MEC);
onoff("Emergency Power Reduction Request", reg,
PCIE_DCSR2_EMGPWRRED_REQ);
onoff("10-bit Tag Requester Enabled", reg, PCIE_DCSR2_TBT_REQ);
printf(" OBFF: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_DCSR2_OBFF_EN)) {
case 0x0:
printf("Disabled\n");
break;
case 0x1:
printf("Enabled with Message Signaling Variation A\n");
break;
case 0x2:
printf("Enabled with Message Signaling Variation B\n");
break;
case 0x3:
printf("Enabled using WAKE# signaling\n");
break;
}
onoff("End-End TLP Prefix Blocking on", reg, PCIE_DCSR2_EETLP);
if (PCIE_HAS_LINKREGS(pcie_devtype)) {
bool drs_supported = false;
/* Link Capability 2 */
reg = regs[o2i(capoff + PCIE_LCAP2)];
/* If the vector is 0, LCAP2 is not implemented */
if ((reg & PCIE_LCAP2_SUP_LNKSV) != 0) {
printf(" Link Capabilities 2: 0x%08x\n", reg);
printf(" Supported Link Speeds Vector:");
pci_print_pcie_linkspeedvector(
PCIREG_SHIFTOUT(reg, PCIE_LCAP2_SUP_LNKSV));
printf("\n");
onoff("Crosslink Supported", reg, PCIE_LCAP2_CROSSLNK);
printf(" "
"Lower SKP OS Generation Supported Speed Vector:");
pci_print_pcie_linkspeedvector(
PCIREG_SHIFTOUT(reg, PCIE_LCAP2_LOWSKPOS_GENSUPPSV));
printf("\n");
printf(" "
"Lower SKP OS Reception Supported Speed Vector:");
pci_print_pcie_linkspeedvector(
PCIREG_SHIFTOUT(reg, PCIE_LCAP2_LOWSKPOS_RECSUPPSV));
printf("\n");
onoff("Retimer Presence Detect Supported", reg,
PCIE_LCAP2_RETIMERPD);
onoff("DRS Supported", reg, PCIE_LCAP2_DRS);
drs_supported = (reg & PCIE_LCAP2_DRS) ? true : false;
}
/* Link Control 2 */
reg = regs[o2i(capoff + PCIE_LCSR2)];
/* If the vector is 0, LCAP2 is not implemented */
printf(" Link Control 2: 0x%04x\n", reg & 0xffff);
printf(" Target Link Speed: ");
pci_print_pcie_linkspeed(PCIE_LCSR2,
PCIREG_SHIFTOUT(reg, PCIE_LCSR2_TGT_LSPEED));
onoff("Enter Compliance Enabled", reg, PCIE_LCSR2_ENT_COMPL);
onoff("HW Autonomous Speed Disabled", reg,
PCIE_LCSR2_HW_AS_DIS);
printf(" Selectable De-emphasis: ");
pci_print_pcie_link_deemphasis(
PCIREG_SHIFTOUT(reg, PCIE_LCSR2_SEL_DEEMP));
printf("\n");
printf(" Transmit Margin: %u\n",
PCIREG_SHIFTOUT(reg, PCIE_LCSR2_TX_MARGIN));
onoff("Enter Modified Compliance", reg, PCIE_LCSR2_EN_MCOMP);
onoff("Compliance SOS", reg, PCIE_LCSR2_COMP_SOS);
printf(" Compliance Present/De-emphasis: ");
pci_print_pcie_link_deemphasis(
PCIREG_SHIFTOUT(reg, PCIE_LCSR2_COMP_DEEMP));
printf("\n");
/* Link Status 2 */
printf(" Link Status 2: 0x%04x\n", (reg >> 16) & 0xffff);
printf(" Current De-emphasis Level: ");
pci_print_pcie_link_deemphasis(
PCIREG_SHIFTOUT(reg, PCIE_LCSR2_DEEMP_LVL));
printf("\n");
onoff("Equalization Complete", reg, PCIE_LCSR2_EQ_COMPL);
onoff("Equalization Phase 1 Successful", reg,
PCIE_LCSR2_EQP1_SUC);
onoff("Equalization Phase 2 Successful", reg,
PCIE_LCSR2_EQP2_SUC);
onoff("Equalization Phase 3 Successful", reg,
PCIE_LCSR2_EQP3_SUC);
onoff("Link Equalization Request", reg, PCIE_LCSR2_LNKEQ_REQ);
onoff("Retimer Presence Detected", reg, PCIE_LCSR2_RETIMERPD);
if (drs_supported) {
printf(" Downstream Component Presence: ");
switch (PCIREG_SHIFTOUT(reg, PCIE_LCSR2_DSCOMPN)) {
case PCIE_DSCOMPN_DOWN_NOTDETERM:
printf("Link Down - Presence Not"
" Determined\n");
break;
case PCIE_DSCOMPN_DOWN_NOTPRES:
printf("Link Down - Component Not Present\n");
break;
case PCIE_DSCOMPN_DOWN_PRES:
printf("Link Down - Component Present\n");
break;
case PCIE_DSCOMPN_UP_PRES:
printf("Link Up - Component Present\n");
break;
case PCIE_DSCOMPN_UP_PRES_DRS:
printf("Link Up - Component Present and DRS"
" received\n");
break;
default:
printf("reserved\n");
break;
}
onoff("DRS Message Received", reg, PCIE_LCSR2_DRSRCV);
}
}
/* Slot Capability 2 */
/* Slot Control 2 */
/* Slot Status 2 */
}
static void
pci_conf_print_msix_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg;
printf("\n MSI-X Capability Register\n");
reg = regs[o2i(capoff + PCI_MSIX_CTL)];
printf(" Message Control register: 0x%04x\n",
(reg >> 16) & 0xff);
printf(" Table Size: %d\n", PCI_MSIX_CTL_TBLSIZE(reg));
onoff("Function Mask", reg, PCI_MSIX_CTL_FUNCMASK);
onoff("MSI-X Enable", reg, PCI_MSIX_CTL_ENABLE);
reg = regs[o2i(capoff + PCI_MSIX_TBLOFFSET)];
printf(" Table offset register: 0x%08x\n", reg);
printf(" Table offset: 0x%08x\n",
(pcireg_t)(reg & PCI_MSIX_TBLOFFSET_MASK));
printf(" BIR: 0x%x\n", (pcireg_t)(reg & PCI_MSIX_TBLBIR_MASK));
reg = regs[o2i(capoff + PCI_MSIX_PBAOFFSET)];
printf(" Pending bit array register: 0x%08x\n", reg);
printf(" Pending bit array offset: 0x%08x\n",
(pcireg_t)(reg & PCI_MSIX_PBAOFFSET_MASK));
printf(" BIR: 0x%x\n", (pcireg_t)(reg & PCI_MSIX_PBABIR_MASK));
}
static void
pci_conf_print_sata_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg;
printf("\n Serial ATA Capability Register\n");
reg = regs[o2i(capoff + PCI_SATA_REV)];
printf(" Revision register: 0x%04x\n", (reg >> 16) & 0xff);
printf(" Revision: %u.%u\n",
PCIREG_SHIFTOUT(reg, PCI_SATA_REV_MAJOR),
PCIREG_SHIFTOUT(reg, PCI_SATA_REV_MINOR));
reg = regs[o2i(capoff + PCI_SATA_BAR)];
printf(" BAR Register: 0x%08x\n", reg);
printf(" Register location: ");
if ((reg & PCI_SATA_BAR_SPEC) == PCI_SATA_BAR_INCONF)
printf("in config space\n");
else {
printf("BAR %d\n", (int)PCI_SATA_BAR_NUM(reg));
printf(" BAR offset: 0x%08x\n",
PCIREG_SHIFTOUT(reg, PCI_SATA_BAR_OFFSET) * 4);
}
}
static void
pci_conf_print_pciaf_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg;
printf("\n Advanced Features Capability Register\n");
reg = regs[o2i(capoff + PCI_AFCAPR)];
printf(" AF Capabilities register: 0x%02x\n", (reg >> 24) & 0xff);
printf(" AF Structure Length: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_AF_LENGTH));
onoff("Transaction Pending", reg, PCI_AF_TP_CAP);
onoff("Function Level Reset", reg, PCI_AF_FLR_CAP);
reg = regs[o2i(capoff + PCI_AFCSR)];
printf(" AF Control register: 0x%02x\n", reg & 0xff);
/*
* Only PCI_AFCR_INITIATE_FLR is a member of the AF control register
* and it's always 0 on read
*/
printf(" AF Status register: 0x%02x\n", (reg >> 8) & 0xff);
onoff("Transaction Pending", reg, PCI_AFSR_TP);
}
static void
pci_conf_print_ea_cap_prop(unsigned int prop)
{
switch (prop) {
case PCI_EA_PROP_MEM_NONPREF:
printf("Memory Space, Non-Prefetchable\n");
break;
case PCI_EA_PROP_MEM_PREF:
printf("Memory Space, Prefetchable\n");
break;
case PCI_EA_PROP_IO:
printf("I/O Space\n");
break;
case PCI_EA_PROP_VF_MEM_NONPREF:
printf("Resorce for VF use, Memory Space, Non-Prefetchable\n");
break;
case PCI_EA_PROP_VF_MEM_PREF:
printf("Resorce for VF use, Memory Space, Prefetch\n");
break;
case PCI_EA_PROP_BB_MEM_NONPREF:
printf("Behind the Bridge, Memory Space, Non-Pref\n");
break;
case PCI_EA_PROP_BB_MEM_PREF:
printf("Behind the Bridge, Memory Space. Prefetchable\n");
break;
case PCI_EA_PROP_BB_IO:
printf("Behind Bridge, I/O Space\n");
break;
case PCI_EA_PROP_MEM_UNAVAIL:
printf("Memory Space Unavailable\n");
break;
case PCI_EA_PROP_IO_UNAVAIL:
printf("IO Space Unavailable\n");
break;
case PCI_EA_PROP_UNAVAIL:
printf("Entry Unavailable for use\n");
break;
default:
printf("Reserved\n");
break;
}
}
static void
pci_conf_print_ea_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg, reg2;
unsigned int entries, entoff, i;
printf("\n Enhanced Allocation Capability Register\n");
reg = regs[o2i(capoff + PCI_EA_CAP1)];
printf(" EA Num Entries register: 0x%04x\n", reg >> 16);
entries = PCIREG_SHIFTOUT(reg, PCI_EA_CAP1_NUMENTRIES);
printf(" EA Num Entries: %u\n", entries);
/* Type 1 only */
if (PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)]) == PCI_HDRTYPE_PPB) {
reg = regs[o2i(capoff + PCI_EA_CAP2)];
printf(" EA Capability Second register: 0x%08x\n", reg);
printf(" Fixed Secondary Bus Number: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(reg, PCI_EA_CAP2_SECONDARY));
printf(" Fixed Subordinate Bus Number: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(reg, PCI_EA_CAP2_SUBORDINATE));
entoff = capoff + 8;
} else
entoff = capoff + 4;
for (i = 0; i < entries; i++) {
uint64_t base, offset;
bool baseis64, offsetis64;
unsigned int bei, entry_size;
printf(" Entry %u:\n", i);
/* The first DW */
reg = regs[o2i(entoff)];
printf(" The first register: 0x%08x\n", reg);
entry_size = PCIREG_SHIFTOUT(reg, PCI_EA_ES);
printf(" Entry size: %u\n", entry_size);
printf(" BAR Equivalent Indicator: ");
bei = PCIREG_SHIFTOUT(reg, PCI_EA_BEI);
switch (bei) {
case PCI_EA_BEI_BAR0:
case PCI_EA_BEI_BAR1:
case PCI_EA_BEI_BAR2:
case PCI_EA_BEI_BAR3:
case PCI_EA_BEI_BAR4:
case PCI_EA_BEI_BAR5:
printf("BAR %u\n", bei - PCI_EA_BEI_BAR0);
break;
case PCI_EA_BEI_BEHIND:
printf("Behind the function\n");
break;
case PCI_EA_BEI_NOTIND:
printf("Not Indicated\n");
break;
case PCI_EA_BEI_EXPROM:
printf("Expansion ROM\n");
break;
case PCI_EA_BEI_VFBAR0:
case PCI_EA_BEI_VFBAR1:
case PCI_EA_BEI_VFBAR2:
case PCI_EA_BEI_VFBAR3:
case PCI_EA_BEI_VFBAR4:
case PCI_EA_BEI_VFBAR5:
printf("VF BAR %u\n", bei - PCI_EA_BEI_VFBAR0);
break;
case PCI_EA_BEI_RESERVED:
default:
printf("Reserved\n");
break;
}
printf(" Primary Properties: ");
pci_conf_print_ea_cap_prop(PCIREG_SHIFTOUT(reg, PCI_EA_PP));
printf(" Secondary Properties: ");
pci_conf_print_ea_cap_prop(PCIREG_SHIFTOUT(reg, PCI_EA_SP));
onoff("Writable", reg, PCI_EA_W);
onoff("Enable for this entry", reg, PCI_EA_E);
if (entry_size == 0) {
entoff += 4;
continue;
}
/* Base addr */
reg = regs[o2i(entoff + 4)];
base = reg & PCI_EA_LOWMASK;
baseis64 = reg & PCI_EA_BASEMAXOFFSET_64BIT;
printf(" Base Address Register Low: 0x%08x\n", reg);
if (baseis64) {
/* 64bit */
reg2 = regs[o2i(entoff + 12)];
printf(" Base Address Register high: 0x%08x\n",
reg2);
base |= (uint64_t)reg2 << 32;
}
/* Offset addr */
reg = regs[o2i(entoff + 8)];
offset = reg & PCI_EA_LOWMASK;
offsetis64 = reg & PCI_EA_BASEMAXOFFSET_64BIT;
printf(" Max Offset Register Low: 0x%08x\n", reg);
if (offsetis64) {
/* 64bit */
reg2 = regs[o2i(entoff + (baseis64 ? 16 : 12))];
printf(" Max Offset Register high: 0x%08x\n",
reg2);
offset |= (uint64_t)reg2 << 32;
}
printf(" range: 0x%016" PRIx64 "-0x%016" PRIx64
"\n", base, base + offset);
entoff += 4 + (4 * entry_size);
}
}
/* XXX pci_conf_print_fpb_cap */
static struct {
pcireg_t cap;
const char *name;
void (*printfunc)(const pcireg_t *, int);
} pci_captab[] = {
{ PCI_CAP_RESERVED0, "reserved", NULL },
{ PCI_CAP_PWRMGMT, "Power Management", pci_conf_print_pcipm_cap },
{ PCI_CAP_AGP, "AGP", pci_conf_print_agp_cap },
{ PCI_CAP_VPD, "VPD", NULL },
{ PCI_CAP_SLOTID, "SlotID", NULL },
{ PCI_CAP_MSI, "MSI", pci_conf_print_msi_cap },
{ PCI_CAP_CPCI_HOTSWAP, "CompactPCI Hot-swapping", NULL },
{ PCI_CAP_PCIX, "PCI-X", pci_conf_print_pcix_cap },
{ PCI_CAP_LDT, "HyperTransport", pci_conf_print_ht_cap },
{ PCI_CAP_VENDSPEC, "Vendor-specific",
pci_conf_print_vendspec_cap },
{ PCI_CAP_DEBUGPORT, "Debug Port", pci_conf_print_debugport_cap },
{ PCI_CAP_CPCI_RSRCCTL, "CompactPCI Resource Control", NULL },
{ PCI_CAP_HOTPLUG, "Hot-Plug", NULL },
{ PCI_CAP_SUBVENDOR, "Subsystem vendor ID",
pci_conf_print_subsystem_cap },
{ PCI_CAP_AGP8, "AGP 8x", NULL },
{ PCI_CAP_SECURE, "Secure Device", pci_conf_print_secure_cap },
{ PCI_CAP_PCIEXPRESS, "PCI Express", pci_conf_print_pcie_cap },
{ PCI_CAP_MSIX, "MSI-X", pci_conf_print_msix_cap },
{ PCI_CAP_SATA, "SATA", pci_conf_print_sata_cap },
{ PCI_CAP_PCIAF, "Advanced Features", pci_conf_print_pciaf_cap},
{ PCI_CAP_EA, "Enhanced Allocation", pci_conf_print_ea_cap },
{ PCI_CAP_FPB, "Flattening Portal Bridge", NULL }
};
static int
pci_conf_find_cap(const pcireg_t *regs, unsigned int capid, int *offsetp)
{
pcireg_t rval;
unsigned int capptr;
int off;
if (!(regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT))
return 0;
/* Determine the Capability List Pointer register to start with. */
switch (PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)])) {
case 0: /* standard device header */
case 1: /* PCI-PCI bridge header */
capptr = PCI_CAPLISTPTR_REG;
break;
case 2: /* PCI-CardBus Bridge header */
capptr = PCI_CARDBUS_CAPLISTPTR_REG;
break;
default:
return 0;
}
for (off = PCI_CAPLIST_PTR(regs[o2i(capptr)]);
off != 0; off = PCI_CAPLIST_NEXT(rval)) {
rval = regs[o2i(off)];
if (capid == PCI_CAPLIST_CAP(rval)) {
if (offsetp != NULL)
*offsetp = off;
return 1;
}
}
return 0;
}
static void
pci_conf_print_caplist(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs, int capoff)
{
int off;
pcireg_t foundcap;
pcireg_t rval;
bool foundtable[__arraycount(pci_captab)];
unsigned int i;
/* Clear table */
for (i = 0; i < __arraycount(pci_captab); i++)
foundtable[i] = false;
/* Print capability register's offset and the type first */
for (off = PCI_CAPLIST_PTR(regs[o2i(capoff)]);
off != 0; off = PCI_CAPLIST_NEXT(regs[o2i(off)])) {
rval = regs[o2i(off)];
printf(" Capability register at 0x%02x\n", off);
printf(" type: 0x%02x (", PCI_CAPLIST_CAP(rval));
foundcap = PCI_CAPLIST_CAP(rval);
if (foundcap < __arraycount(pci_captab)) {
printf("%s)\n", pci_captab[foundcap].name);
/* Mark as found */
foundtable[foundcap] = true;
} else
printf("unknown)\n");
}
/*
* And then, print the detail of each capability registers
* in capability value's order.
*/
for (i = 0; i < __arraycount(pci_captab); i++) {
if (foundtable[i] == false)
continue;
/*
* The type was found. Search capability list again and
* print all capabilities that the capabiliy type is
* the same. This is required because some capabilities
* appear multiple times (e.g. HyperTransport capability).
*/
for (off = PCI_CAPLIST_PTR(regs[o2i(capoff)]);
off != 0; off = PCI_CAPLIST_NEXT(regs[o2i(off)])) {
rval = regs[o2i(off)];
if ((PCI_CAPLIST_CAP(rval) == i)
&& (pci_captab[i].printfunc != NULL))
pci_captab[i].printfunc(regs, off);
}
}
}
/* Extended Capability */
static void
pci_conf_print_aer_cap_uc(pcireg_t reg)
{
onoff("Undefined", reg, PCI_AER_UC_UNDEFINED);
onoff("Data Link Protocol Error", reg, PCI_AER_UC_DL_PROTOCOL_ERROR);
onoff("Surprise Down Error", reg, PCI_AER_UC_SURPRISE_DOWN_ERROR);
onoff("Poisoned TLP Received", reg, PCI_AER_UC_POISONED_TLP);
onoff("Flow Control Protocol Error", reg, PCI_AER_UC_FC_PROTOCOL_ERROR);
onoff("Completion Timeout", reg, PCI_AER_UC_COMPLETION_TIMEOUT);
onoff("Completer Abort", reg, PCI_AER_UC_COMPLETER_ABORT);
onoff("Unexpected Completion", reg, PCI_AER_UC_UNEXPECTED_COMPLETION);
onoff("Receiver Overflow", reg, PCI_AER_UC_RECEIVER_OVERFLOW);
onoff("Malformed TLP", reg, PCI_AER_UC_MALFORMED_TLP);
onoff("ECRC Error", reg, PCI_AER_UC_ECRC_ERROR);
onoff("Unsupported Request Error", reg,
PCI_AER_UC_UNSUPPORTED_REQUEST_ERROR);
onoff("ACS Violation", reg, PCI_AER_UC_ACS_VIOLATION);
onoff("Uncorrectable Internal Error", reg, PCI_AER_UC_INTERNAL_ERROR);
onoff("MC Blocked TLP", reg, PCI_AER_UC_MC_BLOCKED_TLP);
onoff("AtomicOp Egress BLK", reg, PCI_AER_UC_ATOMIC_OP_EGRESS_BLOCKED);
onoff("TLP Prefix Blocked Error", reg,
PCI_AER_UC_TLP_PREFIX_BLOCKED_ERROR);
onoff("Poisoned TLP Egress Blocked", reg,
PCI_AER_UC_POISONTLP_EGRESS_BLOCKED);
}
static void
pci_conf_print_aer_cap_cor(pcireg_t reg)
{
onoff("Receiver Error", reg, PCI_AER_COR_RECEIVER_ERROR);
onoff("Bad TLP", reg, PCI_AER_COR_BAD_TLP);
onoff("Bad DLLP", reg, PCI_AER_COR_BAD_DLLP);
onoff("REPLAY_NUM Rollover", reg, PCI_AER_COR_REPLAY_NUM_ROLLOVER);
onoff("Replay Timer Timeout", reg, PCI_AER_COR_REPLAY_TIMER_TIMEOUT);
onoff("Advisory Non-Fatal Error", reg, PCI_AER_COR_ADVISORY_NF_ERROR);
onoff("Corrected Internal Error", reg, PCI_AER_COR_INTERNAL_ERROR);
onoff("Header Log Overflow", reg, PCI_AER_COR_HEADER_LOG_OVERFLOW);
}
static void
pci_conf_print_aer_cap_control(pcireg_t reg, bool *tlp_prefix_log)
{
printf(" First Error Pointer: 0x%04x\n",
PCIREG_SHIFTOUT(reg, PCI_AER_FIRST_ERROR_PTR));
onoff("ECRC Generation Capable", reg, PCI_AER_ECRC_GEN_CAPABLE);
onoff("ECRC Generation Enable", reg, PCI_AER_ECRC_GEN_ENABLE);
onoff("ECRC Check Capable", reg, PCI_AER_ECRC_CHECK_CAPABLE);
onoff("ECRC Check Enable", reg, PCI_AER_ECRC_CHECK_ENABLE);
onoff("Multiple Header Recording Capable", reg,
PCI_AER_MULT_HDR_CAPABLE);
onoff("Multiple Header Recording Enable", reg,PCI_AER_MULT_HDR_ENABLE);
onoff("Completion Timeout Prefix/Header Log Capable", reg,
PCI_AER_COMPTOUTPRFXHDRLOG_CAP);
/* This bit is RsvdP if the End-End TLP Prefix Supported bit is Clear */
if (!tlp_prefix_log)
return;
onoff("TLP Prefix Log Present", reg, PCI_AER_TLP_PREFIX_LOG_PRESENT);
*tlp_prefix_log = (reg & PCI_AER_TLP_PREFIX_LOG_PRESENT) ? true : false;
}
static void
pci_conf_print_aer_cap_rooterr_cmd(pcireg_t reg)
{
onoff("Correctable Error Reporting Enable", reg,
PCI_AER_ROOTERR_COR_ENABLE);
onoff("Non-Fatal Error Reporting Enable", reg,
PCI_AER_ROOTERR_NF_ENABLE);
onoff("Fatal Error Reporting Enable", reg, PCI_AER_ROOTERR_F_ENABLE);
}
static void
pci_conf_print_aer_cap_rooterr_status(pcireg_t reg)
{
onoff("ERR_COR Received", reg, PCI_AER_ROOTERR_COR_ERR);
onoff("Multiple ERR_COR Received", reg, PCI_AER_ROOTERR_MULTI_COR_ERR);
onoff("ERR_FATAL/NONFATAL_ERR Received", reg, PCI_AER_ROOTERR_UC_ERR);
onoff("Multiple ERR_FATAL/NONFATAL_ERR Received", reg,
PCI_AER_ROOTERR_MULTI_UC_ERR);
onoff("First Uncorrectable Fatal", reg,PCI_AER_ROOTERR_FIRST_UC_FATAL);
onoff("Non-Fatal Error Messages Received", reg,PCI_AER_ROOTERR_NF_ERR);
onoff("Fatal Error Messages Received", reg, PCI_AER_ROOTERR_F_ERR);
printf(" Advanced Error Interrupt Message Number: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_AER_ROOTERR_INT_MESSAGE));
}
static void
pci_conf_print_aer_cap_errsrc_id(pcireg_t reg)
{
printf(" Correctable Source ID: 0x%04x\n",
PCIREG_SHIFTOUT(reg, PCI_AER_ERRSRC_ID_ERR_COR));
printf(" ERR_FATAL/NONFATAL Source ID: 0x%04x\n",
PCIREG_SHIFTOUT(reg, PCI_AER_ERRSRC_ID_ERR_UC));
}
static void
pci_conf_print_aer_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
int pcie_capoff;
int pcie_devtype = -1;
bool tlp_prefix_log = false;
if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
reg = regs[o2i(pcie_capoff)];
pcie_devtype = PCIE_XCAP_TYPE(reg);
/* PCIe DW9 to DW14 is for PCIe 2.0 and newer */
if (PCIREG_SHIFTOUT(reg, PCIE_XCAP_VER_MASK) >= 2) {
reg = regs[o2i(pcie_capoff + PCIE_DCAP2)];
/* End-End TLP Prefix Supported */
if (reg & PCIE_DCAP2_EETLP_PREF) {
tlp_prefix_log = true;
}
}
}
printf("\n Advanced Error Reporting Register\n");
reg = regs[o2i(extcapoff + PCI_AER_UC_STATUS)];
printf(" Uncorrectable Error Status register: 0x%08x\n", reg);
pci_conf_print_aer_cap_uc(reg);
reg = regs[o2i(extcapoff + PCI_AER_UC_MASK)];
printf(" Uncorrectable Error Mask register: 0x%08x\n", reg);
pci_conf_print_aer_cap_uc(reg);
reg = regs[o2i(extcapoff + PCI_AER_UC_SEVERITY)];
printf(" Uncorrectable Error Severity register: 0x%08x\n", reg);
pci_conf_print_aer_cap_uc(reg);
reg = regs[o2i(extcapoff + PCI_AER_COR_STATUS)];
printf(" Correctable Error Status register: 0x%08x\n", reg);
pci_conf_print_aer_cap_cor(reg);
reg = regs[o2i(extcapoff + PCI_AER_COR_MASK)];
printf(" Correctable Error Mask register: 0x%08x\n", reg);
pci_conf_print_aer_cap_cor(reg);
reg = regs[o2i(extcapoff + PCI_AER_CAP_CONTROL)];
printf(" Advanced Error Capabilities and Control register: 0x%08x\n",
reg);
pci_conf_print_aer_cap_control(reg, &tlp_prefix_log);
reg = regs[o2i(extcapoff + PCI_AER_HEADER_LOG)];
printf(" Header Log register:\n");
pci_conf_print_regs(regs, extcapoff + PCI_AER_HEADER_LOG,
extcapoff + PCI_AER_ROOTERR_CMD);
switch (pcie_devtype) {
case PCIE_XCAP_TYPE_ROOT: /* Root Port of PCI Express Root Complex */
case PCIE_XCAP_TYPE_ROOT_EVNTC: /* Root Complex Event Collector */
reg = regs[o2i(extcapoff + PCI_AER_ROOTERR_CMD)];
printf(" Root Error Command register: 0x%08x\n", reg);
pci_conf_print_aer_cap_rooterr_cmd(reg);
reg = regs[o2i(extcapoff + PCI_AER_ROOTERR_STATUS)];
printf(" Root Error Status register: 0x%08x\n", reg);
pci_conf_print_aer_cap_rooterr_status(reg);
reg = regs[o2i(extcapoff + PCI_AER_ERRSRC_ID)];
printf(" Error Source Identification register: 0x%08x\n",
reg);
pci_conf_print_aer_cap_errsrc_id(reg);
break;
}
if (tlp_prefix_log) {
reg = regs[o2i(extcapoff + PCI_AER_TLP_PREFIX_LOG)];
printf(" TLP Prefix Log register: 0x%08x\n", reg);
}
}
/*
* Helper function to print the arbitration phase register.
*
* phases: Number of phases in the arbitration tables.
* arbsize: Number of bits in each phase.
* indent: Add more two spaces if it's true.
*/
static void
pci_conf_print_vc_cap_arbtab(const pcireg_t *regs, int off, const char *name,
const int phases, int arbsize, bool indent)
{
pcireg_t reg;
int num_per_reg = 32 / arbsize;
int i, j;
printf("%s %s Arbitration Table:\n", indent ? " " : "", name);
for (i = 0; i < phases; i += num_per_reg) {
reg = regs[o2i(off + (sizeof(uint32_t) * (i / num_per_reg)))];
for (j = 0; j < num_per_reg; j++) {
printf("%s Phase[%d]: 0x%x\n", indent ? " " : "",
i + j,
(uint32_t)(reg & __BITS(arbsize - 1, 0)));
reg >>= arbsize;
}
}
}
/* For VC, bit 4-7 are reserved. For Port, bit 6-7 are reserved */
static const int arb_phases[8] = {0, 32, 64, 128, 128, 256, 0, 0 };
static void
pci_conf_print_vc_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, n;
int arbtab, parbsize;
pcireg_t arbsel;
int i, count;
printf("\n Virtual Channel Register\n");
reg = regs[o2i(extcapoff + PCI_VC_CAP1)];
printf(" Port VC Capability register 1: 0x%08x\n", reg);
count = PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_EXT_COUNT);
printf(" Extended VC Count: %d\n", count);
n = PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_LOWPRI_EXT_COUNT);
printf(" Low Priority Extended VC Count: %u\n", n);
n = PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_REFCLK);
printf(" Reference Clock: %s\n",
(n == PCI_VC_CAP1_REFCLK_100NS) ? "100ns" : "unknown");
parbsize = 1 << PCIREG_SHIFTOUT(reg, PCI_VC_CAP1_PORT_ARB_TABLE_SIZE);
printf(" Port Arbitration Table Entry Size: %dbit\n", parbsize);
reg = regs[o2i(extcapoff + PCI_VC_CAP2)];
printf(" Port VC Capability register 2: 0x%08x\n", reg);
onoff("Hardware fixed arbitration scheme",
reg, PCI_VC_CAP2_ARB_CAP_HW_FIXED_SCHEME);
onoff("WRR arbitration with 32 phases",
reg, PCI_VC_CAP2_ARB_CAP_WRR_32);
onoff("WRR arbitration with 64 phases",
reg, PCI_VC_CAP2_ARB_CAP_WRR_64);
onoff("WRR arbitration with 128 phases",
reg, PCI_VC_CAP2_ARB_CAP_WRR_128);
arbtab = PCIREG_SHIFTOUT(reg, PCI_VC_CAP2_ARB_TABLE_OFFSET);
printf(" VC Arbitration Table Offset: 0x%x\n", arbtab);
reg = regs[o2i(extcapoff + PCI_VC_CONTROL)] & 0xffff;
printf(" Port VC Control register: 0x%04x\n", reg);
arbsel = PCIREG_SHIFTOUT(reg, PCI_VC_CONTROL_VC_ARB_SELECT);
printf(" VC Arbitration Select: 0x%x\n", arbsel);
reg = regs[o2i(extcapoff + PCI_VC_STATUS)] >> 16;
printf(" Port VC Status register: 0x%04x\n", reg);
onoff("VC Arbitration Table Status",
reg, PCI_VC_STATUS_LOAD_VC_ARB_TABLE);
if ((arbtab != 0) && (arbsel != 0))
pci_conf_print_vc_cap_arbtab(regs, extcapoff + (arbtab * 16),
"VC", arb_phases[arbsel], 4, false);
for (i = 0; i < count + 1; i++) {
reg = regs[o2i(extcapoff + PCI_VC_RESOURCE_CAP(i))];
printf(" VC number %d\n", i);
printf(" VC Resource Capability Register: 0x%08x\n", reg);
onoff(" Non-configurable Hardware fixed arbitration scheme",
reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_HW_FIXED_SCHEME);
onoff(" WRR arbitration with 32 phases",
reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_32);
onoff(" WRR arbitration with 64 phases",
reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_64);
onoff(" WRR arbitration with 128 phases",
reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_128);
onoff(" Time-based WRR arbitration with 128 phases",
reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_TWRR_128);
onoff(" WRR arbitration with 256 phases",
reg, PCI_VC_RESOURCE_CAP_PORT_ARB_CAP_WRR_256);
onoff(" Advanced Packet Switching",
reg, PCI_VC_RESOURCE_CAP_ADV_PKT_SWITCH);
onoff(" Reject Snoop Transaction",
reg, PCI_VC_RESOURCE_CAP_REJCT_SNOOP_TRANS);
n = PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CAP_MAX_TIME_SLOTS) + 1;
printf(" Maximum Time Slots: %d\n", n);
arbtab = PCIREG_SHIFTOUT(reg,
PCI_VC_RESOURCE_CAP_PORT_ARB_TABLE_OFFSET);
printf(" Port Arbitration Table offset: 0x%02x\n",
arbtab);
reg = regs[o2i(extcapoff + PCI_VC_RESOURCE_CTL(i))];
printf(" VC Resource Control Register: 0x%08x\n", reg);
printf(" TC/VC Map: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CTL_TCVC_MAP));
/*
* The load Port Arbitration Table bit is used to update
* the Port Arbitration logic and it's always 0 on read, so
* we don't print it.
*/
arbsel = PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CTL_PORT_ARB_SELECT);
printf(" Port Arbitration Select: 0x%x\n", arbsel);
n = PCIREG_SHIFTOUT(reg, PCI_VC_RESOURCE_CTL_VC_ID);
printf(" VC ID: %d\n", n);
onoff(" VC Enable", reg, PCI_VC_RESOURCE_CTL_VC_ENABLE);
reg = regs[o2i(extcapoff + PCI_VC_RESOURCE_STA(i))] >> 16;
printf(" VC Resource Status Register: 0x%08x\n", reg);
onoff(" Port Arbitration Table Status",
reg, PCI_VC_RESOURCE_STA_PORT_ARB_TABLE);
onoff(" VC Negotiation Pending",
reg, PCI_VC_RESOURCE_STA_VC_NEG_PENDING);
if ((arbtab != 0) && (arbsel != 0))
pci_conf_print_vc_cap_arbtab(regs,
extcapoff + (arbtab * 16),
"Port", arb_phases[arbsel], parbsize, true);
}
}
/*
* Print Power limit. This encoding is the same among the following registers:
* - The Captured Slot Power Limit in the PCIe Device Capability Register.
* - The Slot Power Limit in the PCIe Slot Capability Register.
* - The Base Power in the Data register of Power Budgeting capability.
*/
static void
pci_conf_print_pcie_power(uint8_t base, unsigned int scale)
{
unsigned int sdiv = 1;
if ((scale == 0) && (base > 0xef)) {
const char *s;
switch (base) {
case 0xf0:
s = "239W < x <= 250W";
break;
case 0xf1:
s = "250W < x <= 275W";
break;
case 0xf2:
s = "275W < x <= 300W";
break;
default:
s = "reserved for greater than 300W";
break;
}
printf("%s\n", s);
return;
}
for (unsigned int i = scale; i > 0; i--)
sdiv *= 10;
printf("%u", base / sdiv);
if (scale != 0) {
printf(".%u", base % sdiv);
}
printf ("W\n");
return;
}
static const char *
pci_conf_print_pwrbdgt_type(uint8_t reg)
{
switch (reg) {
case 0x00:
return "PME Aux";
case 0x01:
return "Auxilary";
case 0x02:
return "Idle";
case 0x03:
return "Sustained";
case 0x04:
return "Sustained (Emergency Power Reduction)";
case 0x05:
return "Maximum (Emergency Power Reduction)";
case 0x07:
return "Maximum";
default:
return "Unknown";
}
}
static const char *
pci_conf_print_pwrbdgt_pwrrail(uint8_t reg)
{
switch (reg) {
case 0x00:
return "Power(12V)";
case 0x01:
return "Power(3.3V)";
case 0x02:
return "Power(1.5V or 1.8V)";
case 0x07:
return "Thermal";
default:
return "Unknown";
}
}
static void
pci_conf_print_pwrbdgt_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
printf("\n Power Budgeting\n");
reg = regs[o2i(extcapoff + PCI_PWRBDGT_DSEL)];
printf(" Data Select register: 0x%08x\n", reg);
reg = regs[o2i(extcapoff + PCI_PWRBDGT_DATA)];
printf(" Data register: 0x%08x\n", reg);
printf(" Base Power: ");
pci_conf_print_pcie_power(
PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_DATA_BASEPWR),
PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_DATA_SCALE));
printf(" PM Sub State: 0x%hhx\n",
(uint8_t)PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_PM_SUBSTAT));
printf(" PM State: D%u\n",
PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_PM_STAT));
printf(" Type: %s\n",
pci_conf_print_pwrbdgt_type(
(uint8_t)(PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_TYPE))));
printf(" Power Rail: %s\n",
pci_conf_print_pwrbdgt_pwrrail(
(uint8_t)(PCIREG_SHIFTOUT(reg, PCI_PWRBDGT_PWRRAIL))));
reg = regs[o2i(extcapoff + PCI_PWRBDGT_CAP)];
printf(" Power Budget Capability register: 0x%08x\n", reg);
onoff("System Allocated",
reg, PCI_PWRBDGT_CAP_SYSALLOC);
}
static const char *
pci_conf_print_rclink_dcl_cap_elmtype(unsigned char type)
{
switch (type) {
case 0x00:
return "Configuration Space Element";
case 0x01:
return "System Egress Port or internal sink (memory)";
case 0x02:
return "Internal Root Complex Link";
default:
return "Unknown";
}
}
static void
pci_conf_print_rclink_dcl_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
unsigned char nent, linktype;
int i;
printf("\n Root Complex Link Declaration\n");
reg = regs[o2i(extcapoff + PCI_RCLINK_DCL_ESDESC)];
printf(" Element Self Description Register: 0x%08x\n", reg);
printf(" Element Type: %s\n",
pci_conf_print_rclink_dcl_cap_elmtype((unsigned char)reg));
nent = PCIREG_SHIFTOUT(reg, PCI_RCLINK_DCL_ESDESC_NUMLINKENT);
printf(" Number of Link Entries: %hhu\n", nent);
printf(" Component ID: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(reg, PCI_RCLINK_DCL_ESDESC_COMPID));
printf(" Port Number: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(reg, PCI_RCLINK_DCL_ESDESC_PORTNUM));
for (i = 0; i < nent; i++) {
reg = regs[o2i(extcapoff + PCI_RCLINK_DCL_LINKDESC(i))];
printf(" Link Entry %d:\n", i + 1);
printf(" Link Description Register: 0x%08x\n", reg);
onoff(" Link Valid", reg, PCI_RCLINK_DCL_LINKDESC_LVALID);
linktype = reg & PCI_RCLINK_DCL_LINKDESC_LTYPE;
onoff2(" Link Type", reg, PCI_RCLINK_DCL_LINKDESC_LTYPE,
"Configuration Space", "Memory-Mapped Space");
onoff(" Associated RCRB Header", reg,
PCI_RCLINK_DCL_LINKDESC_ARCRBH);
printf(" Target Component ID: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(reg,
PCI_RCLINK_DCL_LINKDESC_TCOMPID));
printf(" Target Port Number: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(reg,
PCI_RCLINK_DCL_LINKDESC_TPNUM));
if (linktype == 0) {
/* Memory-Mapped Space */
reg = regs[o2i(extcapoff
+ PCI_RCLINK_DCL_LINKADDR_LT0_LO(i))];
printf(" Link Address Low Register: 0x%08x\n",
reg);
reg = regs[o2i(extcapoff
+ PCI_RCLINK_DCL_LINKADDR_LT0_HI(i))];
printf(" Link Address High Register: 0x%08x\n",
reg);
} else {
unsigned int nb;
pcireg_t lo, hi;
/* Configuration Space */
lo = regs[o2i(extcapoff
+ PCI_RCLINK_DCL_LINKADDR_LT1_LO(i))];
printf(" Configuration Space Low Register: "
"0x%08x\n", lo);
hi = regs[o2i(extcapoff
+ PCI_RCLINK_DCL_LINKADDR_LT1_HI(i))];
printf(" Configuration Space High Register: "
"0x%08x\n", hi);
nb = PCIREG_SHIFTOUT(lo, PCI_RCLINK_DCL_LINKADDR_LT1_N);
printf(" N: %u\n", nb);
printf(" Func: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(lo,
PCI_RCLINK_DCL_LINKADDR_LT1_FUNC));
printf(" Dev: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(lo,
PCI_RCLINK_DCL_LINKADDR_LT1_DEV));
printf(" Bus: %hhu\n",
(uint8_t)PCIREG_SHIFTOUT(lo,
PCI_RCLINK_DCL_LINKADDR_LT1_BUS(nb)));
lo &= PCI_RCLINK_DCL_LINKADDR_LT1_BAL(i);
printf(" Configuration Space Base Address: "
"0x%016" PRIx64 "\n", ((uint64_t)hi << 32) + lo);
}
}
}
/* XXX pci_conf_print_rclink_ctl_cap */
static void
pci_conf_print_rcec_assoc_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
printf("\n Root Complex Event Collector Association\n");
reg = regs[o2i(extcapoff + PCI_RCEC_ASSOC_ASSOCBITMAP)];
printf(" Association Bitmap for Root Complex Integrated Devices:"
" 0x%08x\n", reg);
if (PCI_EXTCAPLIST_VERSION(regs[o2i(extcapoff)]) >= 2) {
reg = regs[o2i(extcapoff + PCI_RCEC_ASSOC_ASSOCBUSNUM)];
printf(" RCEC Associated Bus Numbers register: 0x%08x\n",
reg);
printf(" RCEC Next Bus: %u\n",
PCIREG_SHIFTOUT(reg,
PCI_RCEC_ASSOCBUSNUM_RCECNEXT));
printf(" RCEC Last Bus: %u\n",
PCIREG_SHIFTOUT(reg,
PCI_RCEC_ASSOCBUSNUM_RCECLAST));
}
}
/* XXX pci_conf_print_mfvc_cap */
/* XXX pci_conf_print_vc2_cap */
/* XXX pci_conf_print_rcrb_cap */
/* XXX pci_conf_print_vendor_cap */
/* XXX pci_conf_print_cac_cap */
static void
pci_conf_print_acs_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl;
unsigned int size, i;
printf("\n Access Control Services\n");
reg = regs[o2i(extcapoff + PCI_ACS_CAP)];
cap = reg & 0xffff;
ctl = reg >> 16;
printf(" ACS Capability register: 0x%08x\n", cap);
onoff("ACS Source Validation", cap, PCI_ACS_CAP_V);
onoff("ACS Transaction Blocking", cap, PCI_ACS_CAP_B);
onoff("ACS P2P Request Redirect", cap, PCI_ACS_CAP_R);
onoff("ACS P2P Completion Redirect", cap, PCI_ACS_CAP_C);
onoff("ACS Upstream Forwarding", cap, PCI_ACS_CAP_U);
onoff("ACS Egress Control", cap, PCI_ACS_CAP_E);
onoff("ACS Direct Translated P2P", cap, PCI_ACS_CAP_T);
size = PCIREG_SHIFTOUT(cap, PCI_ACS_CAP_ECVSIZE);
if (size == 0)
size = 256;
printf(" Egress Control Vector Size: %u\n", size);
printf(" ACS Control register: 0x%08x\n", ctl);
onoff("ACS Source Validation Enable", ctl, PCI_ACS_CTL_V);
onoff("ACS Transaction Blocking Enable", ctl, PCI_ACS_CTL_B);
onoff("ACS P2P Request Redirect Enable", ctl, PCI_ACS_CTL_R);
onoff("ACS P2P Completion Redirect Enable", ctl, PCI_ACS_CTL_C);
onoff("ACS Upstream Forwarding Enable", ctl, PCI_ACS_CTL_U);
onoff("ACS Egress Control Enable", ctl, PCI_ACS_CTL_E);
onoff("ACS Direct Translated P2P Enable", ctl, PCI_ACS_CTL_T);
/*
* If the P2P Egress Control Capability bit is 0, ignore the Egress
* Control vector.
*/
if ((cap & PCI_ACS_CAP_E) == 0)
return;
for (i = 0; i < size; i += 32)
printf(" Egress Control Vector [%u..%u]: 0x%08x\n", i + 31,
i, regs[o2i(extcapoff + PCI_ACS_ECV + (i / 32) * 4 )]);
}
static void
pci_conf_print_ari_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl;
printf("\n Alternative Routing-ID Interpretation Register\n");
reg = regs[o2i(extcapoff + PCI_ARI_CAP)];
cap = reg & 0xffff;
ctl = reg >> 16;
printf(" Capability register: 0x%08x\n", cap);
onoff("MVFC Function Groups Capability", reg, PCI_ARI_CAP_M);
onoff("ACS Function Groups Capability", reg, PCI_ARI_CAP_A);
printf(" Next Function Number: %u\n",
PCIREG_SHIFTOUT(reg, PCI_ARI_CAP_NXTFN));
printf(" Control register: 0x%08x\n", ctl);
onoff("MVFC Function Groups Enable", reg, PCI_ARI_CTL_M);
onoff("ACS Function Groups Enable", reg, PCI_ARI_CTL_A);
printf(" Function Group: %u\n",
PCIREG_SHIFTOUT(reg, PCI_ARI_CTL_FUNCGRP));
}
static void
pci_conf_print_ats_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl;
unsigned int num;
printf("\n Address Translation Services\n");
reg = regs[o2i(extcapoff + PCI_ARI_CAP)];
cap = reg & 0xffff;
ctl = reg >> 16;
printf(" Capability register: 0x%04x\n", cap);
num = PCIREG_SHIFTOUT(reg, PCI_ATS_CAP_INVQDEPTH);
if (num == 0)
num = 32;
printf(" Invalidate Queue Depth: %u\n", num);
onoff("Page Aligned Request", reg, PCI_ATS_CAP_PALIGNREQ);
onoff("Global Invalidate", reg, PCI_ATS_CAP_GLOBALINVL);
onoff("Relaxed Ordering", reg, PCI_ATS_CAP_RELAXORD);
printf(" Control register: 0x%04x\n", ctl);
printf(" Smallest Translation Unit: %u\n",
PCIREG_SHIFTOUT(reg, PCI_ATS_CTL_STU));
onoff("Enable", reg, PCI_ATS_CTL_EN);
}
static void
pci_conf_print_sernum_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t lo, hi;
printf("\n Device Serial Number Register\n");
lo = regs[o2i(extcapoff + PCI_SERIAL_LOW)];
hi = regs[o2i(extcapoff + PCI_SERIAL_HIGH)];
printf(" Serial Number: %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x\n",
hi >> 24, (hi >> 16) & 0xff, (hi >> 8) & 0xff, hi & 0xff,
lo >> 24, (lo >> 16) & 0xff, (lo >> 8) & 0xff, lo & 0xff);
}
static void
pci_conf_print_sriov_cap(const pcireg_t *regs, int extcapoff)
{
char buf[sizeof("99999 MB")];
pcireg_t reg;
pcireg_t total_vfs;
int i;
bool first;
printf("\n Single Root IO Virtualization Register\n");
reg = regs[o2i(extcapoff + PCI_SRIOV_CAP)];
printf(" Capabilities register: 0x%08x\n", reg);
onoff("VF Migration Capable", reg, PCI_SRIOV_CAP_VF_MIGRATION);
onoff("ARI Capable Hierarchy Preserved", reg,
PCI_SRIOV_CAP_ARI_CAP_HIER_PRESERVED);
if (reg & PCI_SRIOV_CAP_VF_MIGRATION) {
printf(" VF Migration Interrupt Message Number: 0x%03x\n",
PCIREG_SHIFTOUT(reg, PCI_SRIOV_CAP_VF_MIGRATION_INTMSG_N));
}
reg = regs[o2i(extcapoff + PCI_SRIOV_CTL)] & 0xffff;
printf(" Control register: 0x%04x\n", reg);
onoff("VF Enable", reg, PCI_SRIOV_CTL_VF_ENABLE);
onoff("VF Migration Enable", reg, PCI_SRIOV_CTL_VF_MIGRATION_SUPPORT);
onoff("VF Migration Interrupt Enable", reg,
PCI_SRIOV_CTL_VF_MIGRATION_INT_ENABLE);
onoff("VF Memory Space Enable", reg, PCI_SRIOV_CTL_VF_MSE);
onoff("ARI Capable Hierarchy", reg, PCI_SRIOV_CTL_ARI_CAP_HIER);
reg = regs[o2i(extcapoff + PCI_SRIOV_STA)] >> 16;
printf(" Status register: 0x%04x\n", reg);
onoff("VF Migration Status", reg, PCI_SRIOV_STA_VF_MIGRATION);
reg = regs[o2i(extcapoff + PCI_SRIOV_INITIAL_VFS)] & 0xffff;
printf(" InitialVFs register: 0x%04x\n", reg);
total_vfs = reg = regs[o2i(extcapoff + PCI_SRIOV_TOTAL_VFS)] >> 16;
printf(" TotalVFs register: 0x%04x\n", reg);
reg = regs[o2i(extcapoff + PCI_SRIOV_NUM_VFS)] & 0xffff;
printf(" NumVFs register: 0x%04x\n", reg);
reg = regs[o2i(extcapoff + PCI_SRIOV_FUNC_DEP_LINK)] >> 16;
printf(" Function Dependency Link register: 0x%04x\n", reg);
reg = regs[o2i(extcapoff + PCI_SRIOV_VF_OFF)] & 0xffff;
printf(" First VF Offset register: 0x%04x\n", reg);
reg = regs[o2i(extcapoff + PCI_SRIOV_VF_STRIDE)] >> 16;
printf(" VF Stride register: 0x%04x\n", reg);
reg = regs[o2i(extcapoff + PCI_SRIOV_VF_DID)] >> 16;
printf(" Device ID: 0x%04x\n", reg);
reg = regs[o2i(extcapoff + PCI_SRIOV_PAGE_CAP)];
printf(" Supported Page Sizes register: 0x%08x\n", reg);
printf(" Supported Page Size:");
for (i = 0, first = true; i < 32; i++) {
if (reg & __BIT(i)) {
#ifdef _KERNEL
format_bytes(buf, sizeof(buf), 1LL << (i + 12));
#else
humanize_number(buf, sizeof(buf), 1LL << (i + 12), "B",
HN_AUTOSCALE, 0);
#endif
printf("%s %s", first ? "" : ",", buf);
first = false;
}
}
printf("\n");
reg = regs[o2i(extcapoff + PCI_SRIOV_PAGE_SIZE)];
printf(" System Page Sizes register: 0x%08x\n", reg);
printf(" Page Size: ");
if (reg != 0) {
int bitpos = ffs(reg) -1;
/* Assume only one bit is set. */
#ifdef _KERNEL
format_bytes(buf, sizeof(buf), 1LL << (bitpos + 12));
#else
humanize_number(buf, sizeof(buf), 1LL << (bitpos + 12),
"B", HN_AUTOSCALE, 0);
#endif
printf("%s", buf);
} else {
printf("unknown");
}
printf("\n");
for (i = 0; i < 6; i++) {
reg = regs[o2i(extcapoff + PCI_SRIOV_BAR(i))];
printf(" VF BAR%d register: 0x%08x\n", i, reg);
}
if (total_vfs > 0) {
reg = regs[o2i(extcapoff + PCI_SRIOV_VF_MIG_STA_AR)];
printf(" VF Migration State Array Offset register: 0x%08x\n",
reg);
printf(" VF Migration State Offset: 0x%08x\n",
PCIREG_SHIFTOUT(reg, PCI_SRIOV_VF_MIG_STA_OFFSET));
i = PCIREG_SHIFTOUT(reg, PCI_SRIOV_VF_MIG_STA_BIR);
printf(" VF Migration State BIR: ");
if (i >= 0 && i <= 5) {
printf("BAR%d", i);
} else {
printf("unknown BAR (%d)", i);
}
printf("\n");
}
}
/* XXX pci_conf_print_mriov_cap */
static void
pci_conf_print_multicast_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl;
pcireg_t regl, regh;
uint64_t addr;
int n;
printf("\n Multicast\n");
reg = regs[o2i(extcapoff + PCI_MCAST_CTL)];
cap = reg & 0xffff;
ctl = reg >> 16;
printf(" Capability Register: 0x%04x\n", cap);
printf(" Max Group: %u\n",
(pcireg_t)(reg & PCI_MCAST_CAP_MAXGRP) + 1);
/* Endpoint Only */
n = PCIREG_SHIFTOUT(reg, PCI_MCAST_CAP_WINSIZEREQ);
if (n > 0)
printf(" Windw Size Requested: %d\n", 1 << (n - 1));
onoff("ECRC Regeneration Supported", reg, PCI_MCAST_CAP_ECRCREGEN);
printf(" Control Register: 0x%04x\n", ctl);
printf(" Num Group: %u\n",
PCIREG_SHIFTOUT(reg, PCI_MCAST_CTL_NUMGRP) + 1);
onoff("Enable", reg, PCI_MCAST_CTL_ENA);
regl = regs[o2i(extcapoff + PCI_MCAST_BARL)];
regh = regs[o2i(extcapoff + PCI_MCAST_BARH)];
printf(" Base Address Register 0: 0x%08x\n", regl);
printf(" Base Address Register 1: 0x%08x\n", regh);
printf(" Index Position: %u\n",
(unsigned int)(regl & PCI_MCAST_BARL_INDPOS));
addr = ((uint64_t)regh << 32) | (regl & PCI_MCAST_BARL_ADDR);
printf(" Base Address: 0x%016" PRIx64 "\n", addr);
regl = regs[o2i(extcapoff + PCI_MCAST_RECVL)];
regh = regs[o2i(extcapoff + PCI_MCAST_RECVH)];
printf(" Receive Register 0: 0x%08x\n", regl);
printf(" Receive Register 1: 0x%08x\n", regh);
regl = regs[o2i(extcapoff + PCI_MCAST_BLOCKALLL)];
regh = regs[o2i(extcapoff + PCI_MCAST_BLOCKALLH)];
printf(" Block All Register 0: 0x%08x\n", regl);
printf(" Block All Register 1: 0x%08x\n", regh);
regl = regs[o2i(extcapoff + PCI_MCAST_BLOCKUNTRNSL)];
regh = regs[o2i(extcapoff + PCI_MCAST_BLOCKUNTRNSH)];
printf(" Block Untranslated Register 0: 0x%08x\n", regl);
printf(" Block Untranslated Register 1: 0x%08x\n", regh);
regl = regs[o2i(extcapoff + PCI_MCAST_OVERLAYL)];
regh = regs[o2i(extcapoff + PCI_MCAST_OVERLAYH)];
printf(" Overlay BAR 0: 0x%08x\n", regl);
printf(" Overlay BAR 1: 0x%08x\n", regh);
n = regl & PCI_MCAST_OVERLAYL_SIZE;
printf(" Overlay Size: ");
if (n >= 6)
printf("%d\n", n);
else
printf("off\n");
addr = ((uint64_t)regh << 32) | (regl & PCI_MCAST_OVERLAYL_ADDR);
printf(" Overlay BAR: 0x%016" PRIx64 "\n", addr);
}
static void
pci_conf_print_page_req_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, ctl, sta;
printf("\n Page Request\n");
reg = regs[o2i(extcapoff + PCI_PAGE_REQ_CTL)];
ctl = reg & 0xffff;
sta = reg >> 16;
printf(" Control Register: 0x%04x\n", ctl);
onoff("Enable", reg, PCI_PAGE_REQ_CTL_E);
onoff("Reset", reg, PCI_PAGE_REQ_CTL_R);
printf(" Status Register: 0x%04x\n", sta);
onoff("Response Failure", reg, PCI_PAGE_REQ_STA_RF);
onoff("Unexpected Page Request Group Index", reg,
PCI_PAGE_REQ_STA_UPRGI);
onoff("Stopped", reg, PCI_PAGE_REQ_STA_S);
onoff("PRG Response PASID Required", reg, PCI_PAGE_REQ_STA_PASIDR);
reg = regs[o2i(extcapoff + PCI_PAGE_REQ_OUTSTCAPA)];
printf(" Outstanding Page Request Capacity: %u\n", reg);
reg = regs[o2i(extcapoff + PCI_PAGE_REQ_OUTSTALLOC)];
printf(" Outstanding Page Request Allocation: %u\n", reg);
}
/* XXX pci_conf_print_amd_cap */
#define MEM_PBUFSIZE sizeof("999GB")
static void
pci_conf_print_resizbar_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t cap, ctl;
unsigned int bars, i, n;
char pbuf[MEM_PBUFSIZE];
printf("\n Resizable BAR\n");
/* Get Number of Resizable BARs */
ctl = regs[o2i(extcapoff + PCI_RESIZBAR_CTL(0))];
bars = PCIREG_SHIFTOUT(ctl, PCI_RESIZBAR_CTL_NUMBAR);
printf(" Number of Resizable BARs: ");
if (bars <= 6)
printf("%u\n", bars);
else {
printf("incorrect (%u)\n", bars);
return;
}
for (n = 0; n < 6; n++) {
cap = regs[o2i(extcapoff + PCI_RESIZBAR_CAP(n))];
printf(" Capability register(%u): 0x%08x\n", n, cap);
if ((cap & PCI_RESIZBAR_CAP_SIZEMASK) == 0)
continue; /* Not Used */
printf(" Acceptable BAR sizes:");
for (i = 4; i <= 23; i++) {
if ((cap & (1 << i)) != 0) {
humanize_number(pbuf, MEM_PBUFSIZE,
(int64_t)1024 * 1024 << (i - 4), "B",
#ifdef _KERNEL
1);
#else
HN_AUTOSCALE, HN_NOSPACE);
#endif
printf(" %s", pbuf);
}
}
printf("\n");
ctl = regs[o2i(extcapoff + PCI_RESIZBAR_CTL(n))];
printf(" Control register(%u): 0x%08x\n", n, ctl);
printf(" BAR Index: %u\n",
PCIREG_SHIFTOUT(ctl, PCI_RESIZBAR_CTL_BARIDX));
humanize_number(pbuf, MEM_PBUFSIZE,
(int64_t)1024 * 1024
<< PCIREG_SHIFTOUT(ctl, PCI_RESIZBAR_CTL_BARSIZ),
"B",
#ifdef _KERNEL
1);
#else
HN_AUTOSCALE, HN_NOSPACE);
#endif
printf(" BAR Size: %s\n", pbuf);
}
}
static void
pci_conf_print_dpa_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
unsigned int substmax, i;
printf("\n Dynamic Power Allocation\n");
reg = regs[o2i(extcapoff + PCI_DPA_CAP)];
printf(" Capability register: 0x%08x\n", reg);
substmax = PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_SUBSTMAX);
printf(" Substate Max: %u\n", substmax);
printf(" Transition Latency Unit: ");
switch (PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_TLUINT)) {
case 0:
printf("1ms\n");
break;
case 1:
printf("10ms\n");
break;
case 2:
printf("100ms\n");
break;
default:
printf("reserved\n");
break;
}
printf(" Power Allocation Scale: ");
switch (PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_PAS)) {
case 0:
printf("10.0x\n");
break;
case 1:
printf("1.0x\n");
break;
case 2:
printf("0.1x\n");
break;
case 3:
printf("0.01x\n");
break;
}
printf(" Transition Latency Value 0: %u\n",
PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_XLCY0));
printf(" Transition Latency Value 1: %u\n",
PCIREG_SHIFTOUT(reg, PCI_DPA_CAP_XLCY1));
reg = regs[o2i(extcapoff + PCI_DPA_LATIND)];
printf(" Latency Indicatior register: 0x%08x\n", reg);
reg = regs[o2i(extcapoff + PCI_DPA_CS)];
printf(" Status register: 0x%04x\n", reg & 0xffff);
printf(" Substate Status: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_DPA_CS_SUBSTSTAT));
onoff("Substate Control Enabled", reg, PCI_DPA_CS_SUBSTCTLEN);
printf(" Control register: 0x%04x\n", reg >> 16);
printf(" Substate Control: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_DPA_CS_SUBSTCTL));
for (i = 0; i <= substmax; i++)
printf(" Substate Power Allocation register %d: 0x%02x\n",
i, (regs[PCI_DPA_PWRALLOC + (i / 4)] >> (i % 4) & 0xff));
}
static const char *
pci_conf_print_tph_req_cap_sttabloc(uint8_t val)
{
switch (val) {
case PCI_TPH_REQ_STTBLLOC_NONE:
return "Not Present";
case PCI_TPH_REQ_STTBLLOC_TPHREQ:
return "in the TPH Requester Capability Structure";
case PCI_TPH_REQ_STTBLLOC_MSIX:
return "in the MSI-X Table";
default:
return "Unknown";
}
}
static void
pci_conf_print_tph_req_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
int size = 0, i, j;
uint8_t sttbloc;
printf("\n TPH Requester Extended Capability\n");
reg = regs[o2i(extcapoff + PCI_TPH_REQ_CAP)];
printf(" TPH Requester Capabililty register: 0x%08x\n", reg);
onoff("No ST Mode Supported", reg, PCI_TPH_REQ_CAP_NOST);
onoff("Interrupt Vector Mode Supported", reg, PCI_TPH_REQ_CAP_INTVEC);
onoff("Device Specific Mode Supported", reg, PCI_TPH_REQ_CAP_DEVSPEC);
onoff("Extend TPH Reqester Supported", reg, PCI_TPH_REQ_CAP_XTPHREQ);
sttbloc = PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CAP_STTBLLOC);
printf(" ST Table Location: %s\n",
pci_conf_print_tph_req_cap_sttabloc(sttbloc));
if (sttbloc == PCI_TPH_REQ_STTBLLOC_TPHREQ) {
size = PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CAP_STTBLSIZ) + 1;
printf(" ST Table Size: %d\n", size);
}
reg = regs[o2i(extcapoff + PCI_TPH_REQ_CTL)];
printf(" TPH Requester Control register: 0x%08x\n", reg);
printf(" ST Mode Select: ");
switch (PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CTL_STSEL)) {
case PCI_TPH_REQ_CTL_STSEL_NO:
printf("No ST Mode\n");
break;
case PCI_TPH_REQ_CTL_STSEL_IV:
printf("Interrupt Vector Mode\n");
break;
case PCI_TPH_REQ_CTL_STSEL_DS:
printf("Device Specific Mode\n");
break;
default:
printf("(reserved value)\n");
break;
}
printf(" TPH Requester Enable: ");
switch (PCIREG_SHIFTOUT(reg, PCI_TPH_REQ_CTL_TPHREQEN)) {
case PCI_TPH_REQ_CTL_TPHREQEN_NO: /* 0x0 */
printf("Not permitted\n");
break;
case PCI_TPH_REQ_CTL_TPHREQEN_TPH:
printf("TPH and not Extended TPH\n");
break;
case PCI_TPH_REQ_CTL_TPHREQEN_ETPH:
printf("TPH and Extended TPH");
break;
default:
printf("(reserved value)\n");
break;
}
if (sttbloc != PCI_TPH_REQ_STTBLLOC_TPHREQ)
return;
for (i = 0; i < size ; i += 2) {
reg = regs[o2i(extcapoff + PCI_TPH_REQ_STTBL + i / 2)];
for (j = 0; j < 2 ; j++) {
uint32_t entry = reg;
if (j != 0)
entry >>= 16;
entry &= 0xffff;
printf(" TPH ST Table Entry (%d): 0x%04"PRIx32"\n",
i + j, entry);
}
}
}
static void
pci_conf_print_ltr_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
printf("\n Latency Tolerance Reporting\n");
reg = regs[o2i(extcapoff + PCI_LTR_MAXSNOOPLAT)];
printf(" Max Snoop Latency Register: 0x%04x\n", reg & 0xffff);
printf(" Max Snoop Latency: %juns\n",
(uintmax_t)(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXSNOOPLAT_VAL)
* PCI_LTR_SCALETONS(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXSNOOPLAT_SCALE))));
printf(" Max No-Snoop Latency Register: 0x%04x\n", reg >> 16);
printf(" Max No-Snoop Latency: %juns\n",
(uintmax_t)(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXNOSNOOPLAT_VAL)
* PCI_LTR_SCALETONS(PCIREG_SHIFTOUT(reg, PCI_LTR_MAXNOSNOOPLAT_SCALE))));
}
static void
pci_conf_print_sec_pcie_cap(const pcireg_t *regs, int extcapoff)
{
int pcie_capoff;
pcireg_t reg;
int i, maxlinkwidth;
printf("\n Secondary PCI Express Register\n");
reg = regs[o2i(extcapoff + PCI_SECPCIE_LCTL3)];
printf(" Link Control 3 register: 0x%08x\n", reg);
onoff("Perform Equalization", reg, PCI_SECPCIE_LCTL3_PERFEQ);
onoff("Link Equalization Request Interrupt Enable",
reg, PCI_SECPCIE_LCTL3_LINKEQREQ_IE);
printf(" Enable Lower SKP OS Generation Vector:");
pci_print_pcie_linkspeedvector(
PCIREG_SHIFTOUT(reg, PCI_SECPCIE_LCTL3_ELSKPOSGENV));
printf("\n");
reg = regs[o2i(extcapoff + PCI_SECPCIE_LANEERR_STA)];
printf(" Lane Error Status register: 0x%08x\n", reg);
/* Get Max Link Width */
if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
reg = regs[o2i(pcie_capoff + PCIE_LCAP)];
maxlinkwidth = PCIREG_SHIFTOUT(reg, PCIE_LCAP_MAX_WIDTH);
} else {
printf("error: falied to get PCIe capablity\n");
return;
}
for (i = 0; i < maxlinkwidth; i++) {
reg = regs[o2i(extcapoff + PCI_SECPCIE_EQCTL(i))];
if (i % 2 != 0)
reg >>= 16;
else
reg &= 0xffff;
printf(" Equalization Control Register (Link %d): 0x%04x\n",
i, reg);
printf(" Downstream Port Transmit Preset: 0x%x\n",
PCIREG_SHIFTOUT(reg,
PCI_SECPCIE_EQCTL_DP_XMIT_PRESET));
printf(" Downstream Port Receive Hint: 0x%x\n",
PCIREG_SHIFTOUT(reg, PCI_SECPCIE_EQCTL_DP_RCV_HINT));
printf(" Upstream Port Transmit Preset: 0x%x\n",
PCIREG_SHIFTOUT(reg,
PCI_SECPCIE_EQCTL_UP_XMIT_PRESET));
printf(" Upstream Port Receive Hint: 0x%x\n",
PCIREG_SHIFTOUT(reg, PCI_SECPCIE_EQCTL_UP_RCV_HINT));
}
}
/* XXX pci_conf_print_pmux_cap */
static void
pci_conf_print_pasid_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl;
unsigned int num;
printf("\n Process Address Space ID\n");
reg = regs[o2i(extcapoff + PCI_PASID_CAP)];
cap = reg & 0xffff;
ctl = reg >> 16;
printf(" PASID Capability Register: 0x%04x\n", cap);
onoff("Execute Permission Supported", reg, PCI_PASID_CAP_XPERM);
onoff("Privileged Mode Supported", reg, PCI_PASID_CAP_PRIVMODE);
num = (1 << PCIREG_SHIFTOUT(reg, PCI_PASID_CAP_MAXPASIDW)) - 1;
printf(" Max PASID Width: %u\n", num);
printf(" PASID Control Register: 0x%04x\n", ctl);
onoff("PASID Enable", reg, PCI_PASID_CTL_PASID_EN);
onoff("Execute Permission Enable", reg, PCI_PASID_CTL_XPERM_EN);
onoff("Privileged Mode Enable", reg, PCI_PASID_CTL_PRIVMODE_EN);
}
static void
pci_conf_print_lnr_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl;
unsigned int num;
printf("\n LN Requester\n");
reg = regs[o2i(extcapoff + PCI_LNR_CAP)];
cap = reg & 0xffff;
ctl = reg >> 16;
printf(" LNR Capability register: 0x%04x\n", cap);
onoff("LNR-64 Supported", reg, PCI_LNR_CAP_64);
onoff("LNR-128 Supported", reg, PCI_LNR_CAP_128);
num = 1 << PCIREG_SHIFTOUT(reg, PCI_LNR_CAP_REGISTMAX);
printf(" LNR Registration MAX: %u\n", num);
printf(" LNR Control register: 0x%04x\n", ctl);
onoff("LNR Enable", reg, PCI_LNR_CTL_EN);
onoff("LNR CLS", reg, PCI_LNR_CTL_CLS);
num = 1 << PCIREG_SHIFTOUT(reg, PCI_LNR_CTL_REGISTLIM);
printf(" LNR Registration Limit: %u\n", num);
}
static void
pci_conf_print_dpc_pio(pcireg_t r)
{
onoff("Cfg Request received UR Completion", r,PCI_DPC_RPPIO_CFGUR_CPL);
onoff("Cfg Request received CA Completion", r,PCI_DPC_RPPIO_CFGCA_CPL);
onoff("Cfg Request Completion Timeout", r, PCI_DPC_RPPIO_CFG_CTO);
onoff("I/O Request received UR Completion", r, PCI_DPC_RPPIO_IOUR_CPL);
onoff("I/O Request received CA Completion", r, PCI_DPC_RPPIO_IOCA_CPL);
onoff("I/O Request Completion Timeout", r, PCI_DPC_RPPIO_IO_CTO);
onoff("Mem Request received UR Completion", r,PCI_DPC_RPPIO_MEMUR_CPL);
onoff("Mem Request received CA Completion", r,PCI_DPC_RPPIO_MEMCA_CPL);
onoff("Mem Request Completion Timeout", r, PCI_DPC_RPPIO_MEM_CTO);
}
static void
pci_conf_print_dpc_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg, cap, ctl, stat, errsrc;
const char *trigstr;
bool rpext;
printf("\n Downstream Port Containment\n");
reg = regs[o2i(extcapoff + PCI_DPC_CCR)];
cap = reg & 0xffff;
ctl = reg >> 16;
rpext = (reg & PCI_DPCCAP_RPEXT) ? true : false;
printf(" DPC Capability register: 0x%04x\n", cap);
printf(" DPC Interrupt Message Number: %02x\n",
(unsigned int)(cap & PCI_DPCCAP_IMSGN));
onoff("RP Extensions for DPC", reg, PCI_DPCCAP_RPEXT);
onoff("Poisoned TLP Egress Blocking Supported", reg,
PCI_DPCCAP_POISONTLPEB);
onoff("DPC Software Triggering Supported", reg, PCI_DPCCAP_SWTRIG);
printf(" RP PIO Log Size: %u\n",
PCIREG_SHIFTOUT(reg, PCI_DPCCAP_RPPIOLOGSZ));
onoff("DL_Active ERR_COR Signaling Supported", reg,
PCI_DPCCAP_DLACTECORS);
printf(" DPC Control register: 0x%04x\n", ctl);
switch (PCIREG_SHIFTOUT(reg, PCI_DPCCTL_TIRGEN)) {
case 0:
trigstr = "disabled";
break;
case 1:
trigstr = "enabled(ERR_FATAL)";
break;
case 2:
trigstr = "enabled(ERR_NONFATAL or ERR_FATAL)";
break;
default:
trigstr = "(reserverd)";
break;
}
printf(" DPC Trigger Enable: %s\n", trigstr);
printf(" DPC Completion Control: %s Completion Status\n",
(reg & PCI_DPCCTL_COMPCTL)
? "Unsupported Request(UR)" : "Completer Abort(CA)");
onoff("DPC Interrupt Enable", reg, PCI_DPCCTL_IE);
onoff("DPC ERR_COR Enable", reg, PCI_DPCCTL_ERRCOREN);
onoff("Poisoned TLP Egress Blocking Enable", reg,
PCI_DPCCTL_POISONTLPEB);
onoff("DPC Software Trigger", reg, PCI_DPCCTL_SWTRIG);
onoff("DL_Active ERR_COR Enable", reg, PCI_DPCCTL_DLACTECOR);
reg = regs[o2i(extcapoff + PCI_DPC_STATESID)];
stat = reg & 0xffff;
errsrc = reg >> 16;
printf(" DPC Status register: 0x%04x\n", stat);
onoff("DPC Trigger Status", reg, PCI_DPCSTAT_TSTAT);
switch (PCIREG_SHIFTOUT(reg, PCI_DPCSTAT_TREASON)) {
case 0:
trigstr = "an unmasked uncorrectable error";
break;
case 1:
trigstr = "receiving an ERR_NONFATAL";
break;
case 2:
trigstr = "receiving an ERR_FATAL";
break;
case 3:
trigstr = "DPC Trigger Reason Extension field";
break;
}
printf(" DPC Trigger Reason: Due to %s\n", trigstr);
onoff("DPC Interrupt Status", reg, PCI_DPCSTAT_ISTAT);
if (rpext)
onoff("DPC RP Busy", reg, PCI_DPCSTAT_RPBUSY);
switch (PCIREG_SHIFTOUT(reg, PCI_DPCSTAT_TREASON)) {
case 0:
trigstr = "Due to RP PIO error";
break;
case 1:
trigstr = "Due to the DPC Software trigger bit";
break;
default:
trigstr = "(reserved)";
break;
}
printf(" DPC Trigger Reason Extension: %s\n", trigstr);
if (rpext)
printf(" RP PIO First Error Pointer: 0x%02x\n",
PCIREG_SHIFTOUT(reg, PCI_DPCSTAT_RPPIOFEP));
printf(" DPC Error Source ID register: 0x%04x\n", errsrc);
if (!rpext)
return;
/*
* All of the following registers are implemented by a device which has
* RP Extensions for DPC
*/
reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_STAT)];
printf(" RP PIO Status Register: 0x%08x\n", reg);
pci_conf_print_dpc_pio(reg);
reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_MASK)];
printf(" RP PIO Mask Register: 0x%08x\n", reg);
pci_conf_print_dpc_pio(reg);
reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_SEVE)];
printf(" RP PIO Severity Register: 0x%08x\n", reg);
pci_conf_print_dpc_pio(reg);
reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_SYSERR)];
printf(" RP PIO SysError Register: 0x%08x\n", reg);
pci_conf_print_dpc_pio(reg);
reg = regs[o2i(extcapoff + PCI_DPC_RPPIO_EXCPT)];
printf(" RP PIO Exception Register: 0x%08x\n", reg);
pci_conf_print_dpc_pio(reg);
printf(" RP PIO Header Log Register: start from 0x%03x\n",
extcapoff + PCI_DPC_RPPIO_HLOG);
printf(" RP PIO ImpSpec Log Register: start from 0x%03x\n",
extcapoff + PCI_DPC_RPPIO_IMPSLOG);
printf(" RP PIO TLP Prefix Log Register: start from 0x%03x\n",
extcapoff + PCI_DPC_RPPIO_TLPPLOG);
}
static int
pci_conf_l1pm_cap_tposcale(unsigned char scale)
{
/* Return scale in us */
switch (scale) {
case 0x0:
return 2;
case 0x1:
return 10;
case 0x2:
return 100;
default:
return -1;
}
}
static void
pci_conf_print_l1pm_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
int scale, val;
int pcie_capoff;
printf("\n L1 PM Substates\n");
reg = regs[o2i(extcapoff + PCI_L1PM_CAP)];
printf(" L1 PM Substates Capability register: 0x%08x\n", reg);
onoff("PCI-PM L1.2 Supported", reg, PCI_L1PM_CAP_PCIPM12);
onoff("PCI-PM L1.1 Supported", reg, PCI_L1PM_CAP_PCIPM11);
onoff("ASPM L1.2 Supported", reg, PCI_L1PM_CAP_ASPM12);
onoff("ASPM L1.1 Supported", reg, PCI_L1PM_CAP_ASPM11);
onoff("L1 PM Substates Supported", reg, PCI_L1PM_CAP_L1PM);
/* The Link Activation Supported bit is only for Downstream Port */
if (pci_conf_find_cap(regs, PCI_CAP_PCIEXPRESS, &pcie_capoff)) {
uint32_t t = regs[o2i(pcie_capoff)];
if ((t == PCIE_XCAP_TYPE_ROOT) || (t == PCIE_XCAP_TYPE_DOWN))
onoff("Link Activation Supported", reg,
PCI_L1PM_CAP_LA);
}
printf(" Port Common Mode Restore Time: %uus\n",
PCIREG_SHIFTOUT(reg, PCI_L1PM_CAP_PCMRT));
scale = pci_conf_l1pm_cap_tposcale(
PCIREG_SHIFTOUT(reg, PCI_L1PM_CAP_PTPOSCALE));
val = PCIREG_SHIFTOUT(reg, PCI_L1PM_CAP_PTPOVAL);
printf(" Port T_POWER_ON: ");
if (scale == -1)
printf("unknown\n");
else
printf("%dus\n", val * scale);
reg = regs[o2i(extcapoff + PCI_L1PM_CTL1)];
printf(" L1 PM Substates Control register 1: 0x%08x\n", reg);
onoff("PCI-PM L1.2 Enable", reg, PCI_L1PM_CTL1_PCIPM12_EN);
onoff("PCI-PM L1.1 Enable", reg, PCI_L1PM_CTL1_PCIPM11_EN);
onoff("ASPM L1.2 Enable", reg, PCI_L1PM_CTL1_ASPM12_EN);
onoff("ASPM L1.1 Enable", reg, PCI_L1PM_CTL1_ASPM11_EN);
onoff("Link Activation Interrupt Enable", reg, PCI_L1PM_CTL1_LAIE);
onoff("Link Activation Control", reg, PCI_L1PM_CTL1_LA);
printf(" Common Mode Restore Time: %uus\n",
PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL1_CMRT));
scale = PCI_LTR_SCALETONS(PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL1_LTRTHSCALE));
val = PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL1_LTRTHVAL);
printf(" LTR L1.2 THRESHOLD: %dus\n", val * scale);
reg = regs[o2i(extcapoff + PCI_L1PM_CTL2)];
printf(" L1 PM Substates Control register 2: 0x%08x\n", reg);
scale = pci_conf_l1pm_cap_tposcale(
PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL2_TPOSCALE));
val = PCIREG_SHIFTOUT(reg, PCI_L1PM_CTL2_TPOVAL);
printf(" T_POWER_ON: ");
if (scale == -1)
printf("unknown\n");
else
printf("%dus\n", val * scale);
if (PCI_EXTCAPLIST_VERSION(regs[o2i(extcapoff)]) >= 2) {
reg = regs[o2i(extcapoff + PCI_L1PM_CTL2)];
printf(" L1 PM Substates Status register: 0x%08x\n", reg);
onoff("Link Activation Status", reg, PCI_L1PM_STAT_LA);
}
}
static void
pci_conf_print_ptm_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
uint32_t val;
printf("\n Precision Time Management\n");
reg = regs[o2i(extcapoff + PCI_PTM_CAP)];
printf(" PTM Capability register: 0x%08x\n", reg);
onoff("PTM Requester Capable", reg, PCI_PTM_CAP_REQ);
onoff("PTM Responder Capable", reg, PCI_PTM_CAP_RESP);
onoff("PTM Root Capable", reg, PCI_PTM_CAP_ROOT);
printf(" Local Clock Granularity: ");
val = PCIREG_SHIFTOUT(reg, PCI_PTM_CAP_LCLCLKGRNL);
switch (val) {
case 0:
printf("Not implemented\n");
break;
case 0xffff:
printf("> 254ns\n");
break;
default:
printf("%uns\n", val);
break;
}
reg = regs[o2i(extcapoff + PCI_PTM_CTL)];
printf(" PTM Control register: 0x%08x\n", reg);
onoff("PTM Enable", reg, PCI_PTM_CTL_EN);
onoff("Root Select", reg, PCI_PTM_CTL_ROOTSEL);
printf(" Effective Granularity: ");
val = PCIREG_SHIFTOUT(reg, PCI_PTM_CTL_EFCTGRNL);
switch (val) {
case 0:
printf("Unknown\n");
break;
case 0xffff:
printf("> 254ns\n");
break;
default:
printf("%uns\n", val);
break;
}
}
/* XXX pci_conf_print_mpcie_cap */
/* XXX pci_conf_print_frsq_cap */
/* XXX pci_conf_print_rtr_cap */
/* XXX pci_conf_print_desigvndsp_cap */
/* XXX pci_conf_print_vf_resizbar_cap */
static void
pci_conf_print_dlf_cap(const pcireg_t *regs, int extcapoff)
{
pcireg_t reg;
printf("\n Data link Feature Register\n");
reg = regs[o2i(extcapoff + PCI_DLF_CAP)];
printf(" Capability register: 0x%08x\n", reg);
onoff("Scaled Flow Control", reg, PCI_DLF_LFEAT_SCLFCTL);
onoff("DLF Exchange enable", reg, PCI_DLF_CAP_XCHG);
reg = regs[o2i(extcapoff + PCI_DLF_STAT)];
printf(" Status register: 0x%08x\n", reg);
onoff("Scaled Flow Control", reg, PCI_DLF_LFEAT_SCLFCTL);
onoff("Remote DLF supported Valid", reg, PCI_DLF_STAT_RMTVALID);
}
/* XXX pci_conf_print_hierarchyid_cap */
/* XXX pci_conf_print_npem_cap */
#undef MS
#undef SM
#undef RW
static struct {
pcireg_t cap;
const char *name;
void (*printfunc)(const pcireg_t *, int);
} pci_extcaptab[] = {
{ 0, "reserved",
NULL },
{ PCI_EXTCAP_AER, "Advanced Error Reporting",
pci_conf_print_aer_cap },
{ PCI_EXTCAP_VC, "Virtual Channel",
pci_conf_print_vc_cap },
{ PCI_EXTCAP_SERNUM, "Device Serial Number",
pci_conf_print_sernum_cap },
{ PCI_EXTCAP_PWRBDGT, "Power Budgeting",
pci_conf_print_pwrbdgt_cap },
{ PCI_EXTCAP_RCLINK_DCL,"Root Complex Link Declaration",
pci_conf_print_rclink_dcl_cap },
{ PCI_EXTCAP_RCLINK_CTL,"Root Complex Internal Link Control",
NULL },
{ PCI_EXTCAP_RCEC_ASSOC,"Root Complex Event Collector Association",
pci_conf_print_rcec_assoc_cap },
{ PCI_EXTCAP_MFVC, "Multi-Function Virtual Channel",
NULL },
{ PCI_EXTCAP_VC2, "Virtual Channel",
NULL },
{ PCI_EXTCAP_RCRB, "RCRB Header",
NULL },
{ PCI_EXTCAP_VENDOR, "Vendor Unique",
NULL },
{ PCI_EXTCAP_CAC, "Configuration Access Correction",
NULL },
{ PCI_EXTCAP_ACS, "Access Control Services",
pci_conf_print_acs_cap },
{ PCI_EXTCAP_ARI, "Alternative Routing-ID Interpretation",
pci_conf_print_ari_cap },
{ PCI_EXTCAP_ATS, "Address Translation Services",
pci_conf_print_ats_cap },
{ PCI_EXTCAP_SRIOV, "Single Root IO Virtualization",
pci_conf_print_sriov_cap },
{ PCI_EXTCAP_MRIOV, "Multiple Root IO Virtualization",
NULL },
{ PCI_EXTCAP_MCAST, "Multicast",
pci_conf_print_multicast_cap },
{ PCI_EXTCAP_PAGE_REQ, "Page Request",
pci_conf_print_page_req_cap },
{ PCI_EXTCAP_AMD, "Reserved for AMD",
NULL },
{ PCI_EXTCAP_RESIZBAR, "Resizable BAR",
pci_conf_print_resizbar_cap },
{ PCI_EXTCAP_DPA, "Dynamic Power Allocation",
pci_conf_print_dpa_cap },
{ PCI_EXTCAP_TPH_REQ, "TPH Requester",
pci_conf_print_tph_req_cap },
{ PCI_EXTCAP_LTR, "Latency Tolerance Reporting",
pci_conf_print_ltr_cap },
{ PCI_EXTCAP_SEC_PCIE, "Secondary PCI Express",
pci_conf_print_sec_pcie_cap },
{ PCI_EXTCAP_PMUX, "Protocol Multiplexing",
NULL },
{ PCI_EXTCAP_PASID, "Process Address Space ID",
pci_conf_print_pasid_cap },
{ PCI_EXTCAP_LNR, "LN Requester",
pci_conf_print_lnr_cap },
{ PCI_EXTCAP_DPC, "Downstream Port Containment",
pci_conf_print_dpc_cap },
{ PCI_EXTCAP_L1PM, "L1 PM Substates",
pci_conf_print_l1pm_cap },
{ PCI_EXTCAP_PTM, "Precision Time Management",
pci_conf_print_ptm_cap },
{ PCI_EXTCAP_MPCIE, "M-PCIe",
NULL },
{ PCI_EXTCAP_FRSQ, "Function Reading Status Queueing",
NULL },
{ PCI_EXTCAP_RTR, "Readiness Time Reporting",
NULL },
{ PCI_EXTCAP_DESIGVNDSP, "Designated Vendor-Specific",
NULL },
{ PCI_EXTCAP_VF_RESIZBAR, "VF Resizable BARs",
NULL },
{ PCI_EXTCAP_DLF, "Data link Feature", pci_conf_print_dlf_cap },
{ PCI_EXTCAP_PYSLAY_16GT, "Physical Layer 16.0 GT/s", NULL },
{ 0x27, "unknown", NULL },
{ PCI_EXTCAP_HIERARCHYID, "Hierarchy ID",
NULL },
{ PCI_EXTCAP_NPEM, "Native PCIe Enclosure Management",
NULL },
};
static int
pci_conf_find_extcap(const pcireg_t *regs, unsigned int capid, int *offsetp)
{
int off;
pcireg_t rval;
for (off = PCI_EXTCAPLIST_BASE;
off != 0;
off = PCI_EXTCAPLIST_NEXT(rval)) {
rval = regs[o2i(off)];
if (capid == PCI_EXTCAPLIST_CAP(rval)) {
if (offsetp != NULL)
*offsetp = off;
return 1;
}
}
return 0;
}
static void
pci_conf_print_extcaplist(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs)
{
int off;
pcireg_t foundcap;
pcireg_t rval;
bool foundtable[__arraycount(pci_extcaptab)];
unsigned int i;
/* Check Extended capability structure */
off = PCI_EXTCAPLIST_BASE;
rval = regs[o2i(off)];
if (rval == 0xffffffff || rval == 0)
return;
/* Clear table */
for (i = 0; i < __arraycount(pci_extcaptab); i++)
foundtable[i] = false;
/* Print extended capability register's offset and the type first */
for (;;) {
printf(" Extended Capability Register at 0x%02x\n", off);
foundcap = PCI_EXTCAPLIST_CAP(rval);
printf(" type: 0x%04x (", foundcap);
if (foundcap < __arraycount(pci_extcaptab)) {
printf("%s)\n", pci_extcaptab[foundcap].name);
/* Mark as found */
foundtable[foundcap] = true;
} else
printf("unknown)\n");
printf(" version: %d\n", PCI_EXTCAPLIST_VERSION(rval));
off = PCI_EXTCAPLIST_NEXT(rval);
if (off == 0)
break;
else if (off <= PCI_CONF_SIZE) {
printf(" next pointer: 0x%03x (incorrect)\n", off);
return;
}
rval = regs[o2i(off)];
}
/*
* And then, print the detail of each capability registers
* in capability value's order.
*/
for (i = 0; i < __arraycount(pci_extcaptab); i++) {
if (foundtable[i] == false)
continue;
/*
* The type was found. Search capability list again and
* print all capabilities that the capabiliy type is
* the same.
*/
if (pci_conf_find_extcap(regs, i, &off) == 0)
continue;
rval = regs[o2i(off)];
if ((PCI_EXTCAPLIST_VERSION(rval) <= 0)
|| (pci_extcaptab[i].printfunc == NULL))
continue;
pci_extcaptab[i].printfunc(regs, off);
}
}
/* Print the Secondary Status Register. */
static void
pci_conf_print_ssr(pcireg_t rval)
{
pcireg_t devsel;
printf(" Secondary status register: 0x%04x\n", rval); /* XXX bits */
onoff("66 MHz capable", rval, __BIT(5));
onoff("User Definable Features (UDF) support", rval, __BIT(6));
onoff("Fast back-to-back capable", rval, __BIT(7));
onoff("Data parity error detected", rval, __BIT(8));
printf(" DEVSEL timing: ");
devsel = PCIREG_SHIFTOUT(rval, __BITS(10, 9));
switch (devsel) {
case 0:
printf("fast");
break;
case 1:
printf("medium");
break;
case 2:
printf("slow");
break;
default:
printf("unknown/reserved"); /* XXX */
break;
}
printf(" (0x%x)\n", devsel);
onoff("Signalled target abort", rval, __BIT(11));
onoff("Received target abort", rval, __BIT(12));
onoff("Received master abort", rval, __BIT(13));
onoff("Received system error", rval, __BIT(14));
onoff("Detected parity error", rval, __BIT(15));
}
static void
pci_conf_print_type0(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs)
{
int off, width;
pcireg_t rval;
const char *str;
for (off = PCI_MAPREG_START; off < PCI_MAPREG_END; off += width) {
#ifdef _KERNEL
width = pci_conf_print_bar(pc, tag, regs, off, NULL);
#else
width = pci_conf_print_bar(regs, off, NULL);
#endif
}
printf(" Cardbus CIS Pointer: 0x%08x\n",
regs[o2i(PCI_CARDBUS_CIS_REG)]);
rval = regs[o2i(PCI_SUBSYS_ID_REG)];
printf(" Subsystem vendor ID: 0x%04x\n", PCI_VENDOR(rval));
printf(" Subsystem ID: 0x%04x\n", PCI_PRODUCT(rval));
rval = regs[o2i(PCI_MAPREG_ROM)];
printf(" Expansion ROM Base Address Register: 0x%08x\n", rval);
printf(" base: 0x%08x\n", (uint32_t)PCI_MAPREG_ROM_ADDR(rval));
onoff("Expansion ROM Enable", rval, PCI_MAPREG_ROM_ENABLE);
printf(" Validation Status: ");
switch (PCIREG_SHIFTOUT(rval, PCI_MAPREG_ROM_VALID_STAT)) {
case PCI_MAPREG_ROM_VSTAT_NOTSUPP:
str = "Validation not supported";
break;
case PCI_MAPREG_ROM_VSTAT_INPROG:
str = "Validation in Progress";
break;
case PCI_MAPREG_ROM_VSTAT_VPASS:
str = "Validation Pass. "
"Valid contents, trust test was not performed";
break;
case PCI_MAPREG_ROM_VSTAT_VPASSTRUST:
str = "Validation Pass. Valid and trusted contents";
break;
case PCI_MAPREG_ROM_VSTAT_VFAIL:
str = "Validation Fail. Invalid contents";
break;
case PCI_MAPREG_ROM_VSTAT_VFAILUNTRUST:
str = "Validation Fail. Valid but untrusted contents";
break;
case PCI_MAPREG_ROM_VSTAT_WPASS:
str = "Warning Pass. Validation passed with warning. "
"Valid contents, trust test was not performed";
break;
case PCI_MAPREG_ROM_VSTAT_WPASSTRUST:
str = "Warning Pass. Validation passed with warning. "
"Valid and trusted contents";
break;
}
printf("%s\n", str);
printf(" Validation Details: 0x%x\n",
PCIREG_SHIFTOUT(rval, PCI_MAPREG_ROM_VALID_DETAIL));
if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
printf(" Capability list pointer: 0x%02x\n",
PCI_CAPLIST_PTR(regs[o2i(PCI_CAPLISTPTR_REG)]));
else
printf(" Reserved @ 0x34: 0x%08x\n", regs[o2i(0x34)]);
printf(" Reserved @ 0x38: 0x%08x\n", regs[o2i(0x38)]);
rval = regs[o2i(PCI_INTERRUPT_REG)];
printf(" Maximum Latency: 0x%02x\n", PCI_MAX_LAT(rval));
printf(" Minimum Grant: 0x%02x\n", PCI_MIN_GNT(rval));
printf(" Interrupt pin: 0x%02x ", PCI_INTERRUPT_PIN(rval));
switch (PCI_INTERRUPT_PIN(rval)) {
case PCI_INTERRUPT_PIN_NONE:
printf("(none)");
break;
case PCI_INTERRUPT_PIN_A:
printf("(pin A)");
break;
case PCI_INTERRUPT_PIN_B:
printf("(pin B)");
break;
case PCI_INTERRUPT_PIN_C:
printf("(pin C)");
break;
case PCI_INTERRUPT_PIN_D:
printf("(pin D)");
break;
default:
printf("(? ? ?)");
break;
}
printf("\n");
printf(" Interrupt line: 0x%02x\n", PCI_INTERRUPT_LINE(rval));
}
static void
pci_conf_print_type1(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs)
{
int off, width;
pcireg_t rval, csreg;
uint32_t base, limit;
uint32_t base_h, limit_h;
uint64_t pbase, plimit;
int use_upper;
/*
* This layout was cribbed from the TI PCI2030 PCI-to-PCI
* Bridge chip documentation, and may not be correct with
* respect to various standards. (XXX)
*/
for (off = 0x10; off < 0x18; off += width) {
#ifdef _KERNEL
width = pci_conf_print_bar(pc, tag, regs, off, NULL);
#else
width = pci_conf_print_bar(regs, off, NULL);
#endif
}
rval = regs[o2i(PCI_BRIDGE_BUS_REG)];
printf(" Primary bus number: 0x%02x\n",
PCI_BRIDGE_BUS_NUM_PRIMARY(rval));
printf(" Secondary bus number: 0x%02x\n",
PCI_BRIDGE_BUS_NUM_SECONDARY(rval));
printf(" Subordinate bus number: 0x%02x\n",
PCI_BRIDGE_BUS_NUM_SUBORDINATE(rval));
printf(" Secondary bus latency timer: 0x%02x\n",
PCI_BRIDGE_BUS_SEC_LATTIMER_VAL(rval));
rval = regs[o2i(PCI_BRIDGE_STATIO_REG)];
pci_conf_print_ssr(PCIREG_SHIFTOUT(rval, __BITS(31, 16)));
/* I/O region */
printf(" I/O region:\n");
printf(" base register: 0x%02x\n", (rval >> 0) & 0xff);
printf(" limit register: 0x%02x\n", (rval >> 8) & 0xff);
if (PCI_BRIDGE_IO_32BITS(rval))
use_upper = 1;
else
use_upper = 0;
onoff("32bit I/O", rval, use_upper);
base = PCI_BRIDGE_STATIO_IOBASE_ADDR(rval);
limit = PCI_BRIDGE_STATIO_IOLIMIT_ADDR(rval);
rval = regs[o2i(PCI_BRIDGE_IOHIGH_REG)];
base_h = PCIREG_SHIFTOUT(rval, PCI_BRIDGE_IOHIGH_BASE);
limit_h = PCIREG_SHIFTOUT(rval, PCI_BRIDGE_IOHIGH_LIMIT);
printf(" base upper 16 bits register: 0x%04x\n", base_h);
printf(" limit upper 16 bits register: 0x%04x\n", limit_h);
if (use_upper == 1) {
base |= base_h << 16;
limit |= limit_h << 16;
}
if (base < limit) {
if (use_upper == 1)
printf(" range: 0x%08x-0x%08x\n", base, limit);
else
printf(" range: 0x%04x-0x%04x\n", base, limit);
} else
printf(" range: not set\n");
/* Non-prefetchable memory region */
rval = regs[o2i(PCI_BRIDGE_MEMORY_REG)];
printf(" Memory region:\n");
printf(" base register: 0x%04hx\n",
(uint16_t)PCIREG_SHIFTOUT(rval, PCI_BRIDGE_MEMORY_BASE));
printf(" limit register: 0x%04hx\n",
(uint16_t)PCIREG_SHIFTOUT(rval, PCI_BRIDGE_MEMORY_LIMIT));
base = PCI_BRIDGE_MEMORY_BASE_ADDR(rval);
limit = PCI_BRIDGE_MEMORY_LIMIT_ADDR(rval);
if (base < limit)
printf(" range: 0x%08x-0x%08x\n", base, limit);
else
printf(" range: not set\n");
/* Prefetchable memory region */
rval = regs[o2i(PCI_BRIDGE_PREFETCHMEM_REG)];
printf(" Prefetchable memory region:\n");
printf(" base register: 0x%04x\n",
(rval >> 0) & 0xffff);
printf(" limit register: 0x%04x\n",
(rval >> 16) & 0xffff);
base_h = regs[o2i(PCI_BRIDGE_PREFETCHBASEUP32_REG)];
limit_h = regs[o2i(PCI_BRIDGE_PREFETCHLIMITUP32_REG)];
printf(" base upper 32 bits register: 0x%08x\n",
base_h);
printf(" limit upper 32 bits register: 0x%08x\n",
limit_h);
if (PCI_BRIDGE_PREFETCHMEM_64BITS(rval))
use_upper = 1;
else
use_upper = 0;
onoff("64bit memory address", rval, use_upper);
pbase = PCI_BRIDGE_PREFETCHMEM_BASE_ADDR(rval);
plimit = PCI_BRIDGE_PREFETCHMEM_LIMIT_ADDR(rval);
if (use_upper == 1) {
pbase |= (uint64_t)base_h << 32;
plimit |= (uint64_t)limit_h << 32;
}
if (pbase < plimit) {
if (use_upper == 1)
printf(" range: 0x%016" PRIx64 "-0x%016" PRIx64
"\n", pbase, plimit);
else
printf(" range: 0x%08x-0x%08x\n",
(uint32_t)pbase, (uint32_t)plimit);
} else
printf(" range: not set\n");
csreg = regs[o2i(PCI_COMMAND_STATUS_REG)];
if (csreg & PCI_STATUS_CAPLIST_SUPPORT)
printf(" Capability list pointer: 0x%02x\n",
PCI_CAPLIST_PTR(regs[o2i(PCI_CAPLISTPTR_REG)]));
else
printf(" Reserved @ 0x34: 0x%08x\n", regs[o2i(0x34)]);
printf(" Expansion ROM Base Address: 0x%08x\n",
regs[o2i(PCI_BRIDGE_EXPROMADDR_REG)]);
rval = regs[o2i(PCI_INTERRUPT_REG)];
printf(" Interrupt line: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" Interrupt pin: 0x%02x ",
(rval >> 8) & 0xff);
switch ((rval >> 8) & 0xff) {
case PCI_INTERRUPT_PIN_NONE:
printf("(none)");
break;
case PCI_INTERRUPT_PIN_A:
printf("(pin A)");
break;
case PCI_INTERRUPT_PIN_B:
printf("(pin B)");
break;
case PCI_INTERRUPT_PIN_C:
printf("(pin C)");
break;
case PCI_INTERRUPT_PIN_D:
printf("(pin D)");
break;
default:
printf("(? ? ?)");
break;
}
printf("\n");
rval = regs[o2i(PCI_BRIDGE_CONTROL_REG)];
printf(" Bridge control register: 0x%04hx\n",
(uint16_t)PCIREG_SHIFTOUT(rval, PCI_BRIDGE_CONTROL));
onoff("Parity error response", rval, PCI_BRIDGE_CONTROL_PERE);
onoff("Secondary SERR forwarding", rval, PCI_BRIDGE_CONTROL_SERR);
onoff("ISA enable", rval, PCI_BRIDGE_CONTROL_ISA);
onoff("VGA enable", rval, PCI_BRIDGE_CONTROL_VGA);
/*
* VGA 16bit decode bit has meaning if the VGA enable bit or the
* VGA Palette Snoop Enable bit is set.
*/
if (((rval & PCI_BRIDGE_CONTROL_VGA) != 0)
|| ((csreg & PCI_COMMAND_PALETTE_ENABLE) != 0))
onoff("VGA 16bit enable", rval, PCI_BRIDGE_CONTROL_VGA16);
onoff("Master abort reporting", rval, PCI_BRIDGE_CONTROL_MABRT);
onoff("Secondary bus reset", rval, PCI_BRIDGE_CONTROL_SECBR);
onoff("Fast back-to-back enable", rval, PCI_BRIDGE_CONTROL_SECFASTB2B);
onoff("Primary Discard Timer", rval,
PCI_BRIDGE_CONTROL_PRI_DISC_TIMER);
onoff("Secondary Discard Timer",
rval, PCI_BRIDGE_CONTROL_SEC_DISC_TIMER);
onoff("Discard Timer Status", rval,
PCI_BRIDGE_CONTROL_DISC_TIMER_STAT);
onoff("Discard Timer SERR# Enable", rval,
PCI_BRIDGE_CONTROL_DISC_TIMER_SERR);
}
static void
pci_conf_print_type2(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs)
{
pcireg_t rval;
/*
* XXX these need to be printed in more detail, need to be
* XXX checked against specs/docs, etc.
*
* This layout was cribbed from the TI PCI1420 PCI-to-CardBus
* controller chip documentation, and may not be correct with
* respect to various standards. (XXX)
*/
#ifdef _KERNEL
pci_conf_print_bar(pc, tag, regs, 0x10,
"CardBus socket/ExCA registers");
#else
pci_conf_print_bar(regs, 0x10, "CardBus socket/ExCA registers");
#endif
/* Capability list pointer and secondary status register */
rval = regs[o2i(PCI_CARDBUS_CAPLISTPTR_REG)];
if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
printf(" Capability list pointer: 0x%02x\n",
PCI_CAPLIST_PTR(rval));
else
printf(" Reserved @ 0x14: 0x%04x\n",
PCIREG_SHIFTOUT(rval, __BITS(15, 0)));
pci_conf_print_ssr(PCIREG_SHIFTOUT(rval, __BITS(31, 16)));
rval = regs[o2i(PCI_BRIDGE_BUS_REG)];
printf(" PCI bus number: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" CardBus bus number: 0x%02x\n",
(rval >> 8) & 0xff);
printf(" Subordinate bus number: 0x%02x\n",
(rval >> 16) & 0xff);
printf(" CardBus latency timer: 0x%02x\n",
(rval >> 24) & 0xff);
/* XXX Print more prettily */
printf(" CardBus memory region 0:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x1c)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x20)]);
printf(" CardBus memory region 1:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x24)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x28)]);
printf(" CardBus I/O region 0:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x2c)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x30)]);
printf(" CardBus I/O region 1:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x34)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x38)]);
rval = regs[o2i(PCI_INTERRUPT_REG)];
printf(" Interrupt line: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" Interrupt pin: 0x%02x ",
(rval >> 8) & 0xff);
switch ((rval >> 8) & 0xff) {
case PCI_INTERRUPT_PIN_NONE:
printf("(none)");
break;
case PCI_INTERRUPT_PIN_A:
printf("(pin A)");
break;
case PCI_INTERRUPT_PIN_B:
printf("(pin B)");
break;
case PCI_INTERRUPT_PIN_C:
printf("(pin C)");
break;
case PCI_INTERRUPT_PIN_D:
printf("(pin D)");
break;
default:
printf("(? ? ?)");
break;
}
printf("\n");
rval = (regs[o2i(PCI_BRIDGE_CONTROL_REG)] >> 16) & 0xffff;
printf(" Bridge control register: 0x%04x\n", rval);
onoff("Parity error response", rval, __BIT(0));
onoff("SERR# enable", rval, __BIT(1));
onoff("ISA enable", rval, __BIT(2));
onoff("VGA enable", rval, __BIT(3));
onoff("Master abort mode", rval, __BIT(5));
onoff("Secondary (CardBus) bus reset", rval, __BIT(6));
onoff("Functional interrupts routed by ExCA registers", rval,
__BIT(7));
onoff("Memory window 0 prefetchable", rval, __BIT(8));
onoff("Memory window 1 prefetchable", rval, __BIT(9));
onoff("Write posting enable", rval, __BIT(10));
rval = regs[o2i(0x40)];
printf(" Subsystem vendor ID: 0x%04x\n", PCI_VENDOR(rval));
printf(" Subsystem ID: 0x%04x\n", PCI_PRODUCT(rval));
#ifdef _KERNEL
pci_conf_print_bar(pc, tag, regs, 0x44, "legacy-mode registers");
#else
pci_conf_print_bar(regs, 0x44, "legacy-mode registers");
#endif
}
void
pci_conf_print(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
void (*printfn)(pci_chipset_tag_t, pcitag_t, const pcireg_t *)
#else
int pcifd, u_int bus, u_int dev, u_int func
#endif
)
{
pcireg_t *regs;
int off, capoff, endoff, hdrtype;
const char *type_name;
#ifdef _KERNEL
void (*type_printfn)(pci_chipset_tag_t, pcitag_t, const pcireg_t *);
#else
void (*type_printfn)(const pcireg_t *);
#endif
regs = MALLOC(PCI_EXTCONF_SIZE);
printf("PCI configuration registers:\n");
for (off = 0; off < PCI_EXTCONF_SIZE; off += 4) {
#ifdef _KERNEL
regs[o2i(off)] = pci_conf_read(pc, tag, off);
#else
if (pcibus_conf_read(pcifd, bus, dev, func, off,
&regs[o2i(off)]) == -1)
regs[o2i(off)] = 0;
#endif
}
/* common header */
printf(" Common header:\n");
pci_conf_print_regs(regs, 0, 16);
printf("\n");
#ifdef _KERNEL
pci_conf_print_common(pc, tag, regs);
#else
pci_conf_print_common(regs);
#endif
printf("\n");
/* type-dependent header */
hdrtype = PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)]);
switch (hdrtype) { /* XXX make a table, eventually */
case 0:
/* Standard device header */
type_name = "\"normal\" device";
type_printfn = &pci_conf_print_type0;
capoff = PCI_CAPLISTPTR_REG;
endoff = 64;
break;
case 1:
/* PCI-PCI bridge header */
type_name = "PCI-PCI bridge";
type_printfn = &pci_conf_print_type1;
capoff = PCI_CAPLISTPTR_REG;
endoff = 64;
break;
case 2:
/* PCI-CardBus bridge header */
type_name = "PCI-CardBus bridge";
type_printfn = &pci_conf_print_type2;
capoff = PCI_CARDBUS_CAPLISTPTR_REG;
endoff = 72;
break;
default:
type_name = NULL;
type_printfn = 0;
capoff = -1;
endoff = 64;
break;
}
printf(" Type %d ", hdrtype);
if (type_name != NULL)
printf("(%s) ", type_name);
printf("header:\n");
pci_conf_print_regs(regs, 16, endoff);
printf("\n");
if (type_printfn) {
#ifdef _KERNEL
(*type_printfn)(pc, tag, regs);
#else
(*type_printfn)(regs);
#endif
} else
printf(" Don't know how to pretty-print type %d header.\n",
hdrtype);
printf("\n");
/* capability list, if present */
if ((regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
&& (capoff > 0)) {
#ifdef _KERNEL
pci_conf_print_caplist(pc, tag, regs, capoff);
#else
pci_conf_print_caplist(regs, capoff);
#endif
printf("\n");
}
/* device-dependent header */
printf(" Device-dependent header:\n");
pci_conf_print_regs(regs, endoff, PCI_CONF_SIZE);
#ifdef _KERNEL
printf("\n");
if (printfn)
(*printfn)(pc, tag, regs);
else
printf(" Don't know how to pretty-print device-dependent header.\n");
#endif /* _KERNEL */
if (regs[o2i(PCI_EXTCAPLIST_BASE)] == 0xffffffff ||
regs[o2i(PCI_EXTCAPLIST_BASE)] == 0)
goto out;
printf("\n");
#ifdef _KERNEL
pci_conf_print_extcaplist(pc, tag, regs);
#else
pci_conf_print_extcaplist(regs);
#endif
printf("\n");
/* Extended Configuration Space, if present */
printf(" Extended Configuration Space:\n");
pci_conf_print_regs(regs, PCI_EXTCAPLIST_BASE, PCI_EXTCONF_SIZE);
out:
FREE(regs, PCI_EXTCONF_SIZE);
}