NetBSD/sys/dev/pci/agp.c
chs d47bcd296c in many device attach paths, allocate memory with M_WAITOK instead of M_NOWAIT
and remove code to handle failures that can no longer happen.
2019-11-10 21:16:21 +00:00

1291 lines
32 KiB
C

/* $NetBSD: agp.c,v 1.87 2019/11/10 21:16:36 chs Exp $ */
/*-
* Copyright (c) 2000 Doug Rabson
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* $FreeBSD: src/sys/pci/agp.c,v 1.12 2001/05/19 01:28:07 alfred Exp $
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Frank van der Linden for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: agp.c,v 1.87 2019/11/10 21:16:36 chs Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/ioctl.h>
#include <sys/fcntl.h>
#include <sys/agpio.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/agpvar.h>
#include <dev/pci/agpreg.h>
#include <dev/pci/pcidevs.h>
#include <sys/bus.h>
MALLOC_DEFINE(M_AGP, "AGP", "AGP memory");
/* Helper functions for implementing chipset mini drivers. */
/* XXXfvdl get rid of this one. */
extern struct cfdriver agp_cd;
static int agp_info_user(struct agp_softc *, agp_info *);
static int agp_setup_user(struct agp_softc *, agp_setup *);
static int agp_allocate_user(struct agp_softc *, agp_allocate *);
static int agp_deallocate_user(struct agp_softc *, int);
static int agp_bind_user(struct agp_softc *, agp_bind *);
static int agp_unbind_user(struct agp_softc *, agp_unbind *);
static int agp_generic_enable_v2(struct agp_softc *,
const struct pci_attach_args *, int, u_int32_t);
static int agp_generic_enable_v3(struct agp_softc *,
const struct pci_attach_args *, int, u_int32_t);
static int agpdev_match(const struct pci_attach_args *);
static bool agp_resume(device_t, const pmf_qual_t *);
#include "agp_ali.h"
#include "agp_amd.h"
#include "agp_i810.h"
#include "agp_intel.h"
#include "agp_sis.h"
#include "agp_via.h"
#include "agp_amd64.h"
const struct agp_product {
uint32_t ap_vendor;
uint32_t ap_product;
int (*ap_match)(const struct pci_attach_args *);
int (*ap_attach)(device_t, device_t, void *);
} agp_products[] = {
#if NAGP_AMD64 > 0
{ PCI_VENDOR_ALI, PCI_PRODUCT_ALI_M1689,
agp_amd64_match, agp_amd64_attach },
#endif
#if NAGP_ALI > 0
{ PCI_VENDOR_ALI, -1,
NULL, agp_ali_attach },
#endif
#if NAGP_AMD64 > 0
{ PCI_VENDOR_AMD, PCI_PRODUCT_AMD_AGP8151_DEV,
agp_amd64_match, agp_amd64_attach },
#endif
#if NAGP_AMD > 0
{ PCI_VENDOR_AMD, -1,
agp_amd_match, agp_amd_attach },
#endif
#if NAGP_I810 > 0
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_MCH,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810_DC100_MCH,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82810E_MCH,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82815_FULL_HUB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82840_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82830MP_IO_1,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82845G_DRAM,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82855GM_MCH,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82865_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915G_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82915GM_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945P_MCH,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GM_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82945GME_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965Q_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965PM_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965G_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q35_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G33_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q33_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G35_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82946GZ_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82GM45_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82IGD_E_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82Q45_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G45_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82G41_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_E7221_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82965GME_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82B43_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_D_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_M_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MA_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_IRONLAKE_MC2_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_HB,
NULL, agp_i810_attach },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_PINEVIEW_M_HB,
NULL, agp_i810_attach },
#endif
#if NAGP_INTEL > 0
{ PCI_VENDOR_INTEL, -1,
NULL, agp_intel_attach },
#endif
#if NAGP_AMD64 > 0
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_PCHB,
agp_amd64_match, agp_amd64_attach },
{ PCI_VENDOR_NVIDIA, PCI_PRODUCT_NVIDIA_NFORCE3_250_PCHB,
agp_amd64_match, agp_amd64_attach },
#endif
#if NAGP_AMD64 > 0
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_755,
agp_amd64_match, agp_amd64_attach },
{ PCI_VENDOR_SIS, PCI_PRODUCT_SIS_760,
agp_amd64_match, agp_amd64_attach },
#endif
#if NAGP_SIS > 0
{ PCI_VENDOR_SIS, -1,
NULL, agp_sis_attach },
#endif
#if NAGP_AMD64 > 0
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8M800_0,
agp_amd64_match, agp_amd64_attach },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8T890_0,
agp_amd64_match, agp_amd64_attach },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB_0,
agp_amd64_match, agp_amd64_attach },
{ PCI_VENDOR_VIATECH, PCI_PRODUCT_VIATECH_K8HTB,
agp_amd64_match, agp_amd64_attach },
#endif
#if NAGP_VIA > 0
{ PCI_VENDOR_VIATECH, -1,
NULL, agp_via_attach },
#endif
{ 0, 0,
NULL, NULL },
};
static const struct agp_product *
agp_lookup(const struct pci_attach_args *pa)
{
const struct agp_product *ap;
/* First find the vendor. */
for (ap = agp_products; ap->ap_attach != NULL; ap++) {
if (PCI_VENDOR(pa->pa_id) == ap->ap_vendor)
break;
}
if (ap->ap_attach == NULL)
return (NULL);
/* Now find the product within the vendor's domain. */
for (; ap->ap_attach != NULL; ap++) {
if (PCI_VENDOR(pa->pa_id) != ap->ap_vendor) {
/* Ran out of this vendor's section of the table. */
return (NULL);
}
if (ap->ap_product == PCI_PRODUCT(pa->pa_id)) {
/* Exact match. */
break;
}
if (ap->ap_product == (uint32_t) -1) {
/* Wildcard match. */
break;
}
}
if (ap->ap_attach == NULL)
return (NULL);
/* Now let the product-specific driver filter the match. */
if (ap->ap_match != NULL && (*ap->ap_match)(pa) == 0)
return (NULL);
return (ap);
}
static int
agpmatch(device_t parent, cfdata_t match, void *aux)
{
struct agpbus_attach_args *apa = aux;
struct pci_attach_args *pa = &apa->apa_pci_args;
if (agp_lookup(pa) == NULL)
return (0);
return (1);
}
static const u_int agp_max[][2] = {
{0, 0},
{32, 4},
{64, 28},
{128, 96},
{256, 204},
{512, 440},
{1024, 942},
{2048, 1920},
{4096, 3932}
};
#define agp_max_size (sizeof(agp_max) / sizeof(agp_max[0]))
static void
agpattach(device_t parent, device_t self, void *aux)
{
struct agpbus_attach_args *apa = aux;
struct pci_attach_args *pa = &apa->apa_pci_args;
struct agp_softc *sc = device_private(self);
const struct agp_product *ap;
int ret;
u_int memsize, i;
ap = agp_lookup(pa);
KASSERT(ap != NULL);
aprint_naive(": AGP controller\n");
sc->as_dev = self;
sc->as_dmat = pa->pa_dmat;
sc->as_pc = pa->pa_pc;
sc->as_tag = pa->pa_tag;
sc->as_id = pa->pa_id;
/*
* Work out an upper bound for agp memory allocation. This
* uses a heuristic table from the Linux driver.
*/
memsize = physmem >> (20 - PAGE_SHIFT); /* memsize is in MB */
for (i = 0; i < agp_max_size; i++) {
if (memsize <= agp_max[i][0])
break;
}
if (i == agp_max_size)
i = agp_max_size - 1;
sc->as_maxmem = agp_max[i][1] << 20U;
/*
* The mutex is used to prevent re-entry to
* agp_generic_bind_memory() since that function can sleep.
*/
mutex_init(&sc->as_mtx, MUTEX_DEFAULT, IPL_NONE);
TAILQ_INIT(&sc->as_memory);
ret = (*ap->ap_attach)(parent, self, pa);
if (ret == 0)
aprint_normal(": aperture at 0x%lx, size 0x%lx\n",
(unsigned long)sc->as_apaddr,
(unsigned long)AGP_GET_APERTURE(sc));
else
sc->as_chipc = NULL;
if (!pmf_device_register(self, NULL, agp_resume))
aprint_error_dev(self, "couldn't establish power handler\n");
}
CFATTACH_DECL_NEW(agp, sizeof(struct agp_softc),
agpmatch, agpattach, NULL, NULL);
int
agp_map_aperture(struct pci_attach_args *pa, struct agp_softc *sc, int reg)
{
/*
* Find the aperture. Don't map it (yet), this would
* eat KVA.
*/
if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, reg,
PCI_MAPREG_TYPE_MEM, &sc->as_apaddr, &sc->as_apsize,
&sc->as_apflags) != 0)
return ENXIO;
sc->as_apt = pa->pa_memt;
return 0;
}
struct agp_gatt *
agp_alloc_gatt(struct agp_softc *sc)
{
u_int32_t apsize = AGP_GET_APERTURE(sc);
u_int32_t entries = apsize >> AGP_PAGE_SHIFT;
struct agp_gatt *gatt;
void *virtual;
int dummyseg;
gatt = malloc(sizeof(struct agp_gatt), M_AGP, M_WAITOK);
gatt->ag_entries = entries;
if (agp_alloc_dmamem(sc->as_dmat, entries * sizeof(u_int32_t),
0, &gatt->ag_dmamap, &virtual, &gatt->ag_physical,
&gatt->ag_dmaseg, 1, &dummyseg) != 0) {
free(gatt, M_AGP);
return NULL;
}
gatt->ag_virtual = (uint32_t *)virtual;
gatt->ag_size = entries * sizeof(u_int32_t);
memset(gatt->ag_virtual, 0, gatt->ag_size);
agp_flush_cache();
return gatt;
}
void
agp_free_gatt(struct agp_softc *sc, struct agp_gatt *gatt)
{
agp_free_dmamem(sc->as_dmat, gatt->ag_size, gatt->ag_dmamap,
(void *)gatt->ag_virtual, &gatt->ag_dmaseg, 1);
free(gatt, M_AGP);
}
int
agp_generic_detach(struct agp_softc *sc)
{
mutex_destroy(&sc->as_mtx);
agp_flush_cache();
return 0;
}
static int
agpdev_match(const struct pci_attach_args *pa)
{
if (PCI_CLASS(pa->pa_class) == PCI_CLASS_DISPLAY &&
PCI_SUBCLASS(pa->pa_class) == PCI_SUBCLASS_DISPLAY_VGA)
if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_AGP,
NULL, NULL))
return 1;
return 0;
}
int
agp_generic_enable(struct agp_softc *sc, u_int32_t mode)
{
struct pci_attach_args pa;
pcireg_t tstatus, mstatus;
int capoff;
if (pci_find_device(&pa, agpdev_match) == 0 ||
pci_get_capability(pa.pa_pc, pa.pa_tag, PCI_CAP_AGP,
&capoff, NULL) == 0) {
aprint_error_dev(sc->as_dev, "can't find display\n");
return ENXIO;
}
tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_STATUS);
mstatus = pci_conf_read(pa.pa_pc, pa.pa_tag,
capoff + PCI_AGP_STATUS);
if (AGP_MODE_GET_MODE_3(mode) &&
AGP_MODE_GET_MODE_3(tstatus) &&
AGP_MODE_GET_MODE_3(mstatus))
return agp_generic_enable_v3(sc, &pa, capoff, mode);
else
return agp_generic_enable_v2(sc, &pa, capoff, mode);
}
static int
agp_generic_enable_v2(struct agp_softc *sc, const struct pci_attach_args *pa,
int capoff, u_int32_t mode)
{
pcireg_t tstatus, mstatus;
pcireg_t command;
int rq, sba, fw, rate;
tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_STATUS);
mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
capoff + PCI_AGP_STATUS);
/* Set RQ to the min of mode, tstatus and mstatus */
rq = AGP_MODE_GET_RQ(mode);
if (AGP_MODE_GET_RQ(tstatus) < rq)
rq = AGP_MODE_GET_RQ(tstatus);
if (AGP_MODE_GET_RQ(mstatus) < rq)
rq = AGP_MODE_GET_RQ(mstatus);
/* Set SBA if all three can deal with SBA */
sba = (AGP_MODE_GET_SBA(tstatus)
& AGP_MODE_GET_SBA(mstatus)
& AGP_MODE_GET_SBA(mode));
/* Similar for FW */
fw = (AGP_MODE_GET_FW(tstatus)
& AGP_MODE_GET_FW(mstatus)
& AGP_MODE_GET_FW(mode));
/* Figure out the max rate */
rate = (AGP_MODE_GET_RATE(tstatus)
& AGP_MODE_GET_RATE(mstatus)
& AGP_MODE_GET_RATE(mode));
if (rate & AGP_MODE_V2_RATE_4x)
rate = AGP_MODE_V2_RATE_4x;
else if (rate & AGP_MODE_V2_RATE_2x)
rate = AGP_MODE_V2_RATE_2x;
else
rate = AGP_MODE_V2_RATE_1x;
/* Construct the new mode word and tell the hardware */
command = AGP_MODE_SET_RQ(0, rq);
command = AGP_MODE_SET_SBA(command, sba);
command = AGP_MODE_SET_FW(command, fw);
command = AGP_MODE_SET_RATE(command, rate);
command = AGP_MODE_SET_AGP(command, 1);
pci_conf_write(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_COMMAND, command);
pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
command);
return 0;
}
static int
agp_generic_enable_v3(struct agp_softc *sc, const struct pci_attach_args *pa,
int capoff, u_int32_t mode)
{
pcireg_t tstatus, mstatus;
pcireg_t command;
int rq, sba, fw, rate, arqsz, cal;
tstatus = pci_conf_read(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_STATUS);
mstatus = pci_conf_read(pa->pa_pc, pa->pa_tag,
capoff + PCI_AGP_STATUS);
/* Set RQ to the min of mode, tstatus and mstatus */
rq = AGP_MODE_GET_RQ(mode);
if (AGP_MODE_GET_RQ(tstatus) < rq)
rq = AGP_MODE_GET_RQ(tstatus);
if (AGP_MODE_GET_RQ(mstatus) < rq)
rq = AGP_MODE_GET_RQ(mstatus);
/*
* ARQSZ - Set the value to the maximum one.
* Don't allow the mode register to override values.
*/
arqsz = AGP_MODE_GET_ARQSZ(mode);
if (AGP_MODE_GET_ARQSZ(tstatus) > arqsz)
arqsz = AGP_MODE_GET_ARQSZ(tstatus);
if (AGP_MODE_GET_ARQSZ(mstatus) > arqsz)
arqsz = AGP_MODE_GET_ARQSZ(mstatus);
/* Calibration cycle - don't allow override by mode register */
cal = AGP_MODE_GET_CAL(tstatus);
if (AGP_MODE_GET_CAL(mstatus) < cal)
cal = AGP_MODE_GET_CAL(mstatus);
/* SBA must be supported for AGP v3. */
sba = 1;
/* Set FW if all three support it. */
fw = (AGP_MODE_GET_FW(tstatus)
& AGP_MODE_GET_FW(mstatus)
& AGP_MODE_GET_FW(mode));
/* Figure out the max rate */
rate = (AGP_MODE_GET_RATE(tstatus)
& AGP_MODE_GET_RATE(mstatus)
& AGP_MODE_GET_RATE(mode));
if (rate & AGP_MODE_V3_RATE_8x)
rate = AGP_MODE_V3_RATE_8x;
else
rate = AGP_MODE_V3_RATE_4x;
/* Construct the new mode word and tell the hardware */
command = AGP_MODE_SET_RQ(0, rq);
command = AGP_MODE_SET_ARQSZ(command, arqsz);
command = AGP_MODE_SET_CAL(command, cal);
command = AGP_MODE_SET_SBA(command, sba);
command = AGP_MODE_SET_FW(command, fw);
command = AGP_MODE_SET_RATE(command, rate);
command = AGP_MODE_SET_AGP(command, 1);
pci_conf_write(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_COMMAND, command);
pci_conf_write(pa->pa_pc, pa->pa_tag, capoff + PCI_AGP_COMMAND,
command);
return 0;
}
struct agp_memory *
agp_generic_alloc_memory(struct agp_softc *sc, int type, vsize_t size)
{
struct agp_memory *mem;
if ((size & (AGP_PAGE_SIZE - 1)) != 0)
return 0;
if (sc->as_allocated + size > sc->as_maxmem)
return 0;
if (type != 0) {
printf("agp_generic_alloc_memory: unsupported type %d\n",
type);
return 0;
}
mem = malloc(sizeof *mem, M_AGP, M_WAITOK);
if (mem == NULL)
return NULL;
if (bus_dmamap_create(sc->as_dmat, size, size / PAGE_SIZE + 1,
size, 0, BUS_DMA_NOWAIT, &mem->am_dmamap) != 0) {
free(mem, M_AGP);
return NULL;
}
mem->am_id = sc->as_nextid++;
mem->am_size = size;
mem->am_type = 0;
mem->am_physical = 0;
mem->am_offset = 0;
mem->am_is_bound = 0;
TAILQ_INSERT_TAIL(&sc->as_memory, mem, am_link);
sc->as_allocated += size;
return mem;
}
int
agp_generic_free_memory(struct agp_softc *sc, struct agp_memory *mem)
{
if (mem->am_is_bound)
return EBUSY;
sc->as_allocated -= mem->am_size;
TAILQ_REMOVE(&sc->as_memory, mem, am_link);
bus_dmamap_destroy(sc->as_dmat, mem->am_dmamap);
free(mem, M_AGP);
return 0;
}
int
agp_generic_bind_memory(struct agp_softc *sc, struct agp_memory *mem,
off_t offset)
{
return agp_generic_bind_memory_bounded(sc, mem, offset,
0, AGP_GET_APERTURE(sc));
}
int
agp_generic_bind_memory_bounded(struct agp_softc *sc, struct agp_memory *mem,
off_t offset, off_t start, off_t end)
{
off_t i, k;
bus_size_t done, j;
int error;
bus_dma_segment_t *segs, *seg;
bus_addr_t pa;
int contigpages, nseg;
mutex_enter(&sc->as_mtx);
if (mem->am_is_bound) {
aprint_error_dev(sc->as_dev, "memory already bound\n");
mutex_exit(&sc->as_mtx);
return EINVAL;
}
if (offset < start
|| (offset & (AGP_PAGE_SIZE - 1)) != 0
|| offset > end
|| mem->am_size > (end - offset)) {
aprint_error_dev(sc->as_dev,
"binding memory at bad offset %#lx\n",
(unsigned long) offset);
mutex_exit(&sc->as_mtx);
return EINVAL;
}
/*
* XXXfvdl
* The memory here needs to be directly accessable from the
* AGP video card, so it should be allocated using bus_dma.
* However, it need not be contiguous, since individual pages
* are translated using the GATT.
*
* Using a large chunk of contiguous memory may get in the way
* of other subsystems that may need one, so we try to be friendly
* and ask for allocation in chunks of a minimum of 8 pages
* of contiguous memory on average, falling back to 4, 2 and 1
* if really needed. Larger chunks are preferred, since allocating
* a bus_dma_segment per page would be overkill.
*/
for (contigpages = 8; contigpages > 0; contigpages >>= 1) {
nseg = (mem->am_size / (contigpages * PAGE_SIZE)) + 1;
segs = malloc(nseg * sizeof *segs, M_AGP, M_WAITOK);
if (segs == NULL) {
mutex_exit(&sc->as_mtx);
return ENOMEM;
}
if (bus_dmamem_alloc(sc->as_dmat, mem->am_size, PAGE_SIZE, 0,
segs, nseg, &mem->am_nseg,
contigpages > 1 ?
BUS_DMA_NOWAIT : BUS_DMA_WAITOK) != 0) {
free(segs, M_AGP);
continue;
}
if (bus_dmamem_map(sc->as_dmat, segs, mem->am_nseg,
mem->am_size, &mem->am_virtual, BUS_DMA_WAITOK) != 0) {
bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
free(segs, M_AGP);
continue;
}
if (bus_dmamap_load(sc->as_dmat, mem->am_dmamap,
mem->am_virtual, mem->am_size, NULL, BUS_DMA_WAITOK) != 0) {
bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
mem->am_size);
bus_dmamem_free(sc->as_dmat, segs, mem->am_nseg);
free(segs, M_AGP);
continue;
}
mem->am_dmaseg = segs;
break;
}
if (contigpages == 0) {
mutex_exit(&sc->as_mtx);
return ENOMEM;
}
/*
* Bind the individual pages and flush the chipset's
* TLB.
*/
done = 0;
for (i = 0; i < mem->am_dmamap->dm_nsegs; i++) {
seg = &mem->am_dmamap->dm_segs[i];
/*
* Install entries in the GATT, making sure that if
* AGP_PAGE_SIZE < PAGE_SIZE and mem->am_size is not
* aligned to PAGE_SIZE, we don't modify too many GATT
* entries.
*/
for (j = 0; j < seg->ds_len && (done + j) < mem->am_size;
j += AGP_PAGE_SIZE) {
pa = seg->ds_addr + j;
AGP_DPF(("binding offset %#lx to pa %#lx\n",
(unsigned long)(offset + done + j),
(unsigned long)pa));
error = AGP_BIND_PAGE(sc, offset + done + j, pa);
if (error) {
/*
* Bail out. Reverse all the mappings
* and unwire the pages.
*/
for (k = 0; k < done + j; k += AGP_PAGE_SIZE)
AGP_UNBIND_PAGE(sc, offset + k);
bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
bus_dmamem_unmap(sc->as_dmat, mem->am_virtual,
mem->am_size);
bus_dmamem_free(sc->as_dmat, mem->am_dmaseg,
mem->am_nseg);
free(mem->am_dmaseg, M_AGP);
mutex_exit(&sc->as_mtx);
return error;
}
}
done += seg->ds_len;
}
/*
* Flush the CPU cache since we are providing a new mapping
* for these pages.
*/
agp_flush_cache();
/*
* Make sure the chipset gets the new mappings.
*/
AGP_FLUSH_TLB(sc);
mem->am_offset = offset;
mem->am_is_bound = 1;
mutex_exit(&sc->as_mtx);
return 0;
}
int
agp_generic_unbind_memory(struct agp_softc *sc, struct agp_memory *mem)
{
int i;
mutex_enter(&sc->as_mtx);
if (!mem->am_is_bound) {
aprint_error_dev(sc->as_dev, "memory is not bound\n");
mutex_exit(&sc->as_mtx);
return EINVAL;
}
/*
* Unbind the individual pages and flush the chipset's
* TLB. Unwire the pages so they can be swapped.
*/
for (i = 0; i < mem->am_size; i += AGP_PAGE_SIZE)
AGP_UNBIND_PAGE(sc, mem->am_offset + i);
agp_flush_cache();
AGP_FLUSH_TLB(sc);
bus_dmamap_unload(sc->as_dmat, mem->am_dmamap);
bus_dmamem_unmap(sc->as_dmat, mem->am_virtual, mem->am_size);
bus_dmamem_free(sc->as_dmat, mem->am_dmaseg, mem->am_nseg);
free(mem->am_dmaseg, M_AGP);
mem->am_offset = 0;
mem->am_is_bound = 0;
mutex_exit(&sc->as_mtx);
return 0;
}
/* Helper functions for implementing user/kernel api */
static int
agp_acquire_helper(struct agp_softc *sc, enum agp_acquire_state state)
{
if (sc->as_state != AGP_ACQUIRE_FREE)
return EBUSY;
sc->as_state = state;
return 0;
}
static int
agp_release_helper(struct agp_softc *sc, enum agp_acquire_state state)
{
if (sc->as_state == AGP_ACQUIRE_FREE)
return 0;
if (sc->as_state != state)
return EBUSY;
sc->as_state = AGP_ACQUIRE_FREE;
return 0;
}
static struct agp_memory *
agp_find_memory(struct agp_softc *sc, int id)
{
struct agp_memory *mem;
AGP_DPF(("searching for memory block %d\n", id));
TAILQ_FOREACH(mem, &sc->as_memory, am_link) {
AGP_DPF(("considering memory block %d\n", mem->am_id));
if (mem->am_id == id)
return mem;
}
return 0;
}
/* Implementation of the userland ioctl api */
static int
agp_info_user(struct agp_softc *sc, agp_info *info)
{
memset(info, 0, sizeof *info);
info->bridge_id = sc->as_id;
if (sc->as_capoff != 0)
info->agp_mode = pci_conf_read(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_STATUS);
else
info->agp_mode = 0; /* i810 doesn't have real AGP */
info->aper_base = sc->as_apaddr;
info->aper_size = AGP_GET_APERTURE(sc) >> 20;
info->pg_total = info->pg_system = sc->as_maxmem >> AGP_PAGE_SHIFT;
info->pg_used = sc->as_allocated >> AGP_PAGE_SHIFT;
return 0;
}
static int
agp_setup_user(struct agp_softc *sc, agp_setup *setup)
{
return AGP_ENABLE(sc, setup->agp_mode);
}
static int
agp_allocate_user(struct agp_softc *sc, agp_allocate *alloc)
{
struct agp_memory *mem;
mem = AGP_ALLOC_MEMORY(sc,
alloc->type,
alloc->pg_count << AGP_PAGE_SHIFT);
if (mem) {
alloc->key = mem->am_id;
alloc->physical = mem->am_physical;
return 0;
} else {
return ENOMEM;
}
}
static int
agp_deallocate_user(struct agp_softc *sc, int id)
{
struct agp_memory *mem = agp_find_memory(sc, id);
if (mem) {
AGP_FREE_MEMORY(sc, mem);
return 0;
} else {
return ENOENT;
}
}
static int
agp_bind_user(struct agp_softc *sc, agp_bind *bind)
{
struct agp_memory *mem = agp_find_memory(sc, bind->key);
if (!mem)
return ENOENT;
return AGP_BIND_MEMORY(sc, mem, bind->pg_start << AGP_PAGE_SHIFT);
}
static int
agp_unbind_user(struct agp_softc *sc, agp_unbind *unbind)
{
struct agp_memory *mem = agp_find_memory(sc, unbind->key);
if (!mem)
return ENOENT;
return AGP_UNBIND_MEMORY(sc, mem);
}
static int
agpopen(dev_t dev, int oflags, int devtype, struct lwp *l)
{
struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
if (sc == NULL)
return ENXIO;
if (sc->as_chipc == NULL)
return ENXIO;
if (!sc->as_isopen)
sc->as_isopen = 1;
else
return EBUSY;
return 0;
}
static int
agpclose(dev_t dev, int fflag, int devtype, struct lwp *l)
{
struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
struct agp_memory *mem;
if (sc == NULL)
return ENODEV;
/*
* Clear the GATT and force release on last close
*/
if (sc->as_state == AGP_ACQUIRE_USER) {
while ((mem = TAILQ_FIRST(&sc->as_memory))) {
if (mem->am_is_bound) {
printf("agpclose: mem %d is bound\n",
mem->am_id);
AGP_UNBIND_MEMORY(sc, mem);
}
/*
* XXX it is not documented, but if the protocol allows
* allocate->acquire->bind, it would be possible that
* memory ranges are allocated by the kernel here,
* which we shouldn't free. We'd have to keep track of
* the memory range's owner.
* The kernel API is unsed yet, so we get away with
* freeing all.
*/
AGP_FREE_MEMORY(sc, mem);
}
agp_release_helper(sc, AGP_ACQUIRE_USER);
}
sc->as_isopen = 0;
return 0;
}
static int
agpioctl(dev_t dev, u_long cmd, void *data, int fflag, struct lwp *l)
{
struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
if (sc == NULL)
return ENODEV;
if ((fflag & FWRITE) == 0 && cmd != AGPIOC_INFO)
return EPERM;
switch (cmd) {
case AGPIOC_INFO:
return agp_info_user(sc, (agp_info *) data);
case AGPIOC_ACQUIRE:
return agp_acquire_helper(sc, AGP_ACQUIRE_USER);
case AGPIOC_RELEASE:
return agp_release_helper(sc, AGP_ACQUIRE_USER);
case AGPIOC_SETUP:
return agp_setup_user(sc, (agp_setup *)data);
#ifdef __x86_64__
{
/*
* Handle paddr_t change from 32 bit for non PAE kernels
* to 64 bit.
*/
#define AGPIOC_OALLOCATE _IOWR(AGPIOC_BASE, 6, agp_oallocate)
typedef struct _agp_oallocate {
int key; /* tag of allocation */
size_t pg_count; /* number of pages */
uint32_t type; /* 0 == normal, other devspec */
u_long physical; /* device specific (some devices
* need a phys address of the
* actual page behind the gatt
* table) */
} agp_oallocate;
case AGPIOC_OALLOCATE: {
int ret;
agp_allocate aga;
agp_oallocate *oaga = data;
aga.type = oaga->type;
aga.pg_count = oaga->pg_count;
if ((ret = agp_allocate_user(sc, &aga)) == 0) {
oaga->key = aga.key;
oaga->physical = (u_long)aga.physical;
}
return ret;
}
}
#endif
case AGPIOC_ALLOCATE:
return agp_allocate_user(sc, (agp_allocate *)data);
case AGPIOC_DEALLOCATE:
return agp_deallocate_user(sc, *(int *) data);
case AGPIOC_BIND:
return agp_bind_user(sc, (agp_bind *)data);
case AGPIOC_UNBIND:
return agp_unbind_user(sc, (agp_unbind *)data);
}
return EINVAL;
}
static paddr_t
agpmmap(dev_t dev, off_t offset, int prot)
{
struct agp_softc *sc = device_lookup_private(&agp_cd, AGPUNIT(dev));
if (sc == NULL)
return ENODEV;
if (offset > AGP_GET_APERTURE(sc))
return -1;
return (bus_space_mmap(sc->as_apt, sc->as_apaddr, offset, prot,
BUS_SPACE_MAP_LINEAR));
}
const struct cdevsw agp_cdevsw = {
.d_open = agpopen,
.d_close = agpclose,
.d_read = noread,
.d_write = nowrite,
.d_ioctl = agpioctl,
.d_stop = nostop,
.d_tty = notty,
.d_poll = nopoll,
.d_mmap = agpmmap,
.d_kqfilter = nokqfilter,
.d_discard = nodiscard,
.d_flag = D_OTHER
};
/* Implementation of the kernel api */
void *
agp_find_device(int unit)
{
return device_lookup_private(&agp_cd, unit);
}
enum agp_acquire_state
agp_state(void *devcookie)
{
struct agp_softc *sc = devcookie;
return sc->as_state;
}
void
agp_get_info(void *devcookie, struct agp_info *info)
{
struct agp_softc *sc = devcookie;
info->ai_mode = pci_conf_read(sc->as_pc, sc->as_tag,
sc->as_capoff + PCI_AGP_STATUS);
info->ai_aperture_base = sc->as_apaddr;
info->ai_aperture_size = sc->as_apsize; /* XXXfvdl inconsistent */
info->ai_memory_allowed = sc->as_maxmem;
info->ai_memory_used = sc->as_allocated;
info->ai_devid = sc->as_id;
}
int
agp_acquire(void *dev)
{
return agp_acquire_helper(dev, AGP_ACQUIRE_KERNEL);
}
int
agp_release(void *dev)
{
return agp_release_helper(dev, AGP_ACQUIRE_KERNEL);
}
int
agp_enable(void *dev, u_int32_t mode)
{
struct agp_softc *sc = dev;
return AGP_ENABLE(sc, mode);
}
void *
agp_alloc_memory(void *dev, int type, vsize_t bytes)
{
struct agp_softc *sc = dev;
return (void *)AGP_ALLOC_MEMORY(sc, type, bytes);
}
void
agp_free_memory(void *dev, void *handle)
{
struct agp_softc *sc = dev;
struct agp_memory *mem = handle;
AGP_FREE_MEMORY(sc, mem);
}
int
agp_bind_memory(void *dev, void *handle, off_t offset)
{
struct agp_softc *sc = dev;
struct agp_memory *mem = handle;
return AGP_BIND_MEMORY(sc, mem, offset);
}
int
agp_unbind_memory(void *dev, void *handle)
{
struct agp_softc *sc = dev;
struct agp_memory *mem = handle;
return AGP_UNBIND_MEMORY(sc, mem);
}
void
agp_memory_info(void *dev, void *handle, struct agp_memory_info *mi)
{
struct agp_memory *mem = handle;
mi->ami_size = mem->am_size;
mi->ami_physical = mem->am_physical;
mi->ami_offset = mem->am_offset;
mi->ami_is_bound = mem->am_is_bound;
}
int
agp_alloc_dmamem(bus_dma_tag_t tag, size_t size, int flags,
bus_dmamap_t *mapp, void **vaddr, bus_addr_t *baddr,
bus_dma_segment_t *seg, int nseg, int *rseg)
{
int error, level = 0;
if ((error = bus_dmamem_alloc(tag, size, PAGE_SIZE, 0,
seg, nseg, rseg, BUS_DMA_NOWAIT)) != 0)
goto out;
level++;
if ((error = bus_dmamem_map(tag, seg, *rseg, size, vaddr,
BUS_DMA_NOWAIT | flags)) != 0)
goto out;
level++;
if ((error = bus_dmamap_create(tag, size, *rseg, size, 0,
BUS_DMA_NOWAIT, mapp)) != 0)
goto out;
level++;
if ((error = bus_dmamap_load(tag, *mapp, *vaddr, size, NULL,
BUS_DMA_NOWAIT)) != 0)
goto out;
*baddr = (*mapp)->dm_segs[0].ds_addr;
return 0;
out:
switch (level) {
case 3:
bus_dmamap_destroy(tag, *mapp);
/* FALLTHROUGH */
case 2:
bus_dmamem_unmap(tag, *vaddr, size);
/* FALLTHROUGH */
case 1:
bus_dmamem_free(tag, seg, *rseg);
break;
default:
break;
}
return error;
}
void
agp_free_dmamem(bus_dma_tag_t tag, size_t size, bus_dmamap_t map,
void *vaddr, bus_dma_segment_t *seg, int nseg)
{
bus_dmamap_unload(tag, map);
bus_dmamap_destroy(tag, map);
bus_dmamem_unmap(tag, vaddr, size);
bus_dmamem_free(tag, seg, nseg);
}
static bool
agp_resume(device_t dv, const pmf_qual_t *qual)
{
agp_flush_cache();
return true;
}