NetBSD/gnu/usr.bin/gdb/config/m-tahoe.h

478 lines
15 KiB
C

/*-
* This code is derived from software copyrighted by the Free Software
* Foundation.
*
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
*
* from: @(#)m-tahoe.h 6.4 (Berkeley) 5/8/91
* $Id: m-tahoe.h,v 1.2 1993/08/01 18:48:29 mycroft Exp $
*/
/*
* Ported by the State University of New York at Buffalo by the Distributed
* Computer Systems Lab, Department of Computer Science, 1991.
*/
/*
* These first two are kludges to get this thing to compile under Reno (or
* at least the Reno running on okeeffe). It seems there are a few problems
* with the include files.
*/
/*
* Until gdb becomes POSIX-compatible...
*/
#define USE_OLD_TTY 1
/*
* That's all for the kludges. Now on to the port...
*/
#ifndef tahoe
#define tahoe
#endif
/* Define the bit, byte, and word ordering of the machine. */
/* #define BITS_BIG_ENDIAN */
#define BYTES_BIG_ENDIAN
#define WORDS_BIG_ENDIAN
/* Library stuff: POSIX tty (not supported yet), V7 tty (sigh), vprintf. */
#define HAVE_TERMIOS 1
#define USE_OLD_TTY 1
#define HAVE_VPRINTF 1
/* Get rid of any system-imposed stack limit if possible. */
#define SET_STACK_LIMIT_HUGE
/* Define this if the C compiler puts an underscore at the front
of external names before giving them to the linker. */
#define NAMES_HAVE_UNDERSCORE
/* Debugger information will be in DBX format. */
#define READ_DBX_FORMAT
/* Offset from address of function to start of its code.
Zero on most machines. */
#define FUNCTION_START_OFFSET 2
/* Advance PC across any function entry prologue instructions
to reach some "real" code. */
#define SKIP_PROLOGUE(pc) \
{ register int op = (unsigned char) read_memory_integer (pc, 1); \
if (op == 0x11) pc += 2; /* skip brb */ \
if (op == 0x13) pc += 3; /* skip brw */ \
if (op == 0x2c && \
((unsigned char) read_memory_integer (pc+2, 1)) == 0x5e) \
pc += 3; /* skip subl2 */ \
if (op == 0xe9 && \
((unsigned char) read_memory_integer (pc+1, 1)) == 0xae && \
((unsigned char) read_memory_integer(pc+3, 1)) == 0x5e) \
pc += 4; /* skip movab */ \
if (op == 0xe9 && \
((unsigned char) read_memory_integer (pc+1, 1)) == 0xce && \
((unsigned char) read_memory_integer(pc+4, 1)) == 0x5e) \
pc += 5; /* skip movab */ \
if (op == 0xe9 && \
((unsigned char) read_memory_integer (pc+1, 1)) == 0xee && \
((unsigned char) read_memory_integer(pc+6, 1)) == 0x5e) \
pc += 7; /* skip movab */ \
}
/* Immediately after a function call, return the saved pc.
Can't always go through the frames for this because on some machines
the new frame is not set up until the new function executes
some instructions. */
#define SAVED_PC_AFTER_CALL(frame) FRAME_SAVED_PC(frame)
/* This is the amount to subtract from u.u_ar0
to get the offset in the core file of the register values. */
#define KERNEL_U_ADDR (0xc0000000 - (UPAGES * NBPG))
/* Address of end of stack space. */
#define STACK_END_ADDR (0xc0000000 - (UPAGES * NBPG))
/* Same as offsetof macro from stddef.h (which 4.3BSD doesn't have). */
#define my_offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
/* Under BSD, sigtramp is in the u area. Note that this definition
includes both the subroutine at u_pcb.pcb_sigc[3], and the
routine at u_pcb.pcb_sigc[0] (which does a calls to u_pcb.pcb_sigc[3]).
I think this is what we want. */
#define IN_SIGTRAMP(pc, name) \
((pc) >= KERNEL_U_ADDR + my_offsetof (struct user, u_pcb.pcb_sigc[0]) \
&& (pc) < KERNEL_U_ADDR + my_offsetof (struct user, u_pcb.pcb_sigc[5]) \
)
/* Stack grows downward. */
#define INNER_THAN <
/* Sequence of bytes for breakpoint instruction. */
#define BREAKPOINT {0x30}
/* Amount PC must be decremented by after a breakpoint.
This is often the number of bytes in BREAKPOINT
but not always. */
#define DECR_PC_AFTER_BREAK 0
/* Nonzero if instruction at PC is a return instruction. */
#define ABOUT_TO_RETURN(pc) (read_memory_integer (pc, 1) == 0x40)
/* Return 1 if P points to an invalid floating point value.
LEN is the length in bytes -- not relevant on the Tahoe. */
#define INVALID_FLOAT(p, len) ((*(short *) p & 0xff80) == 0x8000)
/* Largest integer type */
#define LONGEST long
/* Name of the builtin type for the LONGEST type above. */
#define BUILTIN_TYPE_LONGEST builtin_type_long
/* Say how long (ordinary) registers are. */
#define REGISTER_TYPE long
/* Number of machine registers */
#define NUM_REGS 19
/* Initializer for an array of names of registers.
There should be NUM_REGS strings in this initializer. */
#define REGISTER_NAMES {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "r10", "r11", "r12", "fp", "sp", "pc", "ps", "al", "ah"}
#define FP_REGNUM 13 /* Contains address of executing stack frame */
#define SP_REGNUM 14 /* Contains address of top of stack */
#define PC_REGNUM 15 /* Contains program counter */
#define PS_REGNUM 16 /* Contains processor status */
#define AL_REGNUM 17 /* Contains accumulator */
#define AH_REGNUM 18
#define REGISTER_U_ADDR(addr, blockend, regno) \
{ addr = blockend - 100 + regno * 4; \
if (regno == PC_REGNUM) addr = blockend - 8; \
if (regno == PS_REGNUM) addr = blockend - 4; \
if (regno == FP_REGNUM) addr = blockend - 40; \
if (regno == SP_REGNUM) addr = blockend - 36; \
if (regno == AL_REGNUM) addr = blockend - 20; \
if (regno == AH_REGNUM) addr = blockend - 24;}
/* Total amount of space needed to store our copies of the machine's
register state, the array `registers'. */
#define REGISTER_BYTES (19*4)
/* Index within `registers' of the first byte of the space for
register N. */
#define REGISTER_BYTE(N) ((N) * 4)
/* Number of bytes of storage in the actual machine representation
for register N. On the tahoe, all regs are 4 bytes. */
#define REGISTER_RAW_SIZE(N) 4
/* Number of bytes of storage in the program's representation
for register N. On the tahoe, all regs are 4 bytes. */
#define REGISTER_VIRTUAL_SIZE(N) 4
/* Largest value REGISTER_RAW_SIZE can have. */
#define MAX_REGISTER_RAW_SIZE 4
/* Largest value REGISTER_VIRTUAL_SIZE can have. */
#define MAX_REGISTER_VIRTUAL_SIZE 4
/* Nonzero if register N requires conversion
from raw format to virtual format. */
#define REGISTER_CONVERTIBLE(N) 0
/* Convert data from raw format for register REGNUM
to virtual format for register REGNUM. */
#define REGISTER_CONVERT_TO_VIRTUAL(REGNUM,FROM,TO) \
bcopy ((FROM), (TO), 4);
/* Convert data from virtual format for register REGNUM
to raw format for register REGNUM. */
#define REGISTER_CONVERT_TO_RAW(REGNUM,FROM,TO) \
bcopy ((FROM), (TO), 4);
/* Return the GDB type object for the "standard" data type
of data in register N. */
#define REGISTER_VIRTUAL_TYPE(N) builtin_type_int
/* Store the address of the place in which to copy the structure the
subroutine will return. This is called from call_function. */
#define STORE_STRUCT_RETURN(ADDR, SP) \
{ write_register (1, (ADDR)); }
/* Extract from an array REGBUF containing the (raw) register state
a function return value of type TYPE, and copy that, in virtual format,
into VALBUF. */
#define EXTRACT_RETURN_VALUE(TYPE,REGBUF,VALBUF) \
bcopy (REGBUF, VALBUF, TYPE_LENGTH (TYPE))
/* Write into appropriate registers a function return value
of type TYPE, given in virtual format. */
#define STORE_RETURN_VALUE(TYPE,VALBUF) \
write_register_bytes (0, VALBUF, TYPE_LENGTH (TYPE))
/* Extract from an array REGBUF containing the (raw) register state
the address in which a function should return its structure value,
as a CORE_ADDR (or an expression that can be used as one). */
#define EXTRACT_STRUCT_VALUE_ADDRESS(REGBUF) (*(int *)(REGBUF))
/* Compensate for lack of `vprintf' function. */
#ifndef HAVE_VPRINTF
#define vprintf(format, ap) _doprnt (format, ap, stdout)
#endif /* not HAVE_VPRINTF */
/* Describe the pointer in each stack frame to the previous stack frame
(its caller).
FRAME_CHAIN takes a frame's nominal address
and produces the frame's chain-pointer.
FRAME_CHAIN_COMBINE takes the chain pointer and the frame's nominal address
and produces the nominal address of the caller frame.
However, if FRAME_CHAIN_VALID returns zero,
it means the given frame is the outermost one and has no caller.
In that case, FRAME_CHAIN_COMBINE is not used. */
/* In the case of the Tahoe, the frame's nominal address is the FP value,
and it points to the old FP */
#define FRAME_CHAIN(thisframe) \
(outside_startup_file ((thisframe)->pc) ? \
read_memory_integer ((thisframe)->frame, 4) :\
0)
#define FRAME_CHAIN_VALID(chain, thisframe) \
(chain != 0 && (outside_startup_file (FRAME_SAVED_PC (thisframe))))
#define FRAME_CHAIN_COMBINE(chain, thisframe) (chain)
/* Define other aspects of the stack frame. */
/* Saved PC */
#define FRAME_SAVED_PC(FRAME) (read_memory_integer ((FRAME)->frame - 8, 4))
/* In most of GDB, getting the args address is too important to
just say "I don't know". */
#define FRAME_ARGS_ADDRESS(fi) ((fi)->frame)
/* Address to use as an anchor for finding local variables */
#define FRAME_LOCALS_ADDRESS(fi) ((fi)->frame)
/* Return number of args passed to a frame.
Can return -1, meaning no way to tell. */
#define FRAME_NUM_ARGS(numargs, fi) \
{ numargs = ((0xffff & read_memory_integer(((fi)->frame-4),4)) - 4) >> 2; }
/* Return number of bytes at start of arglist that are not really args. */
#define FRAME_ARGS_SKIP 4
/* Put here the code to store, into a struct frame_saved_regs,
the addresses of the saved registers of frame described by FRAME_INFO.
This includes special registers such as pc and fp saved in special
ways in the stack frame. sp is even more special:
the address we return for it IS the sp for the next frame. */
#define FRAME_FIND_SAVED_REGS(frame_info, frame_saved_regs) \
{ register int regnum; \
register int rmask = read_memory_integer ((frame_info)->frame-4, 4) >> 16;\
register CORE_ADDR next_addr; \
bzero (&frame_saved_regs, sizeof frame_saved_regs); \
next_addr = (frame_info)->frame - 8; \
for (regnum = 12; regnum >= 0; regnum--, rmask <<= 1) \
(frame_saved_regs).regs[regnum] = (rmask & 0x1000) ? (next_addr -= 4) : 0;\
(frame_saved_regs).regs[SP_REGNUM] = (frame_info)->frame + 4; \
(frame_saved_regs).regs[PC_REGNUM] = (frame_info)->frame - 8; \
(frame_saved_regs).regs[FP_REGNUM] = (frame_info)->frame; \
}
/* Things needed for making the inferior call functions. */
/* Push an empty stack frame, to record the current PC, etc. */
#define PUSH_DUMMY_FRAME \
{ register CORE_ADDR sp = read_register (SP_REGNUM); \
register int regnum; \
printf("PUSH_DUMMY_FRAME\n"); \
sp = push_word (sp, read_register (FP_REGNUM)); \
write_register (FP_REGNUM, sp); \
sp = push_word (sp, 0x1fff0004); /*SAVE MASK*/ \
sp = push_word (sp, read_register (PC_REGNUM)); \
for (regnum = 12; regnum >= 0; regnum--) \
sp = push_word (sp, read_register (regnum)); \
write_register (SP_REGNUM, sp); \
}
/* Discard from the stack the innermost frame, restoring all registers. */
#define POP_FRAME \
{ register CORE_ADDR fp = read_register (FP_REGNUM); \
register int regnum; \
register int regmask = read_memory_integer (fp-4, 4); \
printf("POP_FRAME\n"); \
regmask >>= 16; \
write_register (SP_REGNUM, fp+4); \
write_register (PC_REGNUM, read_memory_integer(fp-8, 4)); \
write_register (FP_REGNUM, read_memory_integer(fp, 4)); \
fp -= 8; \
for (regnum = 12; regnum >= 0; regnum--, regmask <<= 1) \
if (regmask & 0x1000) \
write_register (regnum, read_memory_integer (fp-=4, 4)); \
flush_cached_frames (); \
set_current_frame (create_new_frame (read_register (FP_REGNUM), \
read_pc ())); }
/* This sequence of words is the instructions
calls #69, @#32323232
bpt
Note this is 8 bytes. */
#define CALL_DUMMY {0xbf699f32, 0x32323230}
/* Start execution at beginning of dummy */
#define CALL_DUMMY_START_OFFSET 0
/* Insert the specified number of args and function address
into a call sequence of the above form stored at DUMMYNAME. */
#define FIX_CALL_DUMMY(dummyname, pc, fun, nargs, type) \
{ int temp = (int) fun; \
*((char *) dummyname + 1) = nargs; \
bcopy(&temp,(char *)dummyname+3,4); }
/* Interface definitions for kernel debugger KDB. */
/* Map machine fault codes into signal numbers.
First subtract 0, divide by 4, then index in a table.
Faults for which the entry in this table is 0
are not handled by KDB; the program's own trap handler
gets to handle then. */
#define FAULT_CODE_ORIGIN 0
#define FAULT_CODE_UNITS 4
#define FAULT_TABLE \
{ 0, SIGKILL, SIGSEGV, 0, 0, 0, 0, 0, \
0, 0, SIGTRAP, SIGTRAP, 0, 0, 0, 0, \
0, 0, 0, 0, 0, 0, 0, 0}
/* Start running with a stack stretching from BEG to END.
BEG and END should be symbols meaningful to the assembler.
This is used only for kdb. */
#define INIT_STACK(beg, end) \
{ asm (".globl end"); \
asm ("movl $ end, sp"); \
asm ("clrl fp"); }
/* Push the frame pointer register on the stack. */
#define PUSH_FRAME_PTR \
asm ("pushl fp");
/* Copy the top-of-stack to the frame pointer register. */
#define POP_FRAME_PTR \
asm ("movl (sp), fp");
/* After KDB is entered by a fault, push all registers
that GDB thinks about (all NUM_REGS of them),
so that they appear in order of ascending GDB register number.
The fault code will be on the stack beyond the last register. */
#define PUSH_REGISTERS \
{ asm ("pushl 8(sp)"); \
asm ("pushl 8(sp)"); \
asm ("pushal 0x41(sp)"); \
asm ("pushl r0" ); \
asm ("pushl r1" ); \
asm ("pushl r2" ); \
asm ("pushl r3" ); \
asm ("pushl r4" ); \
asm ("pushl r5" ); \
asm ("pushl r6" ); \
asm ("pushl r7" ); \
asm ("pushl r8" ); \
asm ("pushl r9" ); \
asm ("pushl r10" ); \
asm ("pushl r11" ); \
asm ("pushl r12" ); \
asm ("pushl fp" ); \
asm ("pushl sp" ); \
asm ("pushl pc" ); \
asm ("pushl ps" ); \
asm ("pushl aclo" ); \
asm ("pushl achi" ); \
}
/* Assuming the registers (including processor status) have been
pushed on the stack in order of ascending GDB register number,
restore them and return to the address in the saved PC register. */
#define POP_REGISTERS \
{ \
asm ("movl (sp)+, achi"); \
asm ("movl (sp)+, aclo"); \
asm ("movl (sp)+, ps"); \
asm ("movl (sp)+, pc"); \
asm ("movl (sp)+, sp"); \
asm ("movl (sp)+, fp"); \
asm ("movl (sp)+, r12"); \
asm ("movl (sp)+, r11"); \
asm ("movl (sp)+, r10"); \
asm ("movl (sp)+, r9"); \
asm ("movl (sp)+, r8"); \
asm ("movl (sp)+, r7"); \
asm ("movl (sp)+, r6"); \
asm ("movl (sp)+, r5"); \
asm ("movl (sp)+, r4"); \
asm ("movl (sp)+, r3"); \
asm ("movl (sp)+, r2"); \
asm ("movl (sp)+, r1"); \
asm ("movl (sp)+, r0"); \
asm ("subl2 $8,(sp)"); \
asm ("movl (sp),sp"); \
asm ("rei"); }