NetBSD/sys/netipsec/key.c

8908 lines
218 KiB
C

/* $NetBSD: key.c,v 1.255 2018/04/28 15:45:16 maxv Exp $ */
/* $FreeBSD: key.c,v 1.3.2.3 2004/02/14 22:23:23 bms Exp $ */
/* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: key.c,v 1.255 2018/04/28 15:45:16 maxv Exp $");
/*
* This code is referred to RFC 2367
*/
#if defined(_KERNEL_OPT)
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_gateway.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/domain.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sysctl.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <sys/once.h>
#include <sys/cprng.h>
#include <sys/psref.h>
#include <sys/lwp.h>
#include <sys/workqueue.h>
#include <sys/kmem.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/pslist.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/localcount.h>
#include <sys/pserialize.h>
#include <sys/hash.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_var.h>
#ifdef INET
#include <netinet/ip_var.h>
#endif
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6_var.h>
#endif /* INET6 */
#ifdef INET
#include <netinet/in_pcb.h>
#endif
#ifdef INET6
#include <netinet6/in6_pcb.h>
#endif /* INET6 */
#include <net/pfkeyv2.h>
#include <netipsec/keydb.h>
#include <netipsec/key.h>
#include <netipsec/keysock.h>
#include <netipsec/key_debug.h>
#include <netipsec/ipsec.h>
#ifdef INET6
#include <netipsec/ipsec6.h>
#endif
#include <netipsec/ipsec_private.h>
#include <netipsec/xform.h>
#include <netipsec/ipcomp.h>
#define FULLMASK 0xff
#define _BITS(bytes) ((bytes) << 3)
#define PORT_NONE 0
#define PORT_LOOSE 1
#define PORT_STRICT 2
#ifndef SAHHASH_NHASH
#define SAHHASH_NHASH 128
#endif
#ifndef SAVLUT_NHASH
#define SAVLUT_NHASH 128
#endif
percpu_t *pfkeystat_percpu;
/*
* Note on SA reference counting:
* - SAs that are not in DEAD state will have (total external reference + 1)
* following value in reference count field. they cannot be freed and are
* referenced from SA header.
* - SAs that are in DEAD state will have (total external reference)
* in reference count field. they are ready to be freed. reference from
* SA header will be removed in key_delsav(), when the reference count
* field hits 0 (= no external reference other than from SA header.
*/
u_int32_t key_debug_level = 0;
static u_int key_spi_trycnt = 1000;
static u_int32_t key_spi_minval = 0x100;
static u_int32_t key_spi_maxval = 0x0fffffff; /* XXX */
static u_int32_t policy_id = 0;
static u_int key_int_random = 60; /*interval to initialize randseed,1(m)*/
static u_int key_larval_lifetime = 30; /* interval to expire acquiring, 30(s)*/
static int key_blockacq_count = 10; /* counter for blocking SADB_ACQUIRE.*/
static int key_blockacq_lifetime = 20; /* lifetime for blocking SADB_ACQUIRE.*/
static int key_prefered_oldsa = 0; /* prefered old sa rather than new sa.*/
static u_int32_t acq_seq = 0;
/*
* Locking order: there is no order for now; it means that any locks aren't
* overlapped.
*/
/*
* Locking notes on SPD:
* - Modifications to the key_spd.splist must be done with holding key_spd.lock
* which is a adaptive mutex
* - Read accesses to the key_spd.splist must be in pserialize(9) read sections
* - SP's lifetime is managed by localcount(9)
* - An SP that has been inserted to the key_spd.splist is initially referenced
* by none, i.e., a reference from the key_spd.splist isn't counted
* - When an SP is being destroyed, we change its state as DEAD, wait for
* references to the SP to be released, and then deallocate the SP
* (see key_unlink_sp)
* - Getting an SP
* - Normally we get an SP from the key_spd.splist (see key_lookup_sp_byspidx)
* - Must iterate the list and increment the reference count of a found SP
* (by key_sp_ref) in a pserialize read section
* - We can gain another reference from a held SP only if we check its state
* and take its reference in a pserialize read section
* (see esp_output for example)
* - We may get an SP from an SP cache. See below
* - A gotten SP must be released after use by KEY_SP_UNREF (key_sp_unref)
* - Updating member variables of an SP
* - Most member variables of an SP are immutable
* - Only sp->state and sp->lastused can be changed
* - sp->state of an SP is updated only when destroying it under key_spd.lock
* - SP caches
* - SPs can be cached in PCBs
* - The lifetime of the caches is controlled by the global generation counter
* (ipsec_spdgen)
* - The global counter value is stored when an SP is cached
* - If the stored value is different from the global counter then the cache
* is considered invalidated
* - The counter is incremented when an SP is being destroyed
* - So checking the generation and taking a reference to an SP should be
* in a pserialize read section
* - Note that caching doesn't increment the reference counter of an SP
* - SPs in sockets
* - Userland programs can set a policy to a socket by
* setsockopt(IP_IPSEC_POLICY)
* - Such policies (SPs) are set to a socket (PCB) and also inserted to
* the key_spd.socksplist list (not the key_spd.splist)
* - Such a policy is destroyed when a corresponding socket is destroed,
* however, a socket can be destroyed in softint so we cannot destroy
* it directly instead we just mark it DEAD and delay the destruction
* until GC by the timer
* - SP origin
* - SPs can be created by both userland programs and kernel components.
* The SPs created in kernel must not be removed by userland programs,
* although the SPs can be read by userland programs.
*/
/*
* Locking notes on SAD:
* - Data structures
* - SAs are managed by the list called key_sad.sahlists and sav lists of
* sah entries
* - An sav is supposed to be an SA from a viewpoint of users
* - A sah has sav lists for each SA state
* - Multiple saves with the same saidx can exist
* - Only one entry has MATURE state and others should be DEAD
* - DEAD entries are just ignored from searching
* - All sav whose state is MATURE or DYING are registered to the lookup
* table called key_sad.savlut in addition to the savlists.
* - The table is used to search an sav without use of saidx.
* - Modifications to the key_sad.sahlists, sah.savlist and key_sad.savlut
* must be done with holding key_sad.lock which is a adaptive mutex
* - Read accesses to the key_sad.sahlists, sah.savlist and key_sad.savlut
* must be in pserialize(9) read sections
* - sah's lifetime is managed by localcount(9)
* - Getting an sah entry
* - We get an sah from the key_sad.sahlists
* - Must iterate the list and increment the reference count of a found sah
* (by key_sah_ref) in a pserialize read section
* - A gotten sah must be released after use by key_sah_unref
* - An sah is destroyed when its state become DEAD and no sav is
* listed to the sah
* - The destruction is done only in the timer (see key_timehandler_sad)
* - sav's lifetime is managed by localcount(9)
* - Getting an sav entry
* - First get an sah by saidx and get an sav from either of sah's savlists
* - Must iterate the list and increment the reference count of a found sav
* (by key_sa_ref) in a pserialize read section
* - We can gain another reference from a held SA only if we check its state
* and take its reference in a pserialize read section
* (see esp_output for example)
* - A gotten sav must be released after use by key_sa_unref
* - An sav is destroyed when its state become DEAD
*/
/*
* Locking notes on misc data:
* - All lists of key_misc are protected by key_misc.lock
* - key_misc.lock must be held even for read accesses
*/
/* SPD */
static struct {
kmutex_t lock;
kcondvar_t cv_lc;
struct pslist_head splist[IPSEC_DIR_MAX];
/*
* The list has SPs that are set to a socket via
* setsockopt(IP_IPSEC_POLICY) from userland. See ipsec_set_policy.
*/
struct pslist_head socksplist;
pserialize_t psz;
kcondvar_t cv_psz;
bool psz_performing;
} key_spd __cacheline_aligned;
/* SAD */
static struct {
kmutex_t lock;
kcondvar_t cv_lc;
struct pslist_head *sahlists;
u_long sahlistmask;
struct pslist_head *savlut;
u_long savlutmask;
pserialize_t psz;
kcondvar_t cv_psz;
bool psz_performing;
} key_sad __cacheline_aligned;
/* Misc data */
static struct {
kmutex_t lock;
/* registed list */
LIST_HEAD(_reglist, secreg) reglist[SADB_SATYPE_MAX + 1];
#ifndef IPSEC_NONBLOCK_ACQUIRE
/* acquiring list */
LIST_HEAD(_acqlist, secacq) acqlist;
#endif
#ifdef notyet
/* SP acquiring list */
LIST_HEAD(_spacqlist, secspacq) spacqlist;
#endif
} key_misc __cacheline_aligned;
/* Macros for key_spd.splist */
#define SPLIST_ENTRY_INIT(sp) \
PSLIST_ENTRY_INIT((sp), pslist_entry)
#define SPLIST_ENTRY_DESTROY(sp) \
PSLIST_ENTRY_DESTROY((sp), pslist_entry)
#define SPLIST_WRITER_REMOVE(sp) \
PSLIST_WRITER_REMOVE((sp), pslist_entry)
#define SPLIST_READER_EMPTY(dir) \
(PSLIST_READER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
pslist_entry) == NULL)
#define SPLIST_READER_FOREACH(sp, dir) \
PSLIST_READER_FOREACH((sp), &key_spd.splist[(dir)], \
struct secpolicy, pslist_entry)
#define SPLIST_WRITER_FOREACH(sp, dir) \
PSLIST_WRITER_FOREACH((sp), &key_spd.splist[(dir)], \
struct secpolicy, pslist_entry)
#define SPLIST_WRITER_INSERT_AFTER(sp, new) \
PSLIST_WRITER_INSERT_AFTER((sp), (new), pslist_entry)
#define SPLIST_WRITER_EMPTY(dir) \
(PSLIST_WRITER_FIRST(&key_spd.splist[(dir)], struct secpolicy, \
pslist_entry) == NULL)
#define SPLIST_WRITER_INSERT_HEAD(dir, sp) \
PSLIST_WRITER_INSERT_HEAD(&key_spd.splist[(dir)], (sp), \
pslist_entry)
#define SPLIST_WRITER_NEXT(sp) \
PSLIST_WRITER_NEXT((sp), struct secpolicy, pslist_entry)
#define SPLIST_WRITER_INSERT_TAIL(dir, new) \
do { \
if (SPLIST_WRITER_EMPTY((dir))) { \
SPLIST_WRITER_INSERT_HEAD((dir), (new)); \
} else { \
struct secpolicy *__sp; \
SPLIST_WRITER_FOREACH(__sp, (dir)) { \
if (SPLIST_WRITER_NEXT(__sp) == NULL) { \
SPLIST_WRITER_INSERT_AFTER(__sp,\
(new)); \
break; \
} \
} \
} \
} while (0)
/* Macros for key_spd.socksplist */
#define SOCKSPLIST_WRITER_FOREACH(sp) \
PSLIST_WRITER_FOREACH((sp), &key_spd.socksplist, \
struct secpolicy, pslist_entry)
#define SOCKSPLIST_READER_EMPTY() \
(PSLIST_READER_FIRST(&key_spd.socksplist, struct secpolicy, \
pslist_entry) == NULL)
/* Macros for key_sad.sahlist */
#define SAHLIST_ENTRY_INIT(sah) \
PSLIST_ENTRY_INIT((sah), pslist_entry)
#define SAHLIST_ENTRY_DESTROY(sah) \
PSLIST_ENTRY_DESTROY((sah), pslist_entry)
#define SAHLIST_WRITER_REMOVE(sah) \
PSLIST_WRITER_REMOVE((sah), pslist_entry)
#define SAHLIST_READER_FOREACH(sah) \
for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \
PSLIST_READER_FOREACH((sah), &key_sad.sahlists[_i_sah], \
struct secashead, pslist_entry)
#define SAHLIST_READER_FOREACH_SAIDX(sah, saidx) \
PSLIST_READER_FOREACH((sah), \
&key_sad.sahlists[key_saidxhash((saidx), \
key_sad.sahlistmask)], \
struct secashead, pslist_entry)
#define SAHLIST_WRITER_FOREACH(sah) \
for(int _i_sah = 0; _i_sah <= key_sad.sahlistmask; _i_sah++) \
PSLIST_WRITER_FOREACH((sah), &key_sad.sahlists[_i_sah], \
struct secashead, pslist_entry)
#define SAHLIST_WRITER_INSERT_HEAD(sah) \
PSLIST_WRITER_INSERT_HEAD( \
&key_sad.sahlists[key_saidxhash(&(sah)->saidx, \
key_sad.sahlistmask)], \
(sah), pslist_entry)
/* Macros for key_sad.sahlist#savlist */
#define SAVLIST_ENTRY_INIT(sav) \
PSLIST_ENTRY_INIT((sav), pslist_entry)
#define SAVLIST_ENTRY_DESTROY(sav) \
PSLIST_ENTRY_DESTROY((sav), pslist_entry)
#define SAVLIST_READER_FIRST(sah, state) \
PSLIST_READER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
pslist_entry)
#define SAVLIST_WRITER_REMOVE(sav) \
PSLIST_WRITER_REMOVE((sav), pslist_entry)
#define SAVLIST_READER_FOREACH(sav, sah, state) \
PSLIST_READER_FOREACH((sav), &(sah)->savlist[(state)], \
struct secasvar, pslist_entry)
#define SAVLIST_WRITER_FOREACH(sav, sah, state) \
PSLIST_WRITER_FOREACH((sav), &(sah)->savlist[(state)], \
struct secasvar, pslist_entry)
#define SAVLIST_WRITER_INSERT_BEFORE(sav, new) \
PSLIST_WRITER_INSERT_BEFORE((sav), (new), pslist_entry)
#define SAVLIST_WRITER_INSERT_AFTER(sav, new) \
PSLIST_WRITER_INSERT_AFTER((sav), (new), pslist_entry)
#define SAVLIST_WRITER_EMPTY(sah, state) \
(PSLIST_WRITER_FIRST(&(sah)->savlist[(state)], struct secasvar, \
pslist_entry) == NULL)
#define SAVLIST_WRITER_INSERT_HEAD(sah, state, sav) \
PSLIST_WRITER_INSERT_HEAD(&(sah)->savlist[(state)], (sav), \
pslist_entry)
#define SAVLIST_WRITER_NEXT(sav) \
PSLIST_WRITER_NEXT((sav), struct secasvar, pslist_entry)
#define SAVLIST_WRITER_INSERT_TAIL(sah, state, new) \
do { \
if (SAVLIST_WRITER_EMPTY((sah), (state))) { \
SAVLIST_WRITER_INSERT_HEAD((sah), (state), (new));\
} else { \
struct secasvar *__sav; \
SAVLIST_WRITER_FOREACH(__sav, (sah), (state)) { \
if (SAVLIST_WRITER_NEXT(__sav) == NULL) {\
SAVLIST_WRITER_INSERT_AFTER(__sav,\
(new)); \
break; \
} \
} \
} \
} while (0)
#define SAVLIST_READER_NEXT(sav) \
PSLIST_READER_NEXT((sav), struct secasvar, pslist_entry)
/* Macros for key_sad.savlut */
#define SAVLUT_ENTRY_INIT(sav) \
PSLIST_ENTRY_INIT((sav), pslist_entry_savlut)
#define SAVLUT_READER_FOREACH(sav, dst, proto, hash_key) \
PSLIST_READER_FOREACH((sav), \
&key_sad.savlut[key_savluthash(dst, proto, hash_key, \
key_sad.savlutmask)], \
struct secasvar, pslist_entry_savlut)
#define SAVLUT_WRITER_INSERT_HEAD(sav) \
key_savlut_writer_insert_head((sav))
#define SAVLUT_WRITER_REMOVE(sav) \
do { \
if (!(sav)->savlut_added) \
break; \
PSLIST_WRITER_REMOVE((sav), pslist_entry_savlut); \
(sav)->savlut_added = false; \
} while(0)
/* search order for SAs */
/*
* This order is important because we must select the oldest SA
* for outbound processing. For inbound, This is not important.
*/
static const u_int saorder_state_valid_prefer_old[] = {
SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
};
static const u_int saorder_state_valid_prefer_new[] = {
SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
};
static const u_int saorder_state_alive[] = {
/* except DEAD */
SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
};
static const u_int saorder_state_any[] = {
SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
};
#define SASTATE_ALIVE_FOREACH(s) \
for (int _i = 0; \
_i < __arraycount(saorder_state_alive) ? \
(s) = saorder_state_alive[_i], true : false; \
_i++)
#define SASTATE_ANY_FOREACH(s) \
for (int _i = 0; \
_i < __arraycount(saorder_state_any) ? \
(s) = saorder_state_any[_i], true : false; \
_i++)
#define SASTATE_USABLE_FOREACH(s) \
for (int _i = 0; \
_i < __arraycount(saorder_state_valid_prefer_new) ? \
(s) = saorder_state_valid_prefer_new[_i], \
true : false; \
_i++)
static const int minsize[] = {
sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
sizeof(struct sadb_sa), /* SADB_EXT_SA */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */
sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */
sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */
sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */
sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */
sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */
sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */
sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */
sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */
sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */
sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */
sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
0, /* SADB_X_EXT_KMPRIVATE */
sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */
sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */
sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */
sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
};
static const int maxsize[] = {
sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */
sizeof(struct sadb_sa), /* SADB_EXT_SA */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */
sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */
0, /* SADB_EXT_ADDRESS_SRC */
0, /* SADB_EXT_ADDRESS_DST */
0, /* SADB_EXT_ADDRESS_PROXY */
0, /* SADB_EXT_KEY_AUTH */
0, /* SADB_EXT_KEY_ENCRYPT */
0, /* SADB_EXT_IDENTITY_SRC */
0, /* SADB_EXT_IDENTITY_DST */
0, /* SADB_EXT_SENSITIVITY */
0, /* SADB_EXT_PROPOSAL */
0, /* SADB_EXT_SUPPORTED_AUTH */
0, /* SADB_EXT_SUPPORTED_ENCRYPT */
sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */
0, /* SADB_X_EXT_KMPRIVATE */
0, /* SADB_X_EXT_POLICY */
sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */
sizeof(struct sadb_x_nat_t_type), /* SADB_X_EXT_NAT_T_TYPE */
sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_SPORT */
sizeof(struct sadb_x_nat_t_port), /* SADB_X_EXT_NAT_T_DPORT */
0, /* SADB_X_EXT_NAT_T_OAI */
0, /* SADB_X_EXT_NAT_T_OAR */
sizeof(struct sadb_x_nat_t_frag), /* SADB_X_EXT_NAT_T_FRAG */
};
static int ipsec_esp_keymin = 256;
static int ipsec_esp_auth = 0;
static int ipsec_ah_keymin = 128;
#ifdef SYSCTL_DECL
SYSCTL_DECL(_net_key);
#endif
#ifdef SYSCTL_INT
SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, CTLFLAG_RW, \
&key_debug_level, 0, "");
/* max count of trial for the decision of spi value */
SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, CTLFLAG_RW, \
&key_spi_trycnt, 0, "");
/* minimum spi value to allocate automatically. */
SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, CTLFLAG_RW, \
&key_spi_minval, 0, "");
/* maximun spi value to allocate automatically. */
SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, CTLFLAG_RW, \
&key_spi_maxval, 0, "");
/* interval to initialize randseed */
SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, CTLFLAG_RW, \
&key_int_random, 0, "");
/* lifetime for larval SA */
SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, CTLFLAG_RW, \
&key_larval_lifetime, 0, "");
/* counter for blocking to send SADB_ACQUIRE to IKEd */
SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, CTLFLAG_RW, \
&key_blockacq_count, 0, "");
/* lifetime for blocking to send SADB_ACQUIRE to IKEd */
SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, CTLFLAG_RW, \
&key_blockacq_lifetime, 0, "");
/* ESP auth */
SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, CTLFLAG_RW, \
&ipsec_esp_auth, 0, "");
/* minimum ESP key length */
SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, CTLFLAG_RW, \
&ipsec_esp_keymin, 0, "");
/* minimum AH key length */
SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, CTLFLAG_RW, \
&ipsec_ah_keymin, 0, "");
/* perfered old SA rather than new SA */
SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, prefered_oldsa, CTLFLAG_RW,\
&key_prefered_oldsa, 0, "");
#endif /* SYSCTL_INT */
#define __LIST_CHAINED(elm) \
(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
#define LIST_INSERT_TAIL(head, elm, type, field) \
do {\
struct type *curelm = LIST_FIRST(head); \
if (curelm == NULL) {\
LIST_INSERT_HEAD(head, elm, field); \
} else { \
while (LIST_NEXT(curelm, field)) \
curelm = LIST_NEXT(curelm, field);\
LIST_INSERT_AFTER(curelm, elm, field);\
}\
} while (0)
#define KEY_CHKSASTATE(head, sav) \
/* do */ { \
if ((head) != (sav)) { \
IPSECLOG(LOG_DEBUG, \
"state mismatched (TREE=%d SA=%d)\n", \
(head), (sav)); \
continue; \
} \
} /* while (0) */
#define KEY_CHKSPDIR(head, sp) \
do { \
if ((head) != (sp)) { \
IPSECLOG(LOG_DEBUG, \
"direction mismatched (TREE=%d SP=%d), anyway continue.\n",\
(head), (sp)); \
} \
} while (0)
/*
* set parameters into secasindex buffer.
* Must allocate secasindex buffer before calling this function.
*/
static int
key_setsecasidx(int, int, int, const struct sockaddr *,
const struct sockaddr *, struct secasindex *);
/* key statistics */
struct _keystat {
u_long getspi_count; /* the avarage of count to try to get new SPI */
} keystat;
static void
key_init_spidx_bymsghdr(struct secpolicyindex *, const struct sadb_msghdr *);
static const struct sockaddr *
key_msghdr_get_sockaddr(const struct sadb_msghdr *mhp, int idx)
{
return PFKEY_ADDR_SADDR(mhp->ext[idx]);
}
static void
key_fill_replymsg(struct mbuf *m, int seq)
{
struct sadb_msg *msg;
KASSERT(m->m_len >= sizeof(*msg));
msg = mtod(m, struct sadb_msg *);
msg->sadb_msg_errno = 0;
msg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
if (seq != 0)
msg->sadb_msg_seq = seq;
}
#if 0
static void key_freeso(struct socket *);
static void key_freesp_so(struct secpolicy **);
#endif
static struct secpolicy *key_getsp (const struct secpolicyindex *);
static struct secpolicy *key_getspbyid (u_int32_t);
static struct secpolicy *key_lookup_and_remove_sp(const struct secpolicyindex *, bool);
static struct secpolicy *key_lookupbyid_and_remove_sp(u_int32_t, bool);
static void key_destroy_sp(struct secpolicy *);
static struct mbuf *key_gather_mbuf (struct mbuf *,
const struct sadb_msghdr *, int, int, ...);
static int key_api_spdadd(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static u_int32_t key_getnewspid (void);
static int key_api_spddelete(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_spddelete2(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_spdget(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_spdflush(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_spddump(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static struct mbuf * key_setspddump (int *errorp, pid_t);
static struct mbuf * key_setspddump_chain (int *errorp, int *lenp, pid_t pid);
static int key_api_nat_map(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static struct mbuf *key_setdumpsp (struct secpolicy *,
u_int8_t, u_int32_t, pid_t);
static u_int key_getspreqmsglen (const struct secpolicy *);
static int key_spdexpire (struct secpolicy *);
static struct secashead *key_newsah (const struct secasindex *);
static void key_unlink_sah(struct secashead *);
static void key_destroy_sah(struct secashead *);
static bool key_sah_has_sav(struct secashead *);
static void key_sah_ref(struct secashead *);
static void key_sah_unref(struct secashead *);
static void key_init_sav(struct secasvar *);
static void key_destroy_sav(struct secasvar *);
static void key_destroy_sav_with_ref(struct secasvar *);
static struct secasvar *key_newsav(struct mbuf *,
const struct sadb_msghdr *, int *, const char*, int);
#define KEY_NEWSAV(m, sadb, e) \
key_newsav(m, sadb, e, __func__, __LINE__)
static void key_delsav (struct secasvar *);
static struct secashead *key_getsah(const struct secasindex *, int);
static struct secashead *key_getsah_ref(const struct secasindex *, int);
static bool key_checkspidup(const struct secasindex *, u_int32_t);
static struct secasvar *key_getsavbyspi (struct secashead *, u_int32_t);
static int key_setsaval (struct secasvar *, struct mbuf *,
const struct sadb_msghdr *);
static void key_freesaval(struct secasvar *);
static int key_init_xform(struct secasvar *);
static void key_clear_xform(struct secasvar *);
static struct mbuf *key_setdumpsa (struct secasvar *, u_int8_t,
u_int8_t, u_int32_t, u_int32_t);
static struct mbuf *key_setsadbxport (u_int16_t, u_int16_t);
static struct mbuf *key_setsadbxtype (u_int16_t);
static struct mbuf *key_setsadbxfrag (u_int16_t);
static void key_porttosaddr (union sockaddr_union *, u_int16_t);
static int key_checksalen (const union sockaddr_union *);
static struct mbuf *key_setsadbmsg (u_int8_t, u_int16_t, u_int8_t,
u_int32_t, pid_t, u_int16_t, int);
static struct mbuf *key_setsadbsa (struct secasvar *);
static struct mbuf *key_setsadbaddr(u_int16_t,
const struct sockaddr *, u_int8_t, u_int16_t, int);
#if 0
static struct mbuf *key_setsadbident (u_int16_t, u_int16_t, void *,
int, u_int64_t);
#endif
static struct mbuf *key_setsadbxsa2 (u_int8_t, u_int32_t, u_int16_t);
static struct mbuf *key_setsadbxpolicy (u_int16_t, u_int8_t,
u_int32_t, int);
static void *key_newbuf (const void *, u_int);
#ifdef INET6
static int key_ismyaddr6 (const struct sockaddr_in6 *);
#endif
static void sysctl_net_keyv2_setup(struct sysctllog **);
static void sysctl_net_key_compat_setup(struct sysctllog **);
/* flags for key_saidx_match() */
#define CMP_HEAD 1 /* protocol, addresses. */
#define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */
#define CMP_REQID 3 /* additionally HEAD, reaid. */
#define CMP_EXACTLY 4 /* all elements. */
static int key_saidx_match(const struct secasindex *,
const struct secasindex *, int);
static int key_sockaddr_match(const struct sockaddr *,
const struct sockaddr *, int);
static int key_bb_match_withmask(const void *, const void *, u_int);
static u_int16_t key_satype2proto (u_int8_t);
static u_int8_t key_proto2satype (u_int16_t);
static int key_spidx_match_exactly(const struct secpolicyindex *,
const struct secpolicyindex *);
static int key_spidx_match_withmask(const struct secpolicyindex *,
const struct secpolicyindex *);
static int key_api_getspi(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static u_int32_t key_do_getnewspi (const struct sadb_spirange *,
const struct secasindex *);
static int key_handle_natt_info (struct secasvar *,
const struct sadb_msghdr *);
static int key_set_natt_ports (union sockaddr_union *,
union sockaddr_union *,
const struct sadb_msghdr *);
static int key_api_update(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
#ifdef IPSEC_DOSEQCHECK
static struct secasvar *key_getsavbyseq (struct secashead *, u_int32_t);
#endif
static int key_api_add(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_setident (struct secashead *, struct mbuf *,
const struct sadb_msghdr *);
static struct mbuf *key_getmsgbuf_x1 (struct mbuf *,
const struct sadb_msghdr *);
static int key_api_delete(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_get(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static void key_getcomb_setlifetime (struct sadb_comb *);
static struct mbuf *key_getcomb_esp(int);
static struct mbuf *key_getcomb_ah(int);
static struct mbuf *key_getcomb_ipcomp(int);
static struct mbuf *key_getprop(const struct secasindex *, int);
static int key_acquire(const struct secasindex *, const struct secpolicy *,
int);
static int key_acquire_sendup_mbuf_later(struct mbuf *);
static void key_acquire_sendup_pending_mbuf(void);
#ifndef IPSEC_NONBLOCK_ACQUIRE
static struct secacq *key_newacq (const struct secasindex *);
static struct secacq *key_getacq (const struct secasindex *);
static struct secacq *key_getacqbyseq (u_int32_t);
#endif
#ifdef notyet
static struct secspacq *key_newspacq (const struct secpolicyindex *);
static struct secspacq *key_getspacq (const struct secpolicyindex *);
#endif
static int key_api_acquire(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_register(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_expire (struct secasvar *);
static int key_api_flush(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static struct mbuf *key_setdump_chain (u_int8_t req_satype, int *errorp,
int *lenp, pid_t pid);
static int key_api_dump(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_api_promisc(struct socket *, struct mbuf *,
const struct sadb_msghdr *);
static int key_senderror (struct socket *, struct mbuf *, int);
static int key_validate_ext (const struct sadb_ext *, int);
static int key_align (struct mbuf *, struct sadb_msghdr *);
#if 0
static const char *key_getfqdn (void);
static const char *key_getuserfqdn (void);
#endif
static void key_sa_chgstate (struct secasvar *, u_int8_t);
static struct mbuf *key_alloc_mbuf(int, int);
static struct mbuf *key_alloc_mbuf_simple(int, int);
static void key_timehandler(void *);
static void key_timehandler_work(struct work *, void *);
static struct callout key_timehandler_ch;
static struct workqueue *key_timehandler_wq;
static struct work key_timehandler_wk;
static inline void
key_savlut_writer_insert_head(struct secasvar *sav);
static inline uint32_t
key_saidxhash(const struct secasindex *, u_long);
static inline uint32_t
key_savluthash(const struct sockaddr *,
uint32_t, uint32_t, u_long);
/*
* Utilities for percpu counters for sadb_lifetime_allocations and
* sadb_lifetime_bytes.
*/
#define LIFETIME_COUNTER_ALLOCATIONS 0
#define LIFETIME_COUNTER_BYTES 1
#define LIFETIME_COUNTER_SIZE 2
typedef uint64_t lifetime_counters_t[LIFETIME_COUNTER_SIZE];
static void
key_sum_lifetime_counters(void *p, void *arg, struct cpu_info *ci __unused)
{
lifetime_counters_t *one = p;
lifetime_counters_t *sum = arg;
(*sum)[LIFETIME_COUNTER_ALLOCATIONS] += (*one)[LIFETIME_COUNTER_ALLOCATIONS];
(*sum)[LIFETIME_COUNTER_BYTES] += (*one)[LIFETIME_COUNTER_BYTES];
}
u_int
key_sp_refcnt(const struct secpolicy *sp)
{
/* FIXME */
return 0;
}
static void
key_spd_pserialize_perform(void)
{
KASSERT(mutex_owned(&key_spd.lock));
while (key_spd.psz_performing)
cv_wait(&key_spd.cv_psz, &key_spd.lock);
key_spd.psz_performing = true;
mutex_exit(&key_spd.lock);
pserialize_perform(key_spd.psz);
mutex_enter(&key_spd.lock);
key_spd.psz_performing = false;
cv_broadcast(&key_spd.cv_psz);
}
/*
* Remove the sp from the key_spd.splist and wait for references to the sp
* to be released. key_spd.lock must be held.
*/
static void
key_unlink_sp(struct secpolicy *sp)
{
KASSERT(mutex_owned(&key_spd.lock));
sp->state = IPSEC_SPSTATE_DEAD;
SPLIST_WRITER_REMOVE(sp);
/* Invalidate all cached SPD pointers in the PCBs. */
ipsec_invalpcbcacheall();
KDASSERT(mutex_ownable(softnet_lock));
key_spd_pserialize_perform();
localcount_drain(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
}
/*
* Return 0 when there are known to be no SP's for the specified
* direction. Otherwise return 1. This is used by IPsec code
* to optimize performance.
*/
int
key_havesp(u_int dir)
{
return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
!SPLIST_READER_EMPTY(dir) : 1);
}
/* %%% IPsec policy management */
/*
* allocating a SP for OUTBOUND or INBOUND packet.
* Must call key_freesp() later.
* OUT: NULL: not found
* others: found and return the pointer.
*/
struct secpolicy *
key_lookup_sp_byspidx(const struct secpolicyindex *spidx,
u_int dir, const char* where, int tag)
{
struct secpolicy *sp;
int s;
KASSERT(spidx != NULL);
KASSERTMSG(IPSEC_DIR_IS_INOROUT(dir), "invalid direction %u", dir);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
/* get a SP entry */
if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
kdebug_secpolicyindex("objects", spidx);
}
s = pserialize_read_enter();
SPLIST_READER_FOREACH(sp, dir) {
if (KEYDEBUG_ON(KEYDEBUG_IPSEC_DATA)) {
kdebug_secpolicyindex("in SPD", &sp->spidx);
}
if (sp->state == IPSEC_SPSTATE_DEAD)
continue;
if (key_spidx_match_withmask(&sp->spidx, spidx))
goto found;
}
sp = NULL;
found:
if (sp) {
/* sanity check */
KEY_CHKSPDIR(sp->spidx.dir, dir);
/* found a SPD entry */
sp->lastused = time_uptime;
key_sp_ref(sp, where, tag);
}
pserialize_read_exit(s);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP return SP:%p (ID=%u) refcnt %u\n",
sp, sp ? sp->id : 0, key_sp_refcnt(sp));
return sp;
}
/*
* return a policy that matches this particular inbound packet.
* XXX slow
*/
struct secpolicy *
key_gettunnel(const struct sockaddr *osrc,
const struct sockaddr *odst,
const struct sockaddr *isrc,
const struct sockaddr *idst,
const char* where, int tag)
{
struct secpolicy *sp;
const int dir = IPSEC_DIR_INBOUND;
int s;
struct ipsecrequest *r1, *r2, *p;
struct secpolicyindex spidx;
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP, "DP from %s:%u\n", where, tag);
if (isrc->sa_family != idst->sa_family) {
IPSECLOG(LOG_ERR, "protocol family mismatched %d != %d\n.",
isrc->sa_family, idst->sa_family);
sp = NULL;
goto done;
}
s = pserialize_read_enter();
SPLIST_READER_FOREACH(sp, dir) {
if (sp->state == IPSEC_SPSTATE_DEAD)
continue;
r1 = r2 = NULL;
for (p = sp->req; p; p = p->next) {
if (p->saidx.mode != IPSEC_MODE_TUNNEL)
continue;
r1 = r2;
r2 = p;
if (!r1) {
/* here we look at address matches only */
spidx = sp->spidx;
if (isrc->sa_len > sizeof(spidx.src) ||
idst->sa_len > sizeof(spidx.dst))
continue;
memcpy(&spidx.src, isrc, isrc->sa_len);
memcpy(&spidx.dst, idst, idst->sa_len);
if (!key_spidx_match_withmask(&sp->spidx, &spidx))
continue;
} else {
if (!key_sockaddr_match(&r1->saidx.src.sa, isrc, PORT_NONE) ||
!key_sockaddr_match(&r1->saidx.dst.sa, idst, PORT_NONE))
continue;
}
if (!key_sockaddr_match(&r2->saidx.src.sa, osrc, PORT_NONE) ||
!key_sockaddr_match(&r2->saidx.dst.sa, odst, PORT_NONE))
continue;
goto found;
}
}
sp = NULL;
found:
if (sp) {
sp->lastused = time_uptime;
key_sp_ref(sp, where, tag);
}
pserialize_read_exit(s);
done:
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP return SP:%p (ID=%u) refcnt %u\n",
sp, sp ? sp->id : 0, key_sp_refcnt(sp));
return sp;
}
/*
* allocating an SA entry for an *OUTBOUND* packet.
* checking each request entries in SP, and acquire an SA if need.
* OUT: 0: there are valid requests.
* ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
*/
int
key_checkrequest(const struct ipsecrequest *isr, const struct secasindex *saidx,
struct secasvar **ret)
{
u_int level;
int error;
struct secasvar *sav;
KASSERT(isr != NULL);
KASSERTMSG(saidx->mode == IPSEC_MODE_TRANSPORT ||
saidx->mode == IPSEC_MODE_TUNNEL,
"unexpected policy %u", saidx->mode);
/* get current level */
level = ipsec_get_reqlevel(isr);
/*
* XXX guard against protocol callbacks from the crypto
* thread as they reference ipsecrequest.sav which we
* temporarily null out below. Need to rethink how we
* handle bundled SA's in the callback thread.
*/
sav = key_lookup_sa_bysaidx(saidx);
if (sav != NULL) {
*ret = sav;
return 0;
}
/* there is no SA */
error = key_acquire(saidx, isr->sp, M_NOWAIT);
if (error != 0) {
/* XXX What should I do ? */
IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
error);
return error;
}
if (level != IPSEC_LEVEL_REQUIRE) {
/* XXX sigh, the interface to this routine is botched */
*ret = NULL;
return 0;
} else {
return ENOENT;
}
}
/*
* looking up a SA for policy entry from SAD.
* NOTE: searching SAD of aliving state.
* OUT: NULL: not found.
* others: found and return the pointer.
*/
struct secasvar *
key_lookup_sa_bysaidx(const struct secasindex *saidx)
{
struct secashead *sah;
struct secasvar *sav = NULL;
u_int stateidx, state;
const u_int *saorder_state_valid;
int arraysize;
int s;
s = pserialize_read_enter();
sah = key_getsah(saidx, CMP_MODE_REQID);
if (sah == NULL)
goto out;
/*
* search a valid state list for outbound packet.
* This search order is important.
*/
if (key_prefered_oldsa) {
saorder_state_valid = saorder_state_valid_prefer_old;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
} else {
saorder_state_valid = saorder_state_valid_prefer_new;
arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
}
/* search valid state */
for (stateidx = 0;
stateidx < arraysize;
stateidx++) {
state = saorder_state_valid[stateidx];
if (key_prefered_oldsa)
sav = SAVLIST_READER_FIRST(sah, state);
else {
/* XXX need O(1) lookup */
struct secasvar *last = NULL;
SAVLIST_READER_FOREACH(sav, sah, state)
last = sav;
sav = last;
}
if (sav != NULL) {
KEY_SA_REF(sav);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP cause refcnt++:%d SA:%p\n",
key_sa_refcnt(sav), sav);
break;
}
}
out:
pserialize_read_exit(s);
return sav;
}
#if 0
static void
key_sendup_message_delete(struct secasvar *sav)
{
struct mbuf *m, *result = 0;
uint8_t satype;
satype = key_proto2satype(sav->sah->saidx.proto);
if (satype == 0)
goto msgfail;
m = key_setsadbmsg(SADB_DELETE, 0, satype, 0, 0, key_sa_refcnt(sav) - 1);
if (m == NULL)
goto msgfail;
result = m;
/* set sadb_address for saidx's. */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
if (m == NULL)
goto msgfail;
m_cat(result, m);
/* set sadb_address for saidx's. */
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.src.sa,
sav->sah->saidx.src.sa.sa_len << 3, IPSEC_ULPROTO_ANY);
if (m == NULL)
goto msgfail;
m_cat(result, m);
/* create SA extension */
m = key_setsadbsa(sav);
if (m == NULL)
goto msgfail;
m_cat(result, m);
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL)
goto msgfail;
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
result = NULL;
msgfail:
if (result)
m_freem(result);
}
#endif
/*
* allocating a usable SA entry for a *INBOUND* packet.
* Must call key_freesav() later.
* OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state).
* NULL: not found, or error occurred.
*
* In the comparison, no source address is used--for RFC2401 conformance.
* To quote, from section 4.1:
* A security association is uniquely identified by a triple consisting
* of a Security Parameter Index (SPI), an IP Destination Address, and a
* security protocol (AH or ESP) identifier.
* Note that, however, we do need to keep source address in IPsec SA.
* IKE specification and PF_KEY specification do assume that we
* keep source address in IPsec SA. We see a tricky situation here.
*
* sport and dport are used for NAT-T. network order is always used.
*/
struct secasvar *
key_lookup_sa(
const union sockaddr_union *dst,
u_int proto,
u_int32_t spi,
u_int16_t sport,
u_int16_t dport,
const char* where, int tag)
{
struct secasvar *sav;
int chkport;
int s;
int must_check_spi = 1;
int must_check_alg = 0;
u_int16_t cpi = 0;
u_int8_t algo = 0;
uint32_t hash_key = spi;
if ((sport != 0) && (dport != 0))
chkport = PORT_STRICT;
else
chkport = PORT_NONE;
KASSERT(dst != NULL);
/*
* XXX IPCOMP case
* We use cpi to define spi here. In the case where cpi <=
* IPCOMP_CPI_NEGOTIATE_MIN, cpi just define the algorithm used, not
* the real spi. In this case, don't check the spi but check the
* algorithm
*/
if (proto == IPPROTO_IPCOMP) {
u_int32_t tmp;
tmp = ntohl(spi);
cpi = (u_int16_t) tmp;
if (cpi < IPCOMP_CPI_NEGOTIATE_MIN) {
algo = (u_int8_t) cpi;
hash_key = algo;
must_check_spi = 0;
must_check_alg = 1;
}
}
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP from %s:%u check_spi=%d, check_alg=%d\n",
where, tag, must_check_spi, must_check_alg);
/*
* searching SAD.
* XXX: to be checked internal IP header somewhere. Also when
* IPsec tunnel packet is received. But ESP tunnel mode is
* encrypted so we can't check internal IP header.
*/
s = pserialize_read_enter();
SAVLUT_READER_FOREACH(sav, &dst->sa, proto, hash_key) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"try match spi %#x, %#x\n",
ntohl(spi), ntohl(sav->spi));
/* do not return entries w/ unusable state */
if (!SADB_SASTATE_USABLE_P(sav)) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"bad state %d\n", sav->state);
continue;
}
if (proto != sav->sah->saidx.proto) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"proto fail %d != %d\n",
proto, sav->sah->saidx.proto);
continue;
}
if (must_check_spi && spi != sav->spi) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"spi fail %#x != %#x\n",
ntohl(spi), ntohl(sav->spi));
continue;
}
/* XXX only on the ipcomp case */
if (must_check_alg && algo != sav->alg_comp) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"algo fail %d != %d\n",
algo, sav->alg_comp);
continue;
}
#if 0 /* don't check src */
/* Fix port in src->sa */
/* check src address */
if (!key_sockaddr_match(&src->sa, &sav->sah->saidx.src.sa, PORT_NONE))
continue;
#endif
/* fix port of dst address XXX*/
key_porttosaddr(__UNCONST(dst), dport);
/* check dst address */
if (!key_sockaddr_match(&dst->sa, &sav->sah->saidx.dst.sa, chkport))
continue;
key_sa_ref(sav, where, tag);
goto done;
}
sav = NULL;
done:
pserialize_read_exit(s);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP return SA:%p; refcnt %u\n", sav, key_sa_refcnt(sav));
return sav;
}
static void
key_validate_savlist(const struct secashead *sah, const u_int state)
{
#ifdef DEBUG
struct secasvar *sav, *next;
int s;
/*
* The list should be sorted by lft_c->sadb_lifetime_addtime
* in ascending order.
*/
s = pserialize_read_enter();
SAVLIST_READER_FOREACH(sav, sah, state) {
next = SAVLIST_READER_NEXT(sav);
if (next != NULL &&
sav->lft_c != NULL && next->lft_c != NULL) {
KDASSERTMSG(sav->lft_c->sadb_lifetime_addtime <=
next->lft_c->sadb_lifetime_addtime,
"savlist is not sorted: sah=%p, state=%d, "
"sav=%" PRIu64 ", next=%" PRIu64, sah, state,
sav->lft_c->sadb_lifetime_addtime,
next->lft_c->sadb_lifetime_addtime);
}
}
pserialize_read_exit(s);
#endif
}
void
key_init_sp(struct secpolicy *sp)
{
ASSERT_SLEEPABLE();
sp->state = IPSEC_SPSTATE_ALIVE;
if (sp->policy == IPSEC_POLICY_IPSEC)
KASSERT(sp->req != NULL);
localcount_init(&sp->localcount);
SPLIST_ENTRY_INIT(sp);
}
/*
* Must be called in a pserialize read section. A held SP
* must be released by key_sp_unref after use.
*/
void
key_sp_ref(struct secpolicy *sp, const char* where, int tag)
{
localcount_acquire(&sp->localcount);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP SP:%p (ID=%u) from %s:%u; refcnt++ now %u\n",
sp, sp->id, where, tag, key_sp_refcnt(sp));
}
/*
* Must be called without holding key_spd.lock because the lock
* would be held in localcount_release.
*/
void
key_sp_unref(struct secpolicy *sp, const char* where, int tag)
{
KDASSERT(mutex_ownable(&key_spd.lock));
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP SP:%p (ID=%u) from %s:%u; refcnt-- now %u\n",
sp, sp->id, where, tag, key_sp_refcnt(sp));
localcount_release(&sp->localcount, &key_spd.cv_lc, &key_spd.lock);
}
static void
key_init_sav(struct secasvar *sav)
{
ASSERT_SLEEPABLE();
localcount_init(&sav->localcount);
SAVLIST_ENTRY_INIT(sav);
SAVLUT_ENTRY_INIT(sav);
}
u_int
key_sa_refcnt(const struct secasvar *sav)
{
/* FIXME */
return 0;
}
void
key_sa_ref(struct secasvar *sav, const char* where, int tag)
{
localcount_acquire(&sav->localcount);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP cause refcnt++: SA:%p from %s:%u\n",
sav, where, tag);
}
void
key_sa_unref(struct secasvar *sav, const char* where, int tag)
{
KDASSERT(mutex_ownable(&key_sad.lock));
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP cause refcnt--: SA:%p from %s:%u\n",
sav, where, tag);
localcount_release(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
}
#if 0
/*
* Must be called after calling key_lookup_sp*().
* For the packet with socket.
*/
static void
key_freeso(struct socket *so)
{
/* sanity check */
KASSERT(so != NULL);
switch (so->so_proto->pr_domain->dom_family) {
#ifdef INET
case PF_INET:
{
struct inpcb *pcb = sotoinpcb(so);
/* Does it have a PCB ? */
if (pcb == NULL)
return;
struct inpcbpolicy *sp = pcb->inp_sp;
key_freesp_so(&sp->sp_in);
key_freesp_so(&sp->sp_out);
}
break;
#endif
#ifdef INET6
case PF_INET6:
{
#ifdef HAVE_NRL_INPCB
struct inpcb *pcb = sotoinpcb(so);
struct inpcbpolicy *sp = pcb->inp_sp;
/* Does it have a PCB ? */
if (pcb == NULL)
return;
key_freesp_so(&sp->sp_in);
key_freesp_so(&sp->sp_out);
#else
struct in6pcb *pcb = sotoin6pcb(so);
/* Does it have a PCB ? */
if (pcb == NULL)
return;
key_freesp_so(&pcb->in6p_sp->sp_in);
key_freesp_so(&pcb->in6p_sp->sp_out);
#endif
}
break;
#endif /* INET6 */
default:
IPSECLOG(LOG_DEBUG, "unknown address family=%d.\n",
so->so_proto->pr_domain->dom_family);
return;
}
}
static void
key_freesp_so(struct secpolicy **sp)
{
KASSERT(sp != NULL);
KASSERT(*sp != NULL);
if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
(*sp)->policy == IPSEC_POLICY_BYPASS)
return;
KASSERTMSG((*sp)->policy == IPSEC_POLICY_IPSEC,
"invalid policy %u", (*sp)->policy);
KEY_SP_UNREF(&sp);
}
#endif
static void
key_sad_pserialize_perform(void)
{
KASSERT(mutex_owned(&key_sad.lock));
while (key_sad.psz_performing)
cv_wait(&key_sad.cv_psz, &key_sad.lock);
key_sad.psz_performing = true;
mutex_exit(&key_sad.lock);
pserialize_perform(key_sad.psz);
mutex_enter(&key_sad.lock);
key_sad.psz_performing = false;
cv_broadcast(&key_sad.cv_psz);
}
/*
* Remove the sav from the savlist of its sah and wait for references to the sav
* to be released. key_sad.lock must be held.
*/
static void
key_unlink_sav(struct secasvar *sav)
{
KASSERT(mutex_owned(&key_sad.lock));
SAVLIST_WRITER_REMOVE(sav);
SAVLUT_WRITER_REMOVE(sav);
KDASSERT(mutex_ownable(softnet_lock));
key_sad_pserialize_perform();
localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
}
/*
* Destroy an sav where the sav must be unlinked from an sah
* by say key_unlink_sav.
*/
static void
key_destroy_sav(struct secasvar *sav)
{
ASSERT_SLEEPABLE();
localcount_fini(&sav->localcount);
SAVLIST_ENTRY_DESTROY(sav);
key_delsav(sav);
}
/*
* Destroy sav with holding its reference.
*/
static void
key_destroy_sav_with_ref(struct secasvar *sav)
{
ASSERT_SLEEPABLE();
mutex_enter(&key_sad.lock);
sav->state = SADB_SASTATE_DEAD;
SAVLIST_WRITER_REMOVE(sav);
SAVLUT_WRITER_REMOVE(sav);
mutex_exit(&key_sad.lock);
/* We cannot unref with holding key_sad.lock */
KEY_SA_UNREF(&sav);
mutex_enter(&key_sad.lock);
KDASSERT(mutex_ownable(softnet_lock));
key_sad_pserialize_perform();
localcount_drain(&sav->localcount, &key_sad.cv_lc, &key_sad.lock);
mutex_exit(&key_sad.lock);
key_destroy_sav(sav);
}
/* %%% SPD management */
/*
* free security policy entry.
*/
static void
key_destroy_sp(struct secpolicy *sp)
{
SPLIST_ENTRY_DESTROY(sp);
localcount_fini(&sp->localcount);
key_free_sp(sp);
key_update_used();
}
void
key_free_sp(struct secpolicy *sp)
{
struct ipsecrequest *isr = sp->req, *nextisr;
while (isr != NULL) {
nextisr = isr->next;
kmem_free(isr, sizeof(*isr));
isr = nextisr;
}
kmem_free(sp, sizeof(*sp));
}
void
key_socksplist_add(struct secpolicy *sp)
{
mutex_enter(&key_spd.lock);
PSLIST_WRITER_INSERT_HEAD(&key_spd.socksplist, sp, pslist_entry);
mutex_exit(&key_spd.lock);
key_update_used();
}
/*
* search SPD
* OUT: NULL : not found
* others : found, pointer to a SP.
*/
static struct secpolicy *
key_getsp(const struct secpolicyindex *spidx)
{
struct secpolicy *sp;
int s;
KASSERT(spidx != NULL);
s = pserialize_read_enter();
SPLIST_READER_FOREACH(sp, spidx->dir) {
if (sp->state == IPSEC_SPSTATE_DEAD)
continue;
if (key_spidx_match_exactly(spidx, &sp->spidx)) {
KEY_SP_REF(sp);
pserialize_read_exit(s);
return sp;
}
}
pserialize_read_exit(s);
return NULL;
}
/*
* search SPD and remove found SP
* OUT: NULL : not found
* others : found, pointer to a SP.
*/
static struct secpolicy *
key_lookup_and_remove_sp(const struct secpolicyindex *spidx, bool from_kernel)
{
struct secpolicy *sp = NULL;
mutex_enter(&key_spd.lock);
SPLIST_WRITER_FOREACH(sp, spidx->dir) {
KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
/*
* SPs created in kernel(e.g. ipsec(4) I/F) must not be
* removed by userland programs.
*/
if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL)
continue;
if (key_spidx_match_exactly(spidx, &sp->spidx)) {
key_unlink_sp(sp);
goto out;
}
}
sp = NULL;
out:
mutex_exit(&key_spd.lock);
return sp;
}
/*
* get SP by index.
* OUT: NULL : not found
* others : found, pointer to a SP.
*/
static struct secpolicy *
key_getspbyid(u_int32_t id)
{
struct secpolicy *sp;
int s;
s = pserialize_read_enter();
SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
if (sp->state == IPSEC_SPSTATE_DEAD)
continue;
if (sp->id == id) {
KEY_SP_REF(sp);
goto out;
}
}
SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
if (sp->state == IPSEC_SPSTATE_DEAD)
continue;
if (sp->id == id) {
KEY_SP_REF(sp);
goto out;
}
}
out:
pserialize_read_exit(s);
return sp;
}
/*
* get SP by index, remove and return it.
* OUT: NULL : not found
* others : found, pointer to a SP.
*/
static struct secpolicy *
key_lookupbyid_and_remove_sp(u_int32_t id, bool from_kernel)
{
struct secpolicy *sp;
mutex_enter(&key_spd.lock);
SPLIST_READER_FOREACH(sp, IPSEC_DIR_INBOUND) {
KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
/*
* SPs created in kernel(e.g. ipsec(4) I/F) must not be
* removed by userland programs.
*/
if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL)
continue;
if (sp->id == id)
goto out;
}
SPLIST_READER_FOREACH(sp, IPSEC_DIR_OUTBOUND) {
KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
/*
* SPs created in kernel(e.g. ipsec(4) I/F) must not be
* removed by userland programs.
*/
if (!from_kernel && sp->origin == IPSEC_SPORIGIN_KERNEL)
continue;
if (sp->id == id)
goto out;
}
out:
if (sp != NULL)
key_unlink_sp(sp);
mutex_exit(&key_spd.lock);
return sp;
}
struct secpolicy *
key_newsp(const char* where, int tag)
{
struct secpolicy *newsp = NULL;
newsp = kmem_zalloc(sizeof(struct secpolicy), KM_SLEEP);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP from %s:%u return SP:%p\n", where, tag, newsp);
return newsp;
}
/*
* create secpolicy structure from sadb_x_policy structure.
* NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
* so must be set properly later.
*/
static struct secpolicy *
_key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error,
bool from_kernel)
{
struct secpolicy *newsp;
KASSERT(!cpu_softintr_p());
KASSERT(xpl0 != NULL);
KASSERT(len >= sizeof(*xpl0));
if (len != PFKEY_EXTLEN(xpl0)) {
IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
*error = EINVAL;
return NULL;
}
newsp = KEY_NEWSP();
if (newsp == NULL) {
*error = ENOBUFS;
return NULL;
}
newsp->spidx.dir = xpl0->sadb_x_policy_dir;
newsp->policy = xpl0->sadb_x_policy_type;
/* check policy */
switch (xpl0->sadb_x_policy_type) {
case IPSEC_POLICY_DISCARD:
case IPSEC_POLICY_NONE:
case IPSEC_POLICY_ENTRUST:
case IPSEC_POLICY_BYPASS:
newsp->req = NULL;
*error = 0;
return newsp;
case IPSEC_POLICY_IPSEC:
/* Continued */
break;
default:
IPSECLOG(LOG_DEBUG, "invalid policy type.\n");
key_free_sp(newsp);
*error = EINVAL;
return NULL;
}
/* IPSEC_POLICY_IPSEC */
{
int tlen;
const struct sadb_x_ipsecrequest *xisr;
uint16_t xisr_reqid;
struct ipsecrequest **p_isr = &newsp->req;
/* validity check */
if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
IPSECLOG(LOG_DEBUG, "Invalid msg length.\n");
*error = EINVAL;
goto free_exit;
}
tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
xisr = (const struct sadb_x_ipsecrequest *)(xpl0 + 1);
while (tlen > 0) {
/* length check */
if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
IPSECLOG(LOG_DEBUG, "invalid ipsecrequest length.\n");
*error = EINVAL;
goto free_exit;
}
/* allocate request buffer */
*p_isr = kmem_zalloc(sizeof(**p_isr), KM_SLEEP);
/* set values */
(*p_isr)->next = NULL;
switch (xisr->sadb_x_ipsecrequest_proto) {
case IPPROTO_ESP:
case IPPROTO_AH:
case IPPROTO_IPCOMP:
break;
default:
IPSECLOG(LOG_DEBUG, "invalid proto type=%u\n",
xisr->sadb_x_ipsecrequest_proto);
*error = EPROTONOSUPPORT;
goto free_exit;
}
(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
switch (xisr->sadb_x_ipsecrequest_mode) {
case IPSEC_MODE_TRANSPORT:
case IPSEC_MODE_TUNNEL:
break;
case IPSEC_MODE_ANY:
default:
IPSECLOG(LOG_DEBUG, "invalid mode=%u\n",
xisr->sadb_x_ipsecrequest_mode);
*error = EINVAL;
goto free_exit;
}
(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
switch (xisr->sadb_x_ipsecrequest_level) {
case IPSEC_LEVEL_DEFAULT:
case IPSEC_LEVEL_USE:
case IPSEC_LEVEL_REQUIRE:
break;
case IPSEC_LEVEL_UNIQUE:
xisr_reqid = xisr->sadb_x_ipsecrequest_reqid;
/* validity check */
/*
* case 1) from_kernel == false
* That means the request comes from userland.
* If range violation of reqid, kernel will
* update it, don't refuse it.
*
* case 2) from_kernel == true
* That means the request comes from kernel
* (e.g. ipsec(4) I/F).
* Use thre requested reqid to avoid inconsistency
* between kernel's reqid and the reqid in pf_key
* message sent to userland. The pf_key message is
* built by diverting request mbuf.
*/
if (!from_kernel &&
xisr_reqid > IPSEC_MANUAL_REQID_MAX) {
IPSECLOG(LOG_DEBUG,
"reqid=%d range "
"violation, updated by kernel.\n",
xisr_reqid);
xisr_reqid = 0;
}
/* allocate new reqid id if reqid is zero. */
if (xisr_reqid == 0) {
u_int16_t reqid = key_newreqid();
if (reqid == 0) {
*error = ENOBUFS;
goto free_exit;
}
(*p_isr)->saidx.reqid = reqid;
} else {
/* set it for manual keying. */
(*p_isr)->saidx.reqid = xisr_reqid;
}
break;
default:
IPSECLOG(LOG_DEBUG, "invalid level=%u\n",
xisr->sadb_x_ipsecrequest_level);
*error = EINVAL;
goto free_exit;
}
(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
/* set IP addresses if there */
if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
const struct sockaddr *paddr;
paddr = (const struct sockaddr *)(xisr + 1);
/* validity check */
if (paddr->sa_len > sizeof((*p_isr)->saidx.src)) {
IPSECLOG(LOG_DEBUG, "invalid request "
"address length.\n");
*error = EINVAL;
goto free_exit;
}
memcpy(&(*p_isr)->saidx.src, paddr, paddr->sa_len);
paddr = (const struct sockaddr *)((const char *)paddr
+ paddr->sa_len);
/* validity check */
if (paddr->sa_len > sizeof((*p_isr)->saidx.dst)) {
IPSECLOG(LOG_DEBUG, "invalid request "
"address length.\n");
*error = EINVAL;
goto free_exit;
}
memcpy(&(*p_isr)->saidx.dst, paddr, paddr->sa_len);
}
(*p_isr)->sp = newsp;
/* initialization for the next. */
p_isr = &(*p_isr)->next;
tlen -= xisr->sadb_x_ipsecrequest_len;
/* validity check */
if (tlen < 0) {
IPSECLOG(LOG_DEBUG, "becoming tlen < 0.\n");
*error = EINVAL;
goto free_exit;
}
xisr = (const struct sadb_x_ipsecrequest *)((const char *)xisr +
xisr->sadb_x_ipsecrequest_len);
}
}
*error = 0;
return newsp;
free_exit:
key_free_sp(newsp);
return NULL;
}
struct secpolicy *
key_msg2sp(const struct sadb_x_policy *xpl0, size_t len, int *error)
{
return _key_msg2sp(xpl0, len, error, false);
}
u_int16_t
key_newreqid(void)
{
static u_int16_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
auto_reqid = (auto_reqid == 0xffff ?
IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
/* XXX should be unique check */
return auto_reqid;
}
/*
* copy secpolicy struct to sadb_x_policy structure indicated.
*/
struct mbuf *
key_sp2msg(const struct secpolicy *sp, int mflag)
{
struct sadb_x_policy *xpl;
int tlen;
char *p;
struct mbuf *m;
KASSERT(sp != NULL);
tlen = key_getspreqmsglen(sp);
m = key_alloc_mbuf(tlen, mflag);
if (!m || m->m_next) { /*XXX*/
if (m)
m_freem(m);
return NULL;
}
m->m_len = tlen;
m->m_next = NULL;
xpl = mtod(m, struct sadb_x_policy *);
memset(xpl, 0, tlen);
xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
xpl->sadb_x_policy_type = sp->policy;
xpl->sadb_x_policy_dir = sp->spidx.dir;
xpl->sadb_x_policy_id = sp->id;
p = (char *)xpl + sizeof(*xpl);
/* if is the policy for ipsec ? */
if (sp->policy == IPSEC_POLICY_IPSEC) {
struct sadb_x_ipsecrequest *xisr;
struct ipsecrequest *isr;
for (isr = sp->req; isr != NULL; isr = isr->next) {
xisr = (struct sadb_x_ipsecrequest *)p;
xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
xisr->sadb_x_ipsecrequest_level = isr->level;
xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
p += sizeof(*xisr);
memcpy(p, &isr->saidx.src, isr->saidx.src.sa.sa_len);
p += isr->saidx.src.sa.sa_len;
memcpy(p, &isr->saidx.dst, isr->saidx.dst.sa.sa_len);
p += isr->saidx.src.sa.sa_len;
xisr->sadb_x_ipsecrequest_len =
PFKEY_ALIGN8(sizeof(*xisr)
+ isr->saidx.src.sa.sa_len
+ isr->saidx.dst.sa.sa_len);
}
}
return m;
}
/*
* m will not be freed nor modified. It never return NULL.
* If it returns a mbuf of M_PKTHDR, the mbuf ensures to have
* contiguous length at least sizeof(struct sadb_msg).
*/
static struct mbuf *
key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
int ndeep, int nitem, ...)
{
va_list ap;
int idx;
int i;
struct mbuf *result = NULL, *n;
int len;
KASSERT(m != NULL);
KASSERT(mhp != NULL);
KASSERT(!cpu_softintr_p());
va_start(ap, nitem);
for (i = 0; i < nitem; i++) {
idx = va_arg(ap, int);
KASSERT(idx >= 0);
KASSERT(idx <= SADB_EXT_MAX);
/* don't attempt to pull empty extension */
if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
continue;
if (idx != SADB_EXT_RESERVED &&
(mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
continue;
if (idx == SADB_EXT_RESERVED) {
CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MHLEN);
len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
MGETHDR(n, M_WAITOK, MT_DATA);
n->m_len = len;
n->m_next = NULL;
m_copydata(m, 0, sizeof(struct sadb_msg),
mtod(n, void *));
} else if (i < ndeep) {
len = mhp->extlen[idx];
n = key_alloc_mbuf(len, M_WAITOK);
KASSERT(n->m_next == NULL);
m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
mtod(n, void *));
} else {
n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
M_WAITOK);
}
KASSERT(n != NULL);
if (result)
m_cat(result, n);
else
result = n;
}
va_end(ap);
KASSERT(result != NULL);
if ((result->m_flags & M_PKTHDR) != 0) {
result->m_pkthdr.len = 0;
for (n = result; n; n = n->m_next)
result->m_pkthdr.len += n->m_len;
KASSERT(result->m_len >= sizeof(struct sadb_msg));
}
return result;
}
/*
* The argument _sp must not overwrite until SP is created and registered
* successfully.
*/
static int
key_spdadd(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp, struct secpolicy **_sp,
bool from_kernel)
{
const struct sockaddr *src, *dst;
const struct sadb_x_policy *xpl0;
struct sadb_x_policy *xpl;
const struct sadb_lifetime *lft = NULL;
struct secpolicyindex spidx;
struct secpolicy *newsp;
int error;
uint32_t sadb_x_policy_id;
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
mhp->ext[SADB_X_EXT_POLICY] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
if (mhp->extlen[SADB_EXT_LIFETIME_HARD] <
sizeof(struct sadb_lifetime)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
lft = mhp->ext[SADB_EXT_LIFETIME_HARD];
}
xpl0 = mhp->ext[SADB_X_EXT_POLICY];
/* checking the direciton. */
switch (xpl0->sadb_x_policy_dir) {
case IPSEC_DIR_INBOUND:
case IPSEC_DIR_OUTBOUND:
break;
default:
IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
return key_senderror(so, m, EINVAL);
}
/* check policy */
/* key_api_spdadd() accepts DISCARD, NONE and IPSEC. */
if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST ||
xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
IPSECLOG(LOG_DEBUG, "Invalid policy type.\n");
return key_senderror(so, m, EINVAL);
}
/* policy requests are mandatory when action is ipsec. */
if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX &&
xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC &&
mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
IPSECLOG(LOG_DEBUG, "some policy requests part required.\n");
return key_senderror(so, m, EINVAL);
}
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
/* sanity check on addr pair */
if (src->sa_family != dst->sa_family)
return key_senderror(so, m, EINVAL);
if (src->sa_len != dst->sa_len)
return key_senderror(so, m, EINVAL);
key_init_spidx_bymsghdr(&spidx, mhp);
/*
* checking there is SP already or not.
* SPDUPDATE doesn't depend on whether there is a SP or not.
* If the type is either SPDADD or SPDSETIDX AND a SP is found,
* then error.
*/
{
struct secpolicy *sp;
if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
sp = key_lookup_and_remove_sp(&spidx, from_kernel);
if (sp != NULL)
key_destroy_sp(sp);
} else {
sp = key_getsp(&spidx);
if (sp != NULL) {
KEY_SP_UNREF(&sp);
IPSECLOG(LOG_DEBUG, "a SP entry exists already.\n");
return key_senderror(so, m, EEXIST);
}
}
}
/* allocation new SP entry */
newsp = _key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error, from_kernel);
if (newsp == NULL) {
return key_senderror(so, m, error);
}
newsp->id = key_getnewspid();
if (newsp->id == 0) {
kmem_free(newsp, sizeof(*newsp));
return key_senderror(so, m, ENOBUFS);
}
newsp->spidx = spidx;
newsp->created = time_uptime;
newsp->lastused = newsp->created;
newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
if (from_kernel)
newsp->origin = IPSEC_SPORIGIN_KERNEL;
else
newsp->origin = IPSEC_SPORIGIN_USER;
key_init_sp(newsp);
if (from_kernel)
KEY_SP_REF(newsp);
sadb_x_policy_id = newsp->id;
if (_sp != NULL)
*_sp = newsp;
mutex_enter(&key_spd.lock);
SPLIST_WRITER_INSERT_TAIL(newsp->spidx.dir, newsp);
mutex_exit(&key_spd.lock);
/*
* We don't have a reference to newsp, so we must not touch newsp from
* now on. If you want to do, you must take a reference beforehand.
*/
newsp = NULL;
#ifdef notyet
/* delete the entry in key_misc.spacqlist */
if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
struct secspacq *spacq = key_getspacq(&spidx);
if (spacq != NULL) {
/* reset counter in order to deletion by timehandler. */
spacq->created = time_uptime;
spacq->count = 0;
}
}
#endif
/* Invalidate all cached SPD pointers in the PCBs. */
ipsec_invalpcbcacheall();
#if defined(GATEWAY)
/* Invalidate the ipflow cache, as well. */
ipflow_invalidate_all(0);
#ifdef INET6
if (in6_present)
ip6flow_invalidate_all(0);
#endif /* INET6 */
#endif /* GATEWAY */
key_update_used();
{
struct mbuf *n, *mpolicy;
int off;
/* create new sadb_msg to reply. */
if (lft) {
n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
} else {
n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
SADB_X_EXT_POLICY,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
}
key_fill_replymsg(n, 0);
off = 0;
mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
sizeof(*xpl), &off);
if (mpolicy == NULL) {
/* n is already freed */
/*
* valid sp has been created, so we does not overwrite _sp
* NULL here. let caller decide to use the sp or not.
*/
return key_senderror(so, m, ENOBUFS);
}
xpl = (struct sadb_x_policy *)(mtod(mpolicy, char *) + off);
if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
m_freem(n);
/* ditto */
return key_senderror(so, m, EINVAL);
}
xpl->sadb_x_policy_id = sadb_x_policy_id;
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
* add an entry to SP database, when received
* <base, address(SD), (lifetime(H),) policy>
* from the user(?).
* Adding to SP database,
* and send
* <base, address(SD), (lifetime(H),) policy>
* to the socket which was send.
*
* SPDADD set a unique policy entry.
* SPDSETIDX like SPDADD without a part of policy requests.
* SPDUPDATE replace a unique policy entry.
*
* m will always be freed.
*/
static int
key_api_spdadd(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
return key_spdadd(so, m, mhp, NULL, false);
}
struct secpolicy *
key_kpi_spdadd(struct mbuf *m)
{
struct sadb_msghdr mh;
int error;
struct secpolicy *sp = NULL;
error = key_align(m, &mh);
if (error)
return NULL;
error = key_spdadd(NULL, m, &mh, &sp, true);
if (error) {
/*
* Currently, when key_spdadd() cannot send a PFKEY message
* which means SP has been created, key_spdadd() returns error
* although SP is created successfully.
* Kernel components would not care PFKEY messages, so return
* the "sp" regardless of error code. key_spdadd() overwrites
* the argument only if SP is created successfully.
*/
}
return sp;
}
/*
* get new policy id.
* OUT:
* 0: failure.
* others: success.
*/
static u_int32_t
key_getnewspid(void)
{
u_int32_t newid = 0;
int count = key_spi_trycnt; /* XXX */
struct secpolicy *sp;
/* when requesting to allocate spi ranged */
while (count--) {
newid = (policy_id = (policy_id == ~0 ? 1 : policy_id + 1));
sp = key_getspbyid(newid);
if (sp == NULL)
break;
KEY_SP_UNREF(&sp);
}
if (count == 0 || newid == 0) {
IPSECLOG(LOG_DEBUG, "to allocate policy id is failed.\n");
return 0;
}
return newid;
}
/*
* SADB_SPDDELETE processing
* receive
* <base, address(SD), policy(*)>
* from the user(?), and set SADB_SASTATE_DEAD,
* and send,
* <base, address(SD), policy(*)>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_api_spddelete(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_x_policy *xpl0;
struct secpolicyindex spidx;
struct secpolicy *sp;
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
mhp->ext[SADB_X_EXT_POLICY] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
xpl0 = mhp->ext[SADB_X_EXT_POLICY];
/* checking the directon. */
switch (xpl0->sadb_x_policy_dir) {
case IPSEC_DIR_INBOUND:
case IPSEC_DIR_OUTBOUND:
break;
default:
IPSECLOG(LOG_DEBUG, "Invalid SP direction.\n");
return key_senderror(so, m, EINVAL);
}
/* make secindex */
key_init_spidx_bymsghdr(&spidx, mhp);
/* Is there SP in SPD ? */
sp = key_lookup_and_remove_sp(&spidx, false);
if (sp == NULL) {
IPSECLOG(LOG_DEBUG, "no SP found.\n");
return key_senderror(so, m, EINVAL);
}
/* save policy id to buffer to be returned. */
xpl0->sadb_x_policy_id = sp->id;
key_destroy_sp(sp);
/* We're deleting policy; no need to invalidate the ipflow cache. */
{
struct mbuf *n;
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
key_fill_replymsg(n, 0);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
static struct mbuf *
key_alloc_mbuf_simple(int len, int mflag)
{
struct mbuf *n;
KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p()));
MGETHDR(n, mflag, MT_DATA);
if (n && len > MHLEN) {
MCLGET(n, mflag);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
n = NULL;
}
}
return n;
}
/*
* SADB_SPDDELETE2 processing
* receive
* <base, policy(*)>
* from the user(?), and set SADB_SASTATE_DEAD,
* and send,
* <base, policy(*)>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_spddelete2(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp, bool from_kernel)
{
u_int32_t id;
struct secpolicy *sp;
const struct sadb_x_policy *xpl;
if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
xpl = mhp->ext[SADB_X_EXT_POLICY];
id = xpl->sadb_x_policy_id;
/* Is there SP in SPD ? */
sp = key_lookupbyid_and_remove_sp(id, from_kernel);
if (sp == NULL) {
IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
return key_senderror(so, m, EINVAL);
}
key_destroy_sp(sp);
/* We're deleting policy; no need to invalidate the ipflow cache. */
{
struct mbuf *n, *nn;
int off, len;
CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
/* create new sadb_msg to reply. */
len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
n = key_alloc_mbuf_simple(len, M_WAITOK);
n->m_len = len;
n->m_next = NULL;
off = 0;
m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
KASSERTMSG(off == len, "length inconsistency");
n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
mhp->extlen[SADB_X_EXT_POLICY], M_WAITOK);
n->m_pkthdr.len = 0;
for (nn = n; nn; nn = nn->m_next)
n->m_pkthdr.len += nn->m_len;
key_fill_replymsg(n, 0);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_SPDDELETE2 processing
* receive
* <base, policy(*)>
* from the user(?), and set SADB_SASTATE_DEAD,
* and send,
* <base, policy(*)>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_api_spddelete2(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
return key_spddelete2(so, m, mhp, false);
}
int
key_kpi_spddelete2(struct mbuf *m)
{
struct sadb_msghdr mh;
int error;
error = key_align(m, &mh);
if (error)
return EINVAL;
return key_spddelete2(NULL, m, &mh, true);
}
/*
* SADB_X_GET processing
* receive
* <base, policy(*)>
* from the user(?),
* and send,
* <base, address(SD), policy>
* to the ikmpd.
* policy(*) including direction of policy.
*
* m will always be freed.
*/
static int
key_api_spdget(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
u_int32_t id;
struct secpolicy *sp;
struct mbuf *n;
const struct sadb_x_policy *xpl;
if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
xpl = mhp->ext[SADB_X_EXT_POLICY];
id = xpl->sadb_x_policy_id;
/* Is there SP in SPD ? */
sp = key_getspbyid(id);
if (sp == NULL) {
IPSECLOG(LOG_DEBUG, "no SP found id:%u.\n", id);
return key_senderror(so, m, ENOENT);
}
n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq,
mhp->msg->sadb_msg_pid);
KEY_SP_UNREF(&sp); /* ref gained by key_getspbyid */
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
}
#ifdef notyet
/*
* SADB_X_SPDACQUIRE processing.
* Acquire policy and SA(s) for a *OUTBOUND* packet.
* send
* <base, policy(*)>
* to KMD, and expect to receive
* <base> with SADB_X_SPDACQUIRE if error occurred,
* or
* <base, policy>
* with SADB_X_SPDUPDATE from KMD by PF_KEY.
* policy(*) is without policy requests.
*
* 0 : succeed
* others: error number
*/
int
key_spdacquire(const struct secpolicy *sp)
{
struct mbuf *result = NULL, *m;
struct secspacq *newspacq;
int error;
KASSERT(sp != NULL);
KASSERTMSG(sp->req == NULL, "called but there is request");
KASSERTMSG(sp->policy == IPSEC_POLICY_IPSEC,
"policy mismathed. IPsec is expected");
/* Get an entry to check whether sent message or not. */
newspacq = key_getspacq(&sp->spidx);
if (newspacq != NULL) {
if (key_blockacq_count < newspacq->count) {
/* reset counter and do send message. */
newspacq->count = 0;
} else {
/* increment counter and do nothing. */
newspacq->count++;
return 0;
}
} else {
/* make new entry for blocking to send SADB_ACQUIRE. */
newspacq = key_newspacq(&sp->spidx);
if (newspacq == NULL)
return ENOBUFS;
/* add to key_misc.acqlist */
LIST_INSERT_HEAD(&key_misc.spacqlist, newspacq, chain);
}
/* create new sadb_msg to reply. */
m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
if (!m) {
error = ENOBUFS;
goto fail;
}
result = m;
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
fail:
if (result)
m_freem(result);
return error;
}
#endif /* notyet */
/*
* SADB_SPDFLUSH processing
* receive
* <base>
* from the user, and free all entries in secpctree.
* and send,
* <base>
* to the user.
* NOTE: what to do is only marking SADB_SASTATE_DEAD.
*
* m will always be freed.
*/
static int
key_api_spdflush(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_msg *newmsg;
struct secpolicy *sp;
u_int dir;
if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
return key_senderror(so, m, EINVAL);
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
retry:
mutex_enter(&key_spd.lock);
SPLIST_WRITER_FOREACH(sp, dir) {
KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
/*
* Userlang programs can remove SPs created by userland
* probrams only, that is, they cannot remove SPs
* created in kernel(e.g. ipsec(4) I/F).
*/
if (sp->origin == IPSEC_SPORIGIN_USER) {
key_unlink_sp(sp);
mutex_exit(&key_spd.lock);
key_destroy_sp(sp);
goto retry;
}
}
mutex_exit(&key_spd.lock);
}
/* We're deleting policy; no need to invalidate the ipflow cache. */
if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return key_senderror(so, m, ENOBUFS);
}
if (m->m_next)
m_freem(m->m_next);
m->m_next = NULL;
m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
newmsg = mtod(m, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
}
static struct sockaddr key_src = {
.sa_len = 2,
.sa_family = PF_KEY,
};
static struct mbuf *
key_setspddump_chain(int *errorp, int *lenp, pid_t pid)
{
struct secpolicy *sp;
int cnt;
u_int dir;
struct mbuf *m, *n, *prev;
int totlen;
KASSERT(mutex_owned(&key_spd.lock));
*lenp = 0;
/* search SPD entry and get buffer size. */
cnt = 0;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
SPLIST_WRITER_FOREACH(sp, dir) {
cnt++;
}
}
if (cnt == 0) {
*errorp = ENOENT;
return (NULL);
}
m = NULL;
prev = m;
totlen = 0;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
SPLIST_WRITER_FOREACH(sp, dir) {
--cnt;
n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
totlen += n->m_pkthdr.len;
if (!m) {
m = n;
} else {
prev->m_nextpkt = n;
}
prev = n;
}
}
*lenp = totlen;
*errorp = 0;
return (m);
}
/*
* SADB_SPDDUMP processing
* receive
* <base>
* from the user, and dump all SP leaves
* and send,
* <base> .....
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_api_spddump(struct socket *so, struct mbuf *m0,
const struct sadb_msghdr *mhp)
{
struct mbuf *n;
int error, len;
int ok;
pid_t pid;
pid = mhp->msg->sadb_msg_pid;
/*
* If the requestor has insufficient socket-buffer space
* for the entire chain, nobody gets any response to the DUMP.
* XXX For now, only the requestor ever gets anything.
* Moreover, if the requestor has any space at all, they receive
* the entire chain, otherwise the request is refused with ENOBUFS.
*/
if (sbspace(&so->so_rcv) <= 0) {
return key_senderror(so, m0, ENOBUFS);
}
mutex_enter(&key_spd.lock);
n = key_setspddump_chain(&error, &len, pid);
mutex_exit(&key_spd.lock);
if (n == NULL) {
return key_senderror(so, m0, ENOENT);
}
{
uint64_t *ps = PFKEY_STAT_GETREF();
ps[PFKEY_STAT_IN_TOTAL]++;
ps[PFKEY_STAT_IN_BYTES] += len;
PFKEY_STAT_PUTREF();
}
/*
* PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
* The requestor receives either the entire chain, or an
* error message with ENOBUFS.
*/
/*
* sbappendchainwith record takes the chain of entries, one
* packet-record per SPD entry, prepends the key_src sockaddr
* to each packet-record, links the sockaddr mbufs into a new
* list of records, then appends the entire resulting
* list to the requesting socket.
*/
ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
SB_PRIO_ONESHOT_OVERFLOW);
if (!ok) {
PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
m_freem(n);
return key_senderror(so, m0, ENOBUFS);
}
m_freem(m0);
return error;
}
/*
* SADB_X_NAT_T_NEW_MAPPING. Unused by racoon as of 2005/04/23
*/
static int
key_api_nat_map(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_x_nat_t_type *type;
struct sadb_x_nat_t_port *sport;
struct sadb_x_nat_t_port *dport;
struct sadb_address *iaddr, *raddr;
struct sadb_x_nat_t_frag *frag;
if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message.\n");
return key_senderror(so, m, EINVAL);
}
if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
(mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
(mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
IPSECLOG(LOG_DEBUG, "invalid message.\n");
return key_senderror(so, m, EINVAL);
}
if ((mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) &&
(mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr))) {
IPSECLOG(LOG_DEBUG, "invalid message\n");
return key_senderror(so, m, EINVAL);
}
if ((mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) &&
(mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr))) {
IPSECLOG(LOG_DEBUG, "invalid message\n");
return key_senderror(so, m, EINVAL);
}
if ((mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) &&
(mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag))) {
IPSECLOG(LOG_DEBUG, "invalid message\n");
return key_senderror(so, m, EINVAL);
}
type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
/*
* XXX handle that, it should also contain a SA, or anything
* that enable to update the SA information.
*/
return 0;
}
/*
* Never return NULL.
*/
static struct mbuf *
key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, pid_t pid)
{
struct mbuf *result = NULL, *m;
KASSERT(!cpu_softintr_p());
m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid,
key_sp_refcnt(sp), M_WAITOK);
result = m;
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
&sp->spidx.src.sa, sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK);
m_cat(result, m);
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
&sp->spidx.dst.sa, sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK);
m_cat(result, m);
m = key_sp2msg(sp, M_WAITOK);
m_cat(result, m);
KASSERT(result->m_flags & M_PKTHDR);
KASSERT(result->m_len >= sizeof(struct sadb_msg));
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
return result;
}
/*
* get PFKEY message length for security policy and request.
*/
static u_int
key_getspreqmsglen(const struct secpolicy *sp)
{
u_int tlen;
tlen = sizeof(struct sadb_x_policy);
/* if is the policy for ipsec ? */
if (sp->policy != IPSEC_POLICY_IPSEC)
return tlen;
/* get length of ipsec requests */
{
const struct ipsecrequest *isr;
int len;
for (isr = sp->req; isr != NULL; isr = isr->next) {
len = sizeof(struct sadb_x_ipsecrequest)
+ isr->saidx.src.sa.sa_len + isr->saidx.dst.sa.sa_len;
tlen += PFKEY_ALIGN8(len);
}
}
return tlen;
}
/*
* SADB_SPDEXPIRE processing
* send
* <base, address(SD), lifetime(CH), policy>
* to KMD by PF_KEY.
*
* OUT: 0 : succeed
* others : error number
*/
static int
key_spdexpire(struct secpolicy *sp)
{
int s;
struct mbuf *result = NULL, *m;
int len;
int error = -1;
struct sadb_lifetime *lt;
/* XXX: Why do we lock ? */
s = splsoftnet(); /*called from softclock()*/
KASSERT(sp != NULL);
/* set msg header */
m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0, M_WAITOK);
result = m;
/* create lifetime extension (current and hard) */
len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
memset(mtod(m, void *), 0, len);
lt = mtod(m, struct sadb_lifetime *);
lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
lt->sadb_lifetime_allocations = 0;
lt->sadb_lifetime_bytes = 0;
lt->sadb_lifetime_addtime = time_mono_to_wall(sp->created);
lt->sadb_lifetime_usetime = time_mono_to_wall(sp->lastused);
lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
lt->sadb_lifetime_allocations = 0;
lt->sadb_lifetime_bytes = 0;
lt->sadb_lifetime_addtime = sp->lifetime;
lt->sadb_lifetime_usetime = sp->validtime;
m_cat(result, m);
/* set sadb_address for source */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sp->spidx.src.sa,
sp->spidx.prefs, sp->spidx.ul_proto, M_WAITOK);
m_cat(result, m);
/* set sadb_address for destination */
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sp->spidx.dst.sa,
sp->spidx.prefd, sp->spidx.ul_proto, M_WAITOK);
m_cat(result, m);
/* set secpolicy */
m = key_sp2msg(sp, M_WAITOK);
m_cat(result, m);
KASSERT(result->m_flags & M_PKTHDR);
KASSERT(result->m_len >= sizeof(struct sadb_msg));
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
error = key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
splx(s);
return error;
}
/* %%% SAD management */
/*
* allocating a memory for new SA head, and copy from the values of mhp.
* OUT: NULL : failure due to the lack of memory.
* others : pointer to new SA head.
*/
static struct secashead *
key_newsah(const struct secasindex *saidx)
{
struct secashead *newsah;
int i;
KASSERT(saidx != NULL);
newsah = kmem_zalloc(sizeof(struct secashead), KM_SLEEP);
for (i = 0; i < __arraycount(newsah->savlist); i++)
PSLIST_INIT(&newsah->savlist[i]);
newsah->saidx = *saidx;
localcount_init(&newsah->localcount);
/* Take a reference for the caller */
localcount_acquire(&newsah->localcount);
/* Add to the sah list */
SAHLIST_ENTRY_INIT(newsah);
newsah->state = SADB_SASTATE_MATURE;
mutex_enter(&key_sad.lock);
SAHLIST_WRITER_INSERT_HEAD(newsah);
mutex_exit(&key_sad.lock);
return newsah;
}
static bool
key_sah_has_sav(struct secashead *sah)
{
u_int state;
KASSERT(mutex_owned(&key_sad.lock));
SASTATE_ANY_FOREACH(state) {
if (!SAVLIST_WRITER_EMPTY(sah, state))
return true;
}
return false;
}
static void
key_unlink_sah(struct secashead *sah)
{
KASSERT(!cpu_softintr_p());
KASSERT(mutex_owned(&key_sad.lock));
KASSERT(sah->state == SADB_SASTATE_DEAD);
/* Remove from the sah list */
SAHLIST_WRITER_REMOVE(sah);
KDASSERT(mutex_ownable(softnet_lock));
key_sad_pserialize_perform();
localcount_drain(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
}
static void
key_destroy_sah(struct secashead *sah)
{
rtcache_free(&sah->sa_route);
SAHLIST_ENTRY_DESTROY(sah);
localcount_fini(&sah->localcount);
if (sah->idents != NULL)
kmem_free(sah->idents, sah->idents_len);
if (sah->identd != NULL)
kmem_free(sah->identd, sah->identd_len);
kmem_free(sah, sizeof(*sah));
}
/*
* allocating a new SA with LARVAL state.
* key_api_add() and key_api_getspi() call,
* and copy the values of mhp into new buffer.
* When SAD message type is GETSPI:
* to set sequence number from acq_seq++,
* to set zero to SPI.
* not to call key_setsava().
* OUT: NULL : fail
* others : pointer to new secasvar.
*
* does not modify mbuf. does not free mbuf on error.
*/
static struct secasvar *
key_newsav(struct mbuf *m, const struct sadb_msghdr *mhp,
int *errp, const char* where, int tag)
{
struct secasvar *newsav;
const struct sadb_sa *xsa;
KASSERT(!cpu_softintr_p());
KASSERT(m != NULL);
KASSERT(mhp != NULL);
KASSERT(mhp->msg != NULL);
newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
switch (mhp->msg->sadb_msg_type) {
case SADB_GETSPI:
newsav->spi = 0;
#ifdef IPSEC_DOSEQCHECK
/* sync sequence number */
if (mhp->msg->sadb_msg_seq == 0)
newsav->seq =
(acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
else
#endif
newsav->seq = mhp->msg->sadb_msg_seq;
break;
case SADB_ADD:
/* sanity check */
if (mhp->ext[SADB_EXT_SA] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
*errp = EINVAL;
goto error;
}
xsa = mhp->ext[SADB_EXT_SA];
newsav->spi = xsa->sadb_sa_spi;
newsav->seq = mhp->msg->sadb_msg_seq;
break;
default:
*errp = EINVAL;
goto error;
}
/* copy sav values */
if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
*errp = key_setsaval(newsav, m, mhp);
if (*errp)
goto error;
} else {
/* We don't allow lft_c to be NULL */
newsav->lft_c = kmem_zalloc(sizeof(struct sadb_lifetime),
KM_SLEEP);
newsav->lft_c_counters_percpu =
percpu_alloc(sizeof(lifetime_counters_t));
}
/* reset created */
newsav->created = time_uptime;
newsav->pid = mhp->msg->sadb_msg_pid;
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP from %s:%u return SA:%p\n", where, tag, newsav);
return newsav;
error:
KASSERT(*errp != 0);
kmem_free(newsav, sizeof(*newsav));
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP from %s:%u return SA:NULL\n", where, tag);
return NULL;
}
static void
key_clear_xform(struct secasvar *sav)
{
/*
* Cleanup xform state. Note that zeroize'ing causes the
* keys to be cleared; otherwise we must do it ourself.
*/
if (sav->tdb_xform != NULL) {
sav->tdb_xform->xf_zeroize(sav);
sav->tdb_xform = NULL;
} else {
if (sav->key_auth != NULL)
explicit_memset(_KEYBUF(sav->key_auth), 0,
_KEYLEN(sav->key_auth));
if (sav->key_enc != NULL)
explicit_memset(_KEYBUF(sav->key_enc), 0,
_KEYLEN(sav->key_enc));
}
}
/*
* free() SA variable entry.
*/
static void
key_delsav(struct secasvar *sav)
{
key_clear_xform(sav);
key_freesaval(sav);
kmem_free(sav, sizeof(*sav));
}
/*
* Must be called in a pserialize read section. A held sah
* must be released by key_sah_unref after use.
*/
static void
key_sah_ref(struct secashead *sah)
{
localcount_acquire(&sah->localcount);
}
/*
* Must be called without holding key_sad.lock because the lock
* would be held in localcount_release.
*/
static void
key_sah_unref(struct secashead *sah)
{
KDASSERT(mutex_ownable(&key_sad.lock));
localcount_release(&sah->localcount, &key_sad.cv_lc, &key_sad.lock);
}
/*
* Search SAD and return sah. Must be called in a pserialize
* read section.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secashead *
key_getsah(const struct secasindex *saidx, int flag)
{
struct secashead *sah;
SAHLIST_READER_FOREACH_SAIDX(sah, saidx) {
if (sah->state == SADB_SASTATE_DEAD)
continue;
if (key_saidx_match(&sah->saidx, saidx, flag))
return sah;
}
return NULL;
}
/*
* Search SAD and return sah. If sah is returned, the caller must call
* key_sah_unref to releaset a reference.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secashead *
key_getsah_ref(const struct secasindex *saidx, int flag)
{
struct secashead *sah;
int s;
s = pserialize_read_enter();
sah = key_getsah(saidx, flag);
if (sah != NULL)
key_sah_ref(sah);
pserialize_read_exit(s);
return sah;
}
/*
* check not to be duplicated SPI.
* NOTE: this function is too slow due to searching all SAD.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static bool
key_checkspidup(const struct secasindex *saidx, u_int32_t spi)
{
struct secashead *sah;
struct secasvar *sav;
int s;
/* check address family */
if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
return false;
}
/* check all SAD */
s = pserialize_read_enter();
SAHLIST_READER_FOREACH(sah) {
if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
continue;
sav = key_getsavbyspi(sah, spi);
if (sav != NULL) {
pserialize_read_exit(s);
KEY_SA_UNREF(&sav);
return true;
}
}
pserialize_read_exit(s);
return false;
}
/*
* search SAD litmited alive SA, protocol, SPI.
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
static struct secasvar *
key_getsavbyspi(struct secashead *sah, u_int32_t spi)
{
struct secasvar *sav = NULL;
u_int state;
int s;
/* search all status */
s = pserialize_read_enter();
SASTATE_ALIVE_FOREACH(state) {
SAVLIST_READER_FOREACH(sav, sah, state) {
/* sanity check */
if (sav->state != state) {
IPSECLOG(LOG_DEBUG,
"invalid sav->state (queue: %d SA: %d)\n",
state, sav->state);
continue;
}
if (sav->spi == spi) {
KEY_SA_REF(sav);
goto out;
}
}
}
out:
pserialize_read_exit(s);
return sav;
}
/*
* Free allocated data to member variables of sav:
* sav->replay, sav->key_* and sav->lft_*.
*/
static void
key_freesaval(struct secasvar *sav)
{
KASSERT(key_sa_refcnt(sav) == 0);
if (sav->replay != NULL)
kmem_intr_free(sav->replay, sav->replay_len);
if (sav->key_auth != NULL)
kmem_intr_free(sav->key_auth, sav->key_auth_len);
if (sav->key_enc != NULL)
kmem_intr_free(sav->key_enc, sav->key_enc_len);
if (sav->lft_c_counters_percpu != NULL) {
percpu_free(sav->lft_c_counters_percpu,
sizeof(lifetime_counters_t));
}
if (sav->lft_c != NULL)
kmem_intr_free(sav->lft_c, sizeof(*(sav->lft_c)));
if (sav->lft_h != NULL)
kmem_intr_free(sav->lft_h, sizeof(*(sav->lft_h)));
if (sav->lft_s != NULL)
kmem_intr_free(sav->lft_s, sizeof(*(sav->lft_s)));
}
/*
* copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
* You must update these if need.
* OUT: 0: success.
* !0: failure.
*
* does not modify mbuf. does not free mbuf on error.
*/
static int
key_setsaval(struct secasvar *sav, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
int error = 0;
KASSERT(!cpu_softintr_p());
KASSERT(m != NULL);
KASSERT(mhp != NULL);
KASSERT(mhp->msg != NULL);
/* We shouldn't initialize sav variables while someone uses it. */
KASSERT(key_sa_refcnt(sav) == 0);
/* SA */
if (mhp->ext[SADB_EXT_SA] != NULL) {
const struct sadb_sa *sa0;
sa0 = mhp->ext[SADB_EXT_SA];
if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
error = EINVAL;
goto fail;
}
sav->alg_auth = sa0->sadb_sa_auth;
sav->alg_enc = sa0->sadb_sa_encrypt;
sav->flags = sa0->sadb_sa_flags;
/* replay window */
if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
size_t len = sizeof(struct secreplay) +
sa0->sadb_sa_replay;
sav->replay = kmem_zalloc(len, KM_SLEEP);
sav->replay_len = len;
if (sa0->sadb_sa_replay != 0)
sav->replay->bitmap = (char*)(sav->replay+1);
sav->replay->wsize = sa0->sadb_sa_replay;
}
}
/* Authentication keys */
if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
const struct sadb_key *key0;
int len;
key0 = mhp->ext[SADB_EXT_KEY_AUTH];
len = mhp->extlen[SADB_EXT_KEY_AUTH];
error = 0;
if (len < sizeof(*key0)) {
error = EINVAL;
goto fail;
}
switch (mhp->msg->sadb_msg_satype) {
case SADB_SATYPE_AH:
case SADB_SATYPE_ESP:
case SADB_X_SATYPE_TCPSIGNATURE:
if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
sav->alg_auth != SADB_X_AALG_NULL)
error = EINVAL;
break;
case SADB_X_SATYPE_IPCOMP:
default:
error = EINVAL;
break;
}
if (error) {
IPSECLOG(LOG_DEBUG, "invalid key_auth values.\n");
goto fail;
}
sav->key_auth = key_newbuf(key0, len);
sav->key_auth_len = len;
}
/* Encryption key */
if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
const struct sadb_key *key0;
int len;
key0 = mhp->ext[SADB_EXT_KEY_ENCRYPT];
len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
error = 0;
if (len < sizeof(*key0)) {
error = EINVAL;
goto fail;
}
switch (mhp->msg->sadb_msg_satype) {
case SADB_SATYPE_ESP:
if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
sav->alg_enc != SADB_EALG_NULL) {
error = EINVAL;
break;
}
sav->key_enc = key_newbuf(key0, len);
sav->key_enc_len = len;
break;
case SADB_X_SATYPE_IPCOMP:
if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
error = EINVAL;
sav->key_enc = NULL; /*just in case*/
break;
case SADB_SATYPE_AH:
case SADB_X_SATYPE_TCPSIGNATURE:
default:
error = EINVAL;
break;
}
if (error) {
IPSECLOG(LOG_DEBUG, "invalid key_enc value.\n");
goto fail;
}
}
/* set iv */
sav->ivlen = 0;
switch (mhp->msg->sadb_msg_satype) {
case SADB_SATYPE_AH:
error = xform_init(sav, XF_AH);
break;
case SADB_SATYPE_ESP:
error = xform_init(sav, XF_ESP);
break;
case SADB_X_SATYPE_IPCOMP:
error = xform_init(sav, XF_IPCOMP);
break;
case SADB_X_SATYPE_TCPSIGNATURE:
error = xform_init(sav, XF_TCPSIGNATURE);
break;
}
if (error) {
IPSECLOG(LOG_DEBUG, "unable to initialize SA type %u.\n",
mhp->msg->sadb_msg_satype);
goto fail;
}
/* reset created */
sav->created = time_uptime;
/* make lifetime for CURRENT */
sav->lft_c = kmem_alloc(sizeof(struct sadb_lifetime), KM_SLEEP);
sav->lft_c->sadb_lifetime_len =
PFKEY_UNIT64(sizeof(struct sadb_lifetime));
sav->lft_c->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
sav->lft_c->sadb_lifetime_allocations = 0;
sav->lft_c->sadb_lifetime_bytes = 0;
sav->lft_c->sadb_lifetime_addtime = time_uptime;
sav->lft_c->sadb_lifetime_usetime = 0;
sav->lft_c_counters_percpu = percpu_alloc(sizeof(lifetime_counters_t));
/* lifetimes for HARD and SOFT */
{
const struct sadb_lifetime *lft0;
lft0 = mhp->ext[SADB_EXT_LIFETIME_HARD];
if (lft0 != NULL) {
if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
error = EINVAL;
goto fail;
}
sav->lft_h = key_newbuf(lft0, sizeof(*lft0));
}
lft0 = mhp->ext[SADB_EXT_LIFETIME_SOFT];
if (lft0 != NULL) {
if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
error = EINVAL;
goto fail;
}
sav->lft_s = key_newbuf(lft0, sizeof(*lft0));
/* to be initialize ? */
}
}
return 0;
fail:
key_clear_xform(sav);
key_freesaval(sav);
return error;
}
/*
* validation with a secasvar entry, and set SADB_SATYPE_MATURE.
* OUT: 0: valid
* other: errno
*/
static int
key_init_xform(struct secasvar *sav)
{
int error;
/* We shouldn't initialize sav variables while someone uses it. */
KASSERT(key_sa_refcnt(sav) == 0);
/* check SPI value */
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
case IPPROTO_AH:
if (ntohl(sav->spi) <= 255) {
IPSECLOG(LOG_DEBUG, "illegal range of SPI %u.\n",
(u_int32_t)ntohl(sav->spi));
return EINVAL;
}
break;
}
/* check satype */
switch (sav->sah->saidx.proto) {
case IPPROTO_ESP:
/* check flags */
if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
(SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
IPSECLOG(LOG_DEBUG,
"invalid flag (derived) given to old-esp.\n");
return EINVAL;
}
error = xform_init(sav, XF_ESP);
break;
case IPPROTO_AH:
/* check flags */
if (sav->flags & SADB_X_EXT_DERIV) {
IPSECLOG(LOG_DEBUG,
"invalid flag (derived) given to AH SA.\n");
return EINVAL;
}
if (sav->alg_enc != SADB_EALG_NONE) {
IPSECLOG(LOG_DEBUG,
"protocol and algorithm mismated.\n");
return(EINVAL);
}
error = xform_init(sav, XF_AH);
break;
case IPPROTO_IPCOMP:
if (sav->alg_auth != SADB_AALG_NONE) {
IPSECLOG(LOG_DEBUG,
"protocol and algorithm mismated.\n");
return(EINVAL);
}
if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
&& ntohl(sav->spi) >= 0x10000) {
IPSECLOG(LOG_DEBUG, "invalid cpi for IPComp.\n");
return(EINVAL);
}
error = xform_init(sav, XF_IPCOMP);
break;
case IPPROTO_TCP:
if (sav->alg_enc != SADB_EALG_NONE) {
IPSECLOG(LOG_DEBUG,
"protocol and algorithm mismated.\n");
return(EINVAL);
}
error = xform_init(sav, XF_TCPSIGNATURE);
break;
default:
IPSECLOG(LOG_DEBUG, "Invalid satype.\n");
error = EPROTONOSUPPORT;
break;
}
return error;
}
/*
* subroutine for SADB_GET and SADB_DUMP. It never return NULL.
*/
static struct mbuf *
key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
u_int32_t seq, u_int32_t pid)
{
struct mbuf *result = NULL, *tres = NULL, *m;
int l = 0;
int i;
void *p;
struct sadb_lifetime lt;
int dumporder[] = {
SADB_EXT_SA, SADB_X_EXT_SA2,
SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
SADB_X_EXT_NAT_T_TYPE,
SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
SADB_X_EXT_NAT_T_FRAG,
};
m = key_setsadbmsg(type, 0, satype, seq, pid, key_sa_refcnt(sav), M_WAITOK);
result = m;
for (i = __arraycount(dumporder) - 1; i >= 0; i--) {
m = NULL;
p = NULL;
switch (dumporder[i]) {
case SADB_EXT_SA:
m = key_setsadbsa(sav);
break;
case SADB_X_EXT_SA2:
m = key_setsadbxsa2(sav->sah->saidx.mode,
sav->replay ? sav->replay->count : 0,
sav->sah->saidx.reqid);
break;
case SADB_EXT_ADDRESS_SRC:
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
&sav->sah->saidx.src.sa,
FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
break;
case SADB_EXT_ADDRESS_DST:
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
&sav->sah->saidx.dst.sa,
FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
break;
case SADB_EXT_KEY_AUTH:
if (!sav->key_auth)
continue;
l = PFKEY_UNUNIT64(sav->key_auth->sadb_key_len);
p = sav->key_auth;
break;
case SADB_EXT_KEY_ENCRYPT:
if (!sav->key_enc)
continue;
l = PFKEY_UNUNIT64(sav->key_enc->sadb_key_len);
p = sav->key_enc;
break;
case SADB_EXT_LIFETIME_CURRENT: {
lifetime_counters_t sum = {0};
KASSERT(sav->lft_c != NULL);
l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_c)->sadb_ext_len);
memcpy(&lt, sav->lft_c, sizeof(struct sadb_lifetime));
lt.sadb_lifetime_addtime =
time_mono_to_wall(lt.sadb_lifetime_addtime);
lt.sadb_lifetime_usetime =
time_mono_to_wall(lt.sadb_lifetime_usetime);
percpu_foreach(sav->lft_c_counters_percpu,
key_sum_lifetime_counters, sum);
lt.sadb_lifetime_allocations =
sum[LIFETIME_COUNTER_ALLOCATIONS];
lt.sadb_lifetime_bytes =
sum[LIFETIME_COUNTER_BYTES];
p = &lt;
break;
}
case SADB_EXT_LIFETIME_HARD:
if (!sav->lft_h)
continue;
l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_h)->sadb_ext_len);
p = sav->lft_h;
break;
case SADB_EXT_LIFETIME_SOFT:
if (!sav->lft_s)
continue;
l = PFKEY_UNUNIT64(((struct sadb_ext *)sav->lft_s)->sadb_ext_len);
p = sav->lft_s;
break;
case SADB_X_EXT_NAT_T_TYPE:
m = key_setsadbxtype(sav->natt_type);
break;
case SADB_X_EXT_NAT_T_DPORT:
if (sav->natt_type == 0)
continue;
m = key_setsadbxport(
key_portfromsaddr(&sav->sah->saidx.dst),
SADB_X_EXT_NAT_T_DPORT);
break;
case SADB_X_EXT_NAT_T_SPORT:
if (sav->natt_type == 0)
continue;
m = key_setsadbxport(
key_portfromsaddr(&sav->sah->saidx.src),
SADB_X_EXT_NAT_T_SPORT);
break;
case SADB_X_EXT_NAT_T_FRAG:
/* don't send frag info if not set */
if (sav->natt_type == 0 || sav->esp_frag == IP_MAXPACKET)
continue;
m = key_setsadbxfrag(sav->esp_frag);
break;
case SADB_X_EXT_NAT_T_OAI:
case SADB_X_EXT_NAT_T_OAR:
continue;
case SADB_EXT_ADDRESS_PROXY:
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
/* XXX: should we brought from SPD ? */
case SADB_EXT_SENSITIVITY:
default:
continue;
}
KASSERT(!(m && p));
KASSERT(m != NULL || p != NULL);
if (p && tres) {
M_PREPEND(tres, l, M_WAITOK);
memcpy(mtod(tres, void *), p, l);
continue;
}
if (p) {
m = key_alloc_mbuf(l, M_WAITOK);
m_copyback(m, 0, l, p);
}
if (tres)
m_cat(m, tres);
tres = m;
}
m_cat(result, tres);
tres = NULL; /* avoid free on error below */
KASSERT(result->m_len >= sizeof(struct sadb_msg));
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
return result;
}
/*
* set a type in sadb_x_nat_t_type
*/
static struct mbuf *
key_setsadbxtype(u_int16_t type)
{
struct mbuf *m;
size_t len;
struct sadb_x_nat_t_type *p;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
p = mtod(m, struct sadb_x_nat_t_type *);
memset(p, 0, len);
p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
p->sadb_x_nat_t_type_type = type;
return m;
}
/*
* set a port in sadb_x_nat_t_port. port is in network order
*/
static struct mbuf *
key_setsadbxport(u_int16_t port, u_int16_t type)
{
struct mbuf *m;
size_t len;
struct sadb_x_nat_t_port *p;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
p = mtod(m, struct sadb_x_nat_t_port *);
memset(p, 0, len);
p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
p->sadb_x_nat_t_port_exttype = type;
p->sadb_x_nat_t_port_port = port;
return m;
}
/*
* set fragmentation info in sadb_x_nat_t_frag
*/
static struct mbuf *
key_setsadbxfrag(u_int16_t flen)
{
struct mbuf *m;
size_t len;
struct sadb_x_nat_t_frag *p;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_frag));
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
p = mtod(m, struct sadb_x_nat_t_frag *);
memset(p, 0, len);
p->sadb_x_nat_t_frag_len = PFKEY_UNIT64(len);
p->sadb_x_nat_t_frag_exttype = SADB_X_EXT_NAT_T_FRAG;
p->sadb_x_nat_t_frag_fraglen = flen;
return m;
}
/*
* Get port from sockaddr, port is in network order
*/
u_int16_t
key_portfromsaddr(const union sockaddr_union *saddr)
{
u_int16_t port;
switch (saddr->sa.sa_family) {
case AF_INET: {
port = saddr->sin.sin_port;
break;
}
#ifdef INET6
case AF_INET6: {
port = saddr->sin6.sin6_port;
break;
}
#endif
default:
printf("%s: unexpected address family\n", __func__);
port = 0;
break;
}
return port;
}
/*
* Set port is struct sockaddr. port is in network order
*/
static void
key_porttosaddr(union sockaddr_union *saddr, u_int16_t port)
{
switch (saddr->sa.sa_family) {
case AF_INET: {
saddr->sin.sin_port = port;
break;
}
#ifdef INET6
case AF_INET6: {
saddr->sin6.sin6_port = port;
break;
}
#endif
default:
printf("%s: unexpected address family %d\n", __func__,
saddr->sa.sa_family);
break;
}
return;
}
/*
* Safety check sa_len
*/
static int
key_checksalen(const union sockaddr_union *saddr)
{
switch (saddr->sa.sa_family) {
case AF_INET:
if (saddr->sa.sa_len != sizeof(struct sockaddr_in))
return -1;
break;
#ifdef INET6
case AF_INET6:
if (saddr->sa.sa_len != sizeof(struct sockaddr_in6))
return -1;
break;
#endif
default:
printf("%s: unexpected sa_family %d\n", __func__,
saddr->sa.sa_family);
return -1;
break;
}
return 0;
}
/*
* set data into sadb_msg.
*/
static struct mbuf *
key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype,
u_int32_t seq, pid_t pid, u_int16_t reserved, int mflag)
{
struct mbuf *m;
struct sadb_msg *p;
int len;
CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) <= MCLBYTES);
len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
m = key_alloc_mbuf_simple(len, mflag);
if (!m)
return NULL;
m->m_pkthdr.len = m->m_len = len;
m->m_next = NULL;
p = mtod(m, struct sadb_msg *);
memset(p, 0, len);
p->sadb_msg_version = PF_KEY_V2;
p->sadb_msg_type = type;
p->sadb_msg_errno = 0;
p->sadb_msg_satype = satype;
p->sadb_msg_len = PFKEY_UNIT64(tlen);
p->sadb_msg_reserved = reserved;
p->sadb_msg_seq = seq;
p->sadb_msg_pid = (u_int32_t)pid;
return m;
}
/*
* copy secasvar data into sadb_address.
*/
static struct mbuf *
key_setsadbsa(struct secasvar *sav)
{
struct mbuf *m;
struct sadb_sa *p;
int len;
len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
p = mtod(m, struct sadb_sa *);
memset(p, 0, len);
p->sadb_sa_len = PFKEY_UNIT64(len);
p->sadb_sa_exttype = SADB_EXT_SA;
p->sadb_sa_spi = sav->spi;
p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
p->sadb_sa_state = sav->state;
p->sadb_sa_auth = sav->alg_auth;
p->sadb_sa_encrypt = sav->alg_enc;
p->sadb_sa_flags = sav->flags;
return m;
}
/*
* set data into sadb_address.
*/
static struct mbuf *
key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr,
u_int8_t prefixlen, u_int16_t ul_proto, int mflag)
{
struct mbuf *m;
struct sadb_address *p;
size_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
PFKEY_ALIGN8(saddr->sa_len);
m = key_alloc_mbuf(len, mflag);
if (!m || m->m_next) { /*XXX*/
if (m)
m_freem(m);
return NULL;
}
p = mtod(m, struct sadb_address *);
memset(p, 0, len);
p->sadb_address_len = PFKEY_UNIT64(len);
p->sadb_address_exttype = exttype;
p->sadb_address_proto = ul_proto;
if (prefixlen == FULLMASK) {
switch (saddr->sa_family) {
case AF_INET:
prefixlen = sizeof(struct in_addr) << 3;
break;
case AF_INET6:
prefixlen = sizeof(struct in6_addr) << 3;
break;
default:
; /*XXX*/
}
}
p->sadb_address_prefixlen = prefixlen;
p->sadb_address_reserved = 0;
memcpy(mtod(m, char *) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
saddr, saddr->sa_len);
return m;
}
#if 0
/*
* set data into sadb_ident.
*/
static struct mbuf *
key_setsadbident(u_int16_t exttype, u_int16_t idtype,
void *string, int stringlen, u_int64_t id)
{
struct mbuf *m;
struct sadb_ident *p;
size_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_ident)) + PFKEY_ALIGN8(stringlen);
m = key_alloc_mbuf(len);
if (!m || m->m_next) { /*XXX*/
if (m)
m_freem(m);
return NULL;
}
p = mtod(m, struct sadb_ident *);
memset(p, 0, len);
p->sadb_ident_len = PFKEY_UNIT64(len);
p->sadb_ident_exttype = exttype;
p->sadb_ident_type = idtype;
p->sadb_ident_reserved = 0;
p->sadb_ident_id = id;
memcpy(mtod(m, void *) + PFKEY_ALIGN8(sizeof(struct sadb_ident)),
string, stringlen);
return m;
}
#endif
/*
* set data into sadb_x_sa2.
*/
static struct mbuf *
key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int16_t reqid)
{
struct mbuf *m;
struct sadb_x_sa2 *p;
size_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
p = mtod(m, struct sadb_x_sa2 *);
memset(p, 0, len);
p->sadb_x_sa2_len = PFKEY_UNIT64(len);
p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
p->sadb_x_sa2_mode = mode;
p->sadb_x_sa2_reserved1 = 0;
p->sadb_x_sa2_reserved2 = 0;
p->sadb_x_sa2_sequence = seq;
p->sadb_x_sa2_reqid = reqid;
return m;
}
/*
* set data into sadb_x_policy
*/
static struct mbuf *
key_setsadbxpolicy(const u_int16_t type, const u_int8_t dir, const u_int32_t id,
int mflag)
{
struct mbuf *m;
struct sadb_x_policy *p;
size_t len;
len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
m = key_alloc_mbuf(len, mflag);
if (!m || m->m_next) { /*XXX*/
if (m)
m_freem(m);
return NULL;
}
p = mtod(m, struct sadb_x_policy *);
memset(p, 0, len);
p->sadb_x_policy_len = PFKEY_UNIT64(len);
p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
p->sadb_x_policy_type = type;
p->sadb_x_policy_dir = dir;
p->sadb_x_policy_id = id;
return m;
}
/* %%% utilities */
/*
* copy a buffer into the new buffer allocated.
*/
static void *
key_newbuf(const void *src, u_int len)
{
void *new;
new = kmem_alloc(len, KM_SLEEP);
memcpy(new, src, len);
return new;
}
/* compare my own address
* OUT: 1: true, i.e. my address.
* 0: false
*/
int
key_ismyaddr(const struct sockaddr *sa)
{
#ifdef INET
const struct sockaddr_in *sin;
const struct in_ifaddr *ia;
int s;
#endif
KASSERT(sa != NULL);
switch (sa->sa_family) {
#ifdef INET
case AF_INET:
sin = (const struct sockaddr_in *)sa;
s = pserialize_read_enter();
IN_ADDRLIST_READER_FOREACH(ia) {
if (sin->sin_family == ia->ia_addr.sin_family &&
sin->sin_len == ia->ia_addr.sin_len &&
sin->sin_addr.s_addr == ia->ia_addr.sin_addr.s_addr)
{
pserialize_read_exit(s);
return 1;
}
}
pserialize_read_exit(s);
break;
#endif
#ifdef INET6
case AF_INET6:
return key_ismyaddr6((const struct sockaddr_in6 *)sa);
#endif
}
return 0;
}
#ifdef INET6
/*
* compare my own address for IPv6.
* 1: ours
* 0: other
* NOTE: derived ip6_input() in KAME. This is necessary to modify more.
*/
#include <netinet6/in6_var.h>
static int
key_ismyaddr6(const struct sockaddr_in6 *sin6)
{
struct in6_ifaddr *ia;
int s;
struct psref psref;
int bound;
int ours = 1;
bound = curlwp_bind();
s = pserialize_read_enter();
IN6_ADDRLIST_READER_FOREACH(ia) {
bool ingroup;
if (key_sockaddr_match((const struct sockaddr *)&sin6,
(const struct sockaddr *)&ia->ia_addr, 0)) {
pserialize_read_exit(s);
goto ours;
}
ia6_acquire(ia, &psref);
pserialize_read_exit(s);
/*
* XXX Multicast
* XXX why do we care about multlicast here while we don't care
* about IPv4 multicast??
* XXX scope
*/
ingroup = in6_multi_group(&sin6->sin6_addr, ia->ia_ifp);
if (ingroup) {
ia6_release(ia, &psref);
goto ours;
}
s = pserialize_read_enter();
ia6_release(ia, &psref);
}
pserialize_read_exit(s);
/* loopback, just for safety */
if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
goto ours;
ours = 0;
ours:
curlwp_bindx(bound);
return ours;
}
#endif /*INET6*/
/*
* compare two secasindex structure.
* flag can specify to compare 2 saidxes.
* compare two secasindex structure without both mode and reqid.
* don't compare port.
* IN:
* saidx0: source, it can be in SAD.
* saidx1: object.
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_saidx_match(
const struct secasindex *saidx0,
const struct secasindex *saidx1,
int flag)
{
int chkport;
const struct sockaddr *sa0src, *sa0dst, *sa1src, *sa1dst;
KASSERT(saidx0 != NULL);
KASSERT(saidx1 != NULL);
/* sanity */
if (saidx0->proto != saidx1->proto)
return 0;
if (flag == CMP_EXACTLY) {
if (saidx0->mode != saidx1->mode)
return 0;
if (saidx0->reqid != saidx1->reqid)
return 0;
if (memcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
memcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
return 0;
} else {
/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
if (flag == CMP_MODE_REQID ||flag == CMP_REQID) {
/*
* If reqid of SPD is non-zero, unique SA is required.
* The result must be of same reqid in this case.
*/
if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
return 0;
}
if (flag == CMP_MODE_REQID) {
if (saidx0->mode != IPSEC_MODE_ANY &&
saidx0->mode != saidx1->mode)
return 0;
}
sa0src = &saidx0->src.sa;
sa0dst = &saidx0->dst.sa;
sa1src = &saidx1->src.sa;
sa1dst = &saidx1->dst.sa;
/*
* If NAT-T is enabled, check ports for tunnel mode.
* Don't do it for transport mode, as there is no
* port information available in the SP.
* Also don't check ports if they are set to zero
* in the SPD: This means we have a non-generated
* SPD which can't know UDP ports.
*/
if (saidx1->mode == IPSEC_MODE_TUNNEL)
chkport = PORT_LOOSE;
else
chkport = PORT_NONE;
if (!key_sockaddr_match(sa0src, sa1src, chkport)) {
return 0;
}
if (!key_sockaddr_match(sa0dst, sa1dst, chkport)) {
return 0;
}
}
return 1;
}
/*
* compare two secindex structure exactly.
* IN:
* spidx0: source, it is often in SPD.
* spidx1: object, it is often from PFKEY message.
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_spidx_match_exactly(
const struct secpolicyindex *spidx0,
const struct secpolicyindex *spidx1)
{
KASSERT(spidx0 != NULL);
KASSERT(spidx1 != NULL);
/* sanity */
if (spidx0->prefs != spidx1->prefs ||
spidx0->prefd != spidx1->prefd ||
spidx0->ul_proto != spidx1->ul_proto)
return 0;
return key_sockaddr_match(&spidx0->src.sa, &spidx1->src.sa, PORT_STRICT) &&
key_sockaddr_match(&spidx0->dst.sa, &spidx1->dst.sa, PORT_STRICT);
}
/*
* compare two secindex structure with mask.
* IN:
* spidx0: source, it is often in SPD.
* spidx1: object, it is often from IP header.
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_spidx_match_withmask(
const struct secpolicyindex *spidx0,
const struct secpolicyindex *spidx1)
{
KASSERT(spidx0 != NULL);
KASSERT(spidx1 != NULL);
if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
return 0;
/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY &&
spidx0->ul_proto != spidx1->ul_proto)
return 0;
switch (spidx0->src.sa.sa_family) {
case AF_INET:
if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY &&
spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
return 0;
if (!key_bb_match_withmask(&spidx0->src.sin.sin_addr,
&spidx1->src.sin.sin_addr, spidx0->prefs))
return 0;
break;
case AF_INET6:
if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY &&
spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
return 0;
/*
* scope_id check. if sin6_scope_id is 0, we regard it
* as a wildcard scope, which matches any scope zone ID.
*/
if (spidx0->src.sin6.sin6_scope_id &&
spidx1->src.sin6.sin6_scope_id &&
spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
return 0;
if (!key_bb_match_withmask(&spidx0->src.sin6.sin6_addr,
&spidx1->src.sin6.sin6_addr, spidx0->prefs))
return 0;
break;
default:
/* XXX */
if (memcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
return 0;
break;
}
switch (spidx0->dst.sa.sa_family) {
case AF_INET:
if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY &&
spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
return 0;
if (!key_bb_match_withmask(&spidx0->dst.sin.sin_addr,
&spidx1->dst.sin.sin_addr, spidx0->prefd))
return 0;
break;
case AF_INET6:
if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY &&
spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
return 0;
/*
* scope_id check. if sin6_scope_id is 0, we regard it
* as a wildcard scope, which matches any scope zone ID.
*/
if (spidx0->src.sin6.sin6_scope_id &&
spidx1->src.sin6.sin6_scope_id &&
spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
return 0;
if (!key_bb_match_withmask(&spidx0->dst.sin6.sin6_addr,
&spidx1->dst.sin6.sin6_addr, spidx0->prefd))
return 0;
break;
default:
/* XXX */
if (memcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
return 0;
break;
}
/* XXX Do we check other field ? e.g. flowinfo */
return 1;
}
/* returns 0 on match */
static int
key_portcomp(in_port_t port1, in_port_t port2, int howport)
{
switch (howport) {
case PORT_NONE:
return 0;
case PORT_LOOSE:
if (port1 == 0 || port2 == 0)
return 0;
/*FALLTHROUGH*/
case PORT_STRICT:
if (port1 != port2) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"port fail %d != %d\n", port1, port2);
return 1;
}
return 0;
default:
KASSERT(0);
return 1;
}
}
/* returns 1 on match */
static int
key_sockaddr_match(
const struct sockaddr *sa1,
const struct sockaddr *sa2,
int howport)
{
const struct sockaddr_in *sin1, *sin2;
const struct sockaddr_in6 *sin61, *sin62;
char s1[IPSEC_ADDRSTRLEN], s2[IPSEC_ADDRSTRLEN];
if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"fam/len fail %d != %d || %d != %d\n",
sa1->sa_family, sa2->sa_family, sa1->sa_len,
sa2->sa_len);
return 0;
}
switch (sa1->sa_family) {
case AF_INET:
if (sa1->sa_len != sizeof(struct sockaddr_in)) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"len fail %d != %zu\n",
sa1->sa_len, sizeof(struct sockaddr_in));
return 0;
}
sin1 = (const struct sockaddr_in *)sa1;
sin2 = (const struct sockaddr_in *)sa2;
if (sin1->sin_addr.s_addr != sin2->sin_addr.s_addr) {
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"addr fail %s != %s\n",
(in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
(in_print(s2, sizeof(s2), &sin2->sin_addr), s2));
return 0;
}
if (key_portcomp(sin1->sin_port, sin2->sin_port, howport)) {
return 0;
}
KEYDEBUG_PRINTF(KEYDEBUG_MATCH,
"addr success %s[%d] == %s[%d]\n",
(in_print(s1, sizeof(s1), &sin1->sin_addr), s1),
sin1->sin_port,
(in_print(s2, sizeof(s2), &sin2->sin_addr), s2),
sin2->sin_port);
break;
case AF_INET6:
sin61 = (const struct sockaddr_in6 *)sa1;
sin62 = (const struct sockaddr_in6 *)sa2;
if (sa1->sa_len != sizeof(struct sockaddr_in6))
return 0; /*EINVAL*/
if (sin61->sin6_scope_id != sin62->sin6_scope_id) {
return 0;
}
if (!IN6_ARE_ADDR_EQUAL(&sin61->sin6_addr, &sin62->sin6_addr)) {
return 0;
}
if (key_portcomp(sin61->sin6_port, sin62->sin6_port, howport)) {
return 0;
}
break;
default:
if (memcmp(sa1, sa2, sa1->sa_len) != 0)
return 0;
break;
}
return 1;
}
/*
* compare two buffers with mask.
* IN:
* addr1: source
* addr2: object
* bits: Number of bits to compare
* OUT:
* 1 : equal
* 0 : not equal
*/
static int
key_bb_match_withmask(const void *a1, const void *a2, u_int bits)
{
const unsigned char *p1 = a1;
const unsigned char *p2 = a2;
/* XXX: This could be considerably faster if we compare a word
* at a time, but it is complicated on LSB Endian machines */
/* Handle null pointers */
if (p1 == NULL || p2 == NULL)
return (p1 == p2);
while (bits >= 8) {
if (*p1++ != *p2++)
return 0;
bits -= 8;
}
if (bits > 0) {
u_int8_t mask = ~((1<<(8-bits))-1);
if ((*p1 & mask) != (*p2 & mask))
return 0;
}
return 1; /* Match! */
}
static void
key_timehandler_spd(time_t now)
{
u_int dir;
struct secpolicy *sp;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
retry:
mutex_enter(&key_spd.lock);
SPLIST_WRITER_FOREACH(sp, dir) {
KASSERT(sp->state != IPSEC_SPSTATE_DEAD);
if (sp->lifetime == 0 && sp->validtime == 0)
continue;
if ((sp->lifetime && now - sp->created > sp->lifetime) ||
(sp->validtime && now - sp->lastused > sp->validtime)) {
key_unlink_sp(sp);
mutex_exit(&key_spd.lock);
key_spdexpire(sp);
key_destroy_sp(sp);
goto retry;
}
}
mutex_exit(&key_spd.lock);
}
retry_socksplist:
mutex_enter(&key_spd.lock);
SOCKSPLIST_WRITER_FOREACH(sp) {
if (sp->state != IPSEC_SPSTATE_DEAD)
continue;
key_unlink_sp(sp);
mutex_exit(&key_spd.lock);
key_destroy_sp(sp);
goto retry_socksplist;
}
mutex_exit(&key_spd.lock);
}
static void
key_timehandler_sad(time_t now)
{
struct secashead *sah;
int s;
restart:
mutex_enter(&key_sad.lock);
SAHLIST_WRITER_FOREACH(sah) {
/* If sah has been dead and has no sav, then delete it */
if (sah->state == SADB_SASTATE_DEAD &&
!key_sah_has_sav(sah)) {
key_unlink_sah(sah);
mutex_exit(&key_sad.lock);
key_destroy_sah(sah);
goto restart;
}
}
mutex_exit(&key_sad.lock);
s = pserialize_read_enter();
SAHLIST_READER_FOREACH(sah) {
struct secasvar *sav;
key_sah_ref(sah);
pserialize_read_exit(s);
/* if LARVAL entry doesn't become MATURE, delete it. */
mutex_enter(&key_sad.lock);
restart_sav_LARVAL:
SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_LARVAL) {
if (now - sav->created > key_larval_lifetime) {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
goto restart_sav_LARVAL;
}
}
mutex_exit(&key_sad.lock);
/*
* check MATURE entry to start to send expire message
* whether or not.
*/
restart_sav_MATURE:
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_MATURE) {
/* we don't need to check. */
if (sav->lft_s == NULL)
continue;
/* sanity check */
KASSERT(sav->lft_c != NULL);
/* check SOFT lifetime */
if (sav->lft_s->sadb_lifetime_addtime != 0 &&
now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
/*
* check SA to be used whether or not.
* when SA hasn't been used, delete it.
*/
if (sav->lft_c->sadb_lifetime_usetime == 0) {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
mutex_exit(&key_sad.lock);
} else {
key_sa_chgstate(sav, SADB_SASTATE_DYING);
mutex_exit(&key_sad.lock);
/*
* XXX If we keep to send expire
* message in the status of
* DYING. Do remove below code.
*/
key_expire(sav);
}
goto restart_sav_MATURE;
}
/* check SOFT lifetime by bytes */
/*
* XXX I don't know the way to delete this SA
* when new SA is installed. Caution when it's
* installed too big lifetime by time.
*/
else {
uint64_t lft_c_bytes = 0;
lifetime_counters_t sum = {0};
percpu_foreach(sav->lft_c_counters_percpu,
key_sum_lifetime_counters, sum);
lft_c_bytes = sum[LIFETIME_COUNTER_BYTES];
if (sav->lft_s->sadb_lifetime_bytes == 0 ||
sav->lft_s->sadb_lifetime_bytes >= lft_c_bytes)
continue;
key_sa_chgstate(sav, SADB_SASTATE_DYING);
mutex_exit(&key_sad.lock);
/*
* XXX If we keep to send expire
* message in the status of
* DYING. Do remove below code.
*/
key_expire(sav);
goto restart_sav_MATURE;
}
}
mutex_exit(&key_sad.lock);
/* check DYING entry to change status to DEAD. */
mutex_enter(&key_sad.lock);
restart_sav_DYING:
SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DYING) {
/* we don't need to check. */
if (sav->lft_h == NULL)
continue;
/* sanity check */
KASSERT(sav->lft_c != NULL);
if (sav->lft_h->sadb_lifetime_addtime != 0 &&
now - sav->created > sav->lft_h->sadb_lifetime_addtime) {
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
goto restart_sav_DYING;
}
#if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */
else if (sav->lft_s != NULL
&& sav->lft_s->sadb_lifetime_addtime != 0
&& now - sav->created > sav->lft_s->sadb_lifetime_addtime) {
/*
* XXX: should be checked to be
* installed the valid SA.
*/
/*
* If there is no SA then sending
* expire message.
*/
key_expire(sav);
}
#endif
/* check HARD lifetime by bytes */
else {
uint64_t lft_c_bytes = 0;
lifetime_counters_t sum = {0};
percpu_foreach(sav->lft_c_counters_percpu,
key_sum_lifetime_counters, sum);
lft_c_bytes = sum[LIFETIME_COUNTER_BYTES];
if (sav->lft_h->sadb_lifetime_bytes == 0 ||
sav->lft_h->sadb_lifetime_bytes >= lft_c_bytes)
continue;
key_sa_chgstate(sav, SADB_SASTATE_DEAD);
goto restart_sav_DYING;
}
}
mutex_exit(&key_sad.lock);
/* delete entry in DEAD */
restart_sav_DEAD:
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_FOREACH(sav, sah, SADB_SASTATE_DEAD) {
key_unlink_sav(sav);
mutex_exit(&key_sad.lock);
key_destroy_sav(sav);
goto restart_sav_DEAD;
}
mutex_exit(&key_sad.lock);
s = pserialize_read_enter();
key_sah_unref(sah);
}
pserialize_read_exit(s);
}
static void
key_timehandler_acq(time_t now)
{
#ifndef IPSEC_NONBLOCK_ACQUIRE
struct secacq *acq, *nextacq;
restart:
mutex_enter(&key_misc.lock);
LIST_FOREACH_SAFE(acq, &key_misc.acqlist, chain, nextacq) {
if (now - acq->created > key_blockacq_lifetime) {
LIST_REMOVE(acq, chain);
mutex_exit(&key_misc.lock);
kmem_free(acq, sizeof(*acq));
goto restart;
}
}
mutex_exit(&key_misc.lock);
#endif
}
static void
key_timehandler_spacq(time_t now)
{
#ifdef notyet
struct secspacq *acq, *nextacq;
LIST_FOREACH_SAFE(acq, &key_misc.spacqlist, chain, nextacq) {
if (now - acq->created > key_blockacq_lifetime) {
KASSERT(__LIST_CHAINED(acq));
LIST_REMOVE(acq, chain);
kmem_free(acq, sizeof(*acq));
}
}
#endif
}
static unsigned int key_timehandler_work_enqueued = 0;
/*
* time handler.
* scanning SPD and SAD to check status for each entries,
* and do to remove or to expire.
*/
static void
key_timehandler_work(struct work *wk, void *arg)
{
time_t now = time_uptime;
/* We can allow enqueuing another work at this point */
atomic_swap_uint(&key_timehandler_work_enqueued, 0);
key_timehandler_spd(now);
key_timehandler_sad(now);
key_timehandler_acq(now);
key_timehandler_spacq(now);
key_acquire_sendup_pending_mbuf();
/* do exchange to tick time !! */
callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
return;
}
static void
key_timehandler(void *arg)
{
/* Avoid enqueuing another work when one is already enqueued */
if (atomic_swap_uint(&key_timehandler_work_enqueued, 1) == 1)
return;
workqueue_enqueue(key_timehandler_wq, &key_timehandler_wk, NULL);
}
u_long
key_random(void)
{
u_long value;
key_randomfill(&value, sizeof(value));
return value;
}
void
key_randomfill(void *p, size_t l)
{
cprng_fast(p, l);
}
/*
* map SADB_SATYPE_* to IPPROTO_*.
* if satype == SADB_SATYPE then satype is mapped to ~0.
* OUT:
* 0: invalid satype.
*/
static u_int16_t
key_satype2proto(u_int8_t satype)
{
switch (satype) {
case SADB_SATYPE_UNSPEC:
return IPSEC_PROTO_ANY;
case SADB_SATYPE_AH:
return IPPROTO_AH;
case SADB_SATYPE_ESP:
return IPPROTO_ESP;
case SADB_X_SATYPE_IPCOMP:
return IPPROTO_IPCOMP;
case SADB_X_SATYPE_TCPSIGNATURE:
return IPPROTO_TCP;
default:
return 0;
}
/* NOTREACHED */
}
/*
* map IPPROTO_* to SADB_SATYPE_*
* OUT:
* 0: invalid protocol type.
*/
static u_int8_t
key_proto2satype(u_int16_t proto)
{
switch (proto) {
case IPPROTO_AH:
return SADB_SATYPE_AH;
case IPPROTO_ESP:
return SADB_SATYPE_ESP;
case IPPROTO_IPCOMP:
return SADB_X_SATYPE_IPCOMP;
case IPPROTO_TCP:
return SADB_X_SATYPE_TCPSIGNATURE;
default:
return 0;
}
/* NOTREACHED */
}
static int
key_setsecasidx(int proto, int mode, int reqid,
const struct sockaddr *src, const struct sockaddr *dst,
struct secasindex * saidx)
{
const union sockaddr_union *src_u = (const union sockaddr_union *)src;
const union sockaddr_union *dst_u = (const union sockaddr_union *)dst;
/* sa len safety check */
if (key_checksalen(src_u) != 0)
return -1;
if (key_checksalen(dst_u) != 0)
return -1;
memset(saidx, 0, sizeof(*saidx));
saidx->proto = proto;
saidx->mode = mode;
saidx->reqid = reqid;
memcpy(&saidx->src, src_u, src_u->sa.sa_len);
memcpy(&saidx->dst, dst_u, dst_u->sa.sa_len);
key_porttosaddr(&((saidx)->src), 0);
key_porttosaddr(&((saidx)->dst), 0);
return 0;
}
static void
key_init_spidx_bymsghdr(struct secpolicyindex *spidx,
const struct sadb_msghdr *mhp)
{
const struct sadb_address *src0, *dst0;
const struct sockaddr *src, *dst;
const struct sadb_x_policy *xpl0;
src0 = mhp->ext[SADB_EXT_ADDRESS_SRC];
dst0 = mhp->ext[SADB_EXT_ADDRESS_DST];
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
xpl0 = mhp->ext[SADB_X_EXT_POLICY];
memset(spidx, 0, sizeof(*spidx));
spidx->dir = xpl0->sadb_x_policy_dir;
spidx->prefs = src0->sadb_address_prefixlen;
spidx->prefd = dst0->sadb_address_prefixlen;
spidx->ul_proto = src0->sadb_address_proto;
/* XXX boundary check against sa_len */
memcpy(&spidx->src, src, src->sa_len);
memcpy(&spidx->dst, dst, dst->sa_len);
}
/* %%% PF_KEY */
/*
* SADB_GETSPI processing is to receive
* <base, (SA2), src address, dst address, (SPI range)>
* from the IKMPd, to assign a unique spi value, to hang on the INBOUND
* tree with the status of LARVAL, and send
* <base, SA(*), address(SD)>
* to the IKMPd.
*
* IN: mhp: pointer to the pointer to each header.
* OUT: NULL if fail.
* other if success, return pointer to the message to send.
*/
static int
key_api_getspi(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
const struct sockaddr *src, *dst;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *newsav;
u_int8_t proto;
u_int32_t spi;
u_int8_t mode;
u_int16_t reqid;
int error;
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
mode = sa2->sadb_x_sa2_mode;
reqid = sa2->sadb_x_sa2_reqid;
} else {
mode = IPSEC_MODE_ANY;
reqid = 0;
}
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
/* map satype to proto */
proto = key_satype2proto(mhp->msg->sadb_msg_satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
/* SPI allocation */
spi = key_do_getnewspi(mhp->ext[SADB_EXT_SPIRANGE], &saidx);
if (spi == 0)
return key_senderror(so, m, EINVAL);
/* get a SA index */
sah = key_getsah_ref(&saidx, CMP_REQID);
if (sah == NULL) {
/* create a new SA index */
sah = key_newsah(&saidx);
if (sah == NULL) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return key_senderror(so, m, ENOBUFS);
}
}
/* get a new SA */
/* XXX rewrite */
newsav = KEY_NEWSAV(m, mhp, &error);
if (newsav == NULL) {
key_sah_unref(sah);
/* XXX don't free new SA index allocated in above. */
return key_senderror(so, m, error);
}
/* set spi */
newsav->spi = htonl(spi);
/* Add to sah#savlist */
key_init_sav(newsav);
newsav->sah = sah;
newsav->state = SADB_SASTATE_LARVAL;
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_LARVAL, newsav);
mutex_exit(&key_sad.lock);
key_validate_savlist(sah, SADB_SASTATE_LARVAL);
key_sah_unref(sah);
#ifndef IPSEC_NONBLOCK_ACQUIRE
/* delete the entry in key_misc.acqlist */
if (mhp->msg->sadb_msg_seq != 0) {
struct secacq *acq;
mutex_enter(&key_misc.lock);
acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
if (acq != NULL) {
/* reset counter in order to deletion by timehandler. */
acq->created = time_uptime;
acq->count = 0;
}
mutex_exit(&key_misc.lock);
}
#endif
{
struct mbuf *n, *nn;
struct sadb_sa *m_sa;
int off, len;
CTASSERT(PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
PFKEY_ALIGN8(sizeof(struct sadb_sa)) <= MCLBYTES);
/* create new sadb_msg to reply. */
len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
PFKEY_ALIGN8(sizeof(struct sadb_sa));
n = key_alloc_mbuf_simple(len, M_WAITOK);
n->m_len = len;
n->m_next = NULL;
off = 0;
m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
m_sa = (struct sadb_sa *)(mtod(n, char *) + off);
m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
m_sa->sadb_sa_exttype = SADB_EXT_SA;
m_sa->sadb_sa_spi = htonl(spi);
off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
KASSERTMSG(off == len, "length inconsistency");
n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
SADB_EXT_ADDRESS_DST);
KASSERT(n->m_len >= sizeof(struct sadb_msg));
n->m_pkthdr.len = 0;
for (nn = n; nn; nn = nn->m_next)
n->m_pkthdr.len += nn->m_len;
key_fill_replymsg(n, newsav->seq);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
}
}
/*
* allocating new SPI
* called by key_api_getspi().
* OUT:
* 0: failure.
* others: success.
*/
static u_int32_t
key_do_getnewspi(const struct sadb_spirange *spirange,
const struct secasindex *saidx)
{
u_int32_t newspi;
u_int32_t spmin, spmax;
int count = key_spi_trycnt;
/* set spi range to allocate */
if (spirange != NULL) {
spmin = spirange->sadb_spirange_min;
spmax = spirange->sadb_spirange_max;
} else {
spmin = key_spi_minval;
spmax = key_spi_maxval;
}
/* IPCOMP needs 2-byte SPI */
if (saidx->proto == IPPROTO_IPCOMP) {
u_int32_t t;
if (spmin >= 0x10000)
spmin = 0xffff;
if (spmax >= 0x10000)
spmax = 0xffff;
if (spmin > spmax) {
t = spmin; spmin = spmax; spmax = t;
}
}
if (spmin == spmax) {
if (key_checkspidup(saidx, htonl(spmin))) {
IPSECLOG(LOG_DEBUG, "SPI %u exists already.\n", spmin);
return 0;
}
count--; /* taking one cost. */
newspi = spmin;
} else {
/* init SPI */
newspi = 0;
/* when requesting to allocate spi ranged */
while (count--) {
/* generate pseudo-random SPI value ranged. */
newspi = spmin + (key_random() % (spmax - spmin + 1));
if (!key_checkspidup(saidx, htonl(newspi)))
break;
}
if (count == 0 || newspi == 0) {
IPSECLOG(LOG_DEBUG, "to allocate spi is failed.\n");
return 0;
}
}
/* statistics */
keystat.getspi_count =
(keystat.getspi_count + key_spi_trycnt - count) / 2;
return newspi;
}
static int
key_handle_natt_info(struct secasvar *sav,
const struct sadb_msghdr *mhp)
{
const char *msg = "?" ;
struct sadb_x_nat_t_type *type;
struct sadb_x_nat_t_port *sport, *dport;
struct sadb_address *iaddr, *raddr;
struct sadb_x_nat_t_frag *frag;
if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] == NULL ||
mhp->ext[SADB_X_EXT_NAT_T_SPORT] == NULL ||
mhp->ext[SADB_X_EXT_NAT_T_DPORT] == NULL)
return 0;
if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) {
msg = "TYPE";
goto bad;
}
if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) {
msg = "SPORT";
goto bad;
}
if (mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
msg = "DPORT";
goto bad;
}
if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) {
IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr)) {
msg = "OAI";
goto bad;
}
}
if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
if (mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
msg = "OAR";
goto bad;
}
}
if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
msg = "FRAG";
goto bad;
}
}
type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
iaddr = mhp->ext[SADB_X_EXT_NAT_T_OAI];
raddr = mhp->ext[SADB_X_EXT_NAT_T_OAR];
frag = mhp->ext[SADB_X_EXT_NAT_T_FRAG];
IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
type->sadb_x_nat_t_type_type,
ntohs(sport->sadb_x_nat_t_port_port),
ntohs(dport->sadb_x_nat_t_port_port));
sav->natt_type = type->sadb_x_nat_t_type_type;
key_porttosaddr(&sav->sah->saidx.src, sport->sadb_x_nat_t_port_port);
key_porttosaddr(&sav->sah->saidx.dst, dport->sadb_x_nat_t_port_port);
if (frag)
sav->esp_frag = frag->sadb_x_nat_t_frag_fraglen;
else
sav->esp_frag = IP_MAXPACKET;
return 0;
bad:
IPSECLOG(LOG_DEBUG, "invalid message %s\n", msg);
__USE(msg);
return -1;
}
/* Just update the IPSEC_NAT_T ports if present */
static int
key_set_natt_ports(union sockaddr_union *src, union sockaddr_union *dst,
const struct sadb_msghdr *mhp)
{
if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
IPSECLOG(LOG_DEBUG, "NAT-T OAi present\n");
if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
IPSECLOG(LOG_DEBUG, "NAT-T OAr present\n");
if ((mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL) &&
(mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL) &&
(mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL)) {
struct sadb_x_nat_t_type *type;
struct sadb_x_nat_t_port *sport;
struct sadb_x_nat_t_port *dport;
if ((mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type)) ||
(mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport)) ||
(mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport))) {
IPSECLOG(LOG_DEBUG, "invalid message\n");
return -1;
}
type = mhp->ext[SADB_X_EXT_NAT_T_TYPE];
sport = mhp->ext[SADB_X_EXT_NAT_T_SPORT];
dport = mhp->ext[SADB_X_EXT_NAT_T_DPORT];
key_porttosaddr(src, sport->sadb_x_nat_t_port_port);
key_porttosaddr(dst, dport->sadb_x_nat_t_port_port);
IPSECLOG(LOG_DEBUG, "type %d, sport = %d, dport = %d\n",
type->sadb_x_nat_t_type_type,
ntohs(sport->sadb_x_nat_t_port_port),
ntohs(dport->sadb_x_nat_t_port_port));
}
return 0;
}
/*
* SADB_UPDATE processing
* receive
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* key(AE), (identity(SD),) (sensitivity)>
* from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
* and send
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* (identity(SD),) (sensitivity)>
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_api_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0;
const struct sockaddr *src, *dst;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *sav, *newsav;
u_int16_t proto;
u_int8_t mode;
u_int16_t reqid;
int error;
/* map satype to proto */
proto = key_satype2proto(mhp->msg->sadb_msg_satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
mode = sa2->sadb_x_sa2_mode;
reqid = sa2->sadb_x_sa2_reqid;
} else {
mode = IPSEC_MODE_ANY;
reqid = 0;
}
/* XXX boundary checking for other extensions */
sa0 = mhp->ext[SADB_EXT_SA];
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
/* get a SA header */
sah = key_getsah_ref(&saidx, CMP_REQID);
if (sah == NULL) {
IPSECLOG(LOG_DEBUG, "no SA index found.\n");
return key_senderror(so, m, ENOENT);
}
/* set spidx if there */
/* XXX rewrite */
error = key_setident(sah, m, mhp);
if (error)
goto error_sah;
/* find a SA with sequence number. */
#ifdef IPSEC_DOSEQCHECK
if (mhp->msg->sadb_msg_seq != 0) {
sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq);
if (sav == NULL) {
IPSECLOG(LOG_DEBUG,
"no larval SA with sequence %u exists.\n",
mhp->msg->sadb_msg_seq);
error = ENOENT;
goto error_sah;
}
}
#else
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
if (sav == NULL) {
IPSECLOG(LOG_DEBUG, "no such a SA found (spi:%u)\n",
(u_int32_t)ntohl(sa0->sadb_sa_spi));
error = EINVAL;
goto error_sah;
}
#endif
/* validity check */
if (sav->sah->saidx.proto != proto) {
IPSECLOG(LOG_DEBUG, "protocol mismatched (DB=%u param=%u)\n",
sav->sah->saidx.proto, proto);
error = EINVAL;
goto error;
}
#ifdef IPSEC_DOSEQCHECK
if (sav->spi != sa0->sadb_sa_spi) {
IPSECLOG(LOG_DEBUG, "SPI mismatched (DB:%u param:%u)\n",
(u_int32_t)ntohl(sav->spi),
(u_int32_t)ntohl(sa0->sadb_sa_spi));
error = EINVAL;
goto error;
}
#endif
if (sav->pid != mhp->msg->sadb_msg_pid) {
IPSECLOG(LOG_DEBUG, "pid mismatched (DB:%u param:%u)\n",
sav->pid, mhp->msg->sadb_msg_pid);
error = EINVAL;
goto error;
}
/*
* Allocate a new SA instead of modifying the existing SA directly
* to avoid race conditions.
*/
newsav = kmem_zalloc(sizeof(struct secasvar), KM_SLEEP);
/* copy sav values */
newsav->spi = sav->spi;
newsav->seq = sav->seq;
newsav->created = sav->created;
newsav->pid = sav->pid;
newsav->sah = sav->sah;
error = key_setsaval(newsav, m, mhp);
if (error) {
key_delsav(newsav);
goto error;
}
error = key_handle_natt_info(newsav, mhp);
if (error != 0) {
key_delsav(newsav);
goto error;
}
error = key_init_xform(newsav);
if (error != 0) {
key_delsav(newsav);
goto error;
}
/* Add to sah#savlist */
key_init_sav(newsav);
newsav->state = SADB_SASTATE_MATURE;
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
SAVLUT_WRITER_INSERT_HEAD(newsav);
mutex_exit(&key_sad.lock);
key_validate_savlist(sah, SADB_SASTATE_MATURE);
key_sah_unref(sah);
sah = NULL;
key_destroy_sav_with_ref(sav);
sav = NULL;
{
struct mbuf *n;
/* set msg buf from mhp */
n = key_getmsgbuf_x1(m, mhp);
if (n == NULL) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return key_senderror(so, m, ENOBUFS);
}
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
error:
KEY_SA_UNREF(&sav);
error_sah:
key_sah_unref(sah);
return key_senderror(so, m, error);
}
/*
* search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
* only called by key_api_update().
* OUT:
* NULL : not found
* others : found, pointer to a SA.
*/
#ifdef IPSEC_DOSEQCHECK
static struct secasvar *
key_getsavbyseq(struct secashead *sah, u_int32_t seq)
{
struct secasvar *sav;
u_int state;
int s;
state = SADB_SASTATE_LARVAL;
/* search SAD with sequence number ? */
s = pserialize_read_enter();
SAVLIST_READER_FOREACH(sav, sah, state) {
KEY_CHKSASTATE(state, sav->state);
if (sav->seq == seq) {
SA_ADDREF(sav);
KEYDEBUG_PRINTF(KEYDEBUG_IPSEC_STAMP,
"DP cause refcnt++:%d SA:%p\n",
key_sa_refcnt(sav), sav);
break;
}
}
pserialize_read_exit(s);
return sav;
}
#endif
/*
* SADB_ADD processing
* add an entry to SA database, when received
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* key(AE), (identity(SD),) (sensitivity)>
* from the ikmpd,
* and send
* <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
* (identity(SD),) (sensitivity)>
* to the ikmpd.
*
* IGNORE identity and sensitivity messages.
*
* m will always be freed.
*/
static int
key_api_add(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0;
const struct sockaddr *src, *dst;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *newsav;
u_int16_t proto;
u_int8_t mode;
u_int16_t reqid;
int error;
/* map satype to proto */
proto = key_satype2proto(mhp->msg->sadb_msg_satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
(mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
(mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
/* XXX need more */
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
const struct sadb_x_sa2 *sa2 = mhp->ext[SADB_X_EXT_SA2];
mode = sa2->sadb_x_sa2_mode;
reqid = sa2->sadb_x_sa2_reqid;
} else {
mode = IPSEC_MODE_ANY;
reqid = 0;
}
sa0 = mhp->ext[SADB_EXT_SA];
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
error = key_setsecasidx(proto, mode, reqid, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
/* get a SA header */
sah = key_getsah_ref(&saidx, CMP_REQID);
if (sah == NULL) {
/* create a new SA header */
sah = key_newsah(&saidx);
if (sah == NULL) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return key_senderror(so, m, ENOBUFS);
}
}
/* set spidx if there */
/* XXX rewrite */
error = key_setident(sah, m, mhp);
if (error)
goto error;
{
struct secasvar *sav;
/* We can create new SA only if SPI is differenct. */
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
if (sav != NULL) {
KEY_SA_UNREF(&sav);
IPSECLOG(LOG_DEBUG, "SA already exists.\n");
error = EEXIST;
goto error;
}
}
/* create new SA entry. */
newsav = KEY_NEWSAV(m, mhp, &error);
if (newsav == NULL)
goto error;
newsav->sah = sah;
error = key_handle_natt_info(newsav, mhp);
if (error != 0) {
key_delsav(newsav);
error = EINVAL;
goto error;
}
error = key_init_xform(newsav);
if (error != 0) {
key_delsav(newsav);
goto error;
}
/* Add to sah#savlist */
key_init_sav(newsav);
newsav->state = SADB_SASTATE_MATURE;
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_INSERT_TAIL(sah, SADB_SASTATE_MATURE, newsav);
SAVLUT_WRITER_INSERT_HEAD(newsav);
mutex_exit(&key_sad.lock);
key_validate_savlist(sah, SADB_SASTATE_MATURE);
key_sah_unref(sah);
sah = NULL;
/*
* don't call key_freesav() here, as we would like to keep the SA
* in the database on success.
*/
{
struct mbuf *n;
/* set msg buf from mhp */
n = key_getmsgbuf_x1(m, mhp);
if (n == NULL) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return key_senderror(so, m, ENOBUFS);
}
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
error:
key_sah_unref(sah);
return key_senderror(so, m, error);
}
/* m is retained */
static int
key_setident(struct secashead *sah, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
const struct sadb_ident *idsrc, *iddst;
int idsrclen, iddstlen;
KASSERT(!cpu_softintr_p());
KASSERT(sah != NULL);
KASSERT(m != NULL);
KASSERT(mhp != NULL);
KASSERT(mhp->msg != NULL);
/*
* Can be called with an existing sah from key_api_update().
*/
if (sah->idents != NULL) {
kmem_free(sah->idents, sah->idents_len);
sah->idents = NULL;
sah->idents_len = 0;
}
if (sah->identd != NULL) {
kmem_free(sah->identd, sah->identd_len);
sah->identd = NULL;
sah->identd_len = 0;
}
/* don't make buffer if not there */
if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
sah->idents = NULL;
sah->identd = NULL;
return 0;
}
if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid identity.\n");
return EINVAL;
}
idsrc = mhp->ext[SADB_EXT_IDENTITY_SRC];
iddst = mhp->ext[SADB_EXT_IDENTITY_DST];
idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
/* validity check */
if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
IPSECLOG(LOG_DEBUG, "ident type mismatch.\n");
return EINVAL;
}
switch (idsrc->sadb_ident_type) {
case SADB_IDENTTYPE_PREFIX:
case SADB_IDENTTYPE_FQDN:
case SADB_IDENTTYPE_USERFQDN:
default:
/* XXX do nothing */
sah->idents = NULL;
sah->identd = NULL;
return 0;
}
/* make structure */
sah->idents = kmem_alloc(idsrclen, KM_SLEEP);
sah->idents_len = idsrclen;
sah->identd = kmem_alloc(iddstlen, KM_SLEEP);
sah->identd_len = iddstlen;
memcpy(sah->idents, idsrc, idsrclen);
memcpy(sah->identd, iddst, iddstlen);
return 0;
}
/*
* m will not be freed on return. It never return NULL.
* it is caller's responsibility to free the result.
*/
static struct mbuf *
key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp)
{
struct mbuf *n;
KASSERT(m != NULL);
KASSERT(mhp != NULL);
KASSERT(mhp->msg != NULL);
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, 15, SADB_EXT_RESERVED,
SADB_EXT_SA, SADB_X_EXT_SA2,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST,
SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT,
SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI,
SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NAT_T_FRAG);
KASSERT(n->m_len >= sizeof(struct sadb_msg));
mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
mtod(n, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(n->m_pkthdr.len);
return n;
}
static int key_delete_all (struct socket *, struct mbuf *,
const struct sadb_msghdr *, u_int16_t);
/*
* SADB_DELETE processing
* receive
* <base, SA(*), address(SD)>
* from the ikmpd, and set SADB_SASTATE_DEAD,
* and send,
* <base, SA(*), address(SD)>
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_api_delete(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0;
const struct sockaddr *src, *dst;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *sav = NULL;
u_int16_t proto;
int error;
/* map satype to proto */
proto = key_satype2proto(mhp->msg->sadb_msg_satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL) {
/*
* Caller wants us to delete all non-LARVAL SAs
* that match the src/dst. This is used during
* IKE INITIAL-CONTACT.
*/
IPSECLOG(LOG_DEBUG, "doing delete all.\n");
return key_delete_all(so, m, mhp, proto);
} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
sa0 = mhp->ext[SADB_EXT_SA];
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
/* get a SA header */
sah = key_getsah_ref(&saidx, CMP_HEAD);
if (sah != NULL) {
/* get a SA with SPI. */
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
key_sah_unref(sah);
}
if (sav == NULL) {
IPSECLOG(LOG_DEBUG, "no SA found.\n");
return key_senderror(so, m, ENOENT);
}
key_destroy_sav_with_ref(sav);
sav = NULL;
{
struct mbuf *n;
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
key_fill_replymsg(n, 0);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* delete all SAs for src/dst. Called from key_api_delete().
*/
static int
key_delete_all(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp, u_int16_t proto)
{
const struct sockaddr *src, *dst;
struct secasindex saidx;
struct secashead *sah;
struct secasvar *sav;
u_int state;
int error;
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
sah = key_getsah_ref(&saidx, CMP_HEAD);
if (sah != NULL) {
/* Delete all non-LARVAL SAs. */
SASTATE_ALIVE_FOREACH(state) {
if (state == SADB_SASTATE_LARVAL)
continue;
restart:
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_FOREACH(sav, sah, state) {
sav->state = SADB_SASTATE_DEAD;
key_unlink_sav(sav);
mutex_exit(&key_sad.lock);
key_destroy_sav(sav);
goto restart;
}
mutex_exit(&key_sad.lock);
}
key_sah_unref(sah);
}
{
struct mbuf *n;
/* create new sadb_msg to reply. */
n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
key_fill_replymsg(n, 0);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
}
}
/*
* SADB_GET processing
* receive
* <base, SA(*), address(SD)>
* from the ikmpd, and get a SP and a SA to respond,
* and send,
* <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
* (identity(SD),) (sensitivity)>
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_api_get(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_sa *sa0;
const struct sockaddr *src, *dst;
struct secasindex saidx;
struct secasvar *sav = NULL;
u_int16_t proto;
int error;
/* map satype to proto */
if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_SA] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
sa0 = mhp->ext[SADB_EXT_SA];
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
/* get a SA header */
{
struct secashead *sah;
int s = pserialize_read_enter();
sah = key_getsah(&saidx, CMP_HEAD);
if (sah != NULL) {
/* get a SA with SPI. */
sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
}
pserialize_read_exit(s);
}
if (sav == NULL) {
IPSECLOG(LOG_DEBUG, "no SA found.\n");
return key_senderror(so, m, ENOENT);
}
{
struct mbuf *n;
u_int8_t satype;
/* map proto to satype */
satype = key_proto2satype(sav->sah->saidx.proto);
if (satype == 0) {
KEY_SA_UNREF(&sav);
IPSECLOG(LOG_DEBUG, "there was invalid proto in SAD.\n");
return key_senderror(so, m, EINVAL);
}
/* create new sadb_msg to reply. */
n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
mhp->msg->sadb_msg_pid);
KEY_SA_UNREF(&sav);
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
}
}
/* XXX make it sysctl-configurable? */
static void
key_getcomb_setlifetime(struct sadb_comb *comb)
{
comb->sadb_comb_soft_allocations = 1;
comb->sadb_comb_hard_allocations = 1;
comb->sadb_comb_soft_bytes = 0;
comb->sadb_comb_hard_bytes = 0;
comb->sadb_comb_hard_addtime = 86400; /* 1 day */
comb->sadb_comb_soft_addtime = comb->sadb_comb_hard_addtime * 80 / 100;
comb->sadb_comb_hard_usetime = 28800; /* 8 hours */
comb->sadb_comb_soft_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
}
/*
* XXX reorder combinations by preference
* XXX no idea if the user wants ESP authentication or not
*/
static struct mbuf *
key_getcomb_esp(int mflag)
{
struct sadb_comb *comb;
const struct enc_xform *algo;
struct mbuf *result = NULL, *m, *n;
int encmin;
int i, off, o;
int totlen;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
m = NULL;
for (i = 1; i <= SADB_EALG_MAX; i++) {
algo = esp_algorithm_lookup(i);
if (algo == NULL)
continue;
/* discard algorithms with key size smaller than system min */
if (_BITS(algo->maxkey) < ipsec_esp_keymin)
continue;
if (_BITS(algo->minkey) < ipsec_esp_keymin)
encmin = ipsec_esp_keymin;
else
encmin = _BITS(algo->minkey);
if (ipsec_esp_auth)
m = key_getcomb_ah(mflag);
else {
KASSERTMSG(l <= MLEN,
"l=%u > MLEN=%lu", l, (u_long) MLEN);
MGET(m, mflag, MT_DATA);
if (m) {
M_ALIGN(m, l);
m->m_len = l;
m->m_next = NULL;
memset(mtod(m, void *), 0, m->m_len);
}
}
if (!m)
goto fail;
totlen = 0;
for (n = m; n; n = n->m_next)
totlen += n->m_len;
KASSERTMSG((totlen % l) == 0, "totlen=%u, l=%u", totlen, l);
for (off = 0; off < totlen; off += l) {
n = m_pulldown(m, off, l, &o);
if (!n) {
/* m is already freed */
goto fail;
}
comb = (struct sadb_comb *)(mtod(n, char *) + o);
memset(comb, 0, sizeof(*comb));
key_getcomb_setlifetime(comb);
comb->sadb_comb_encrypt = i;
comb->sadb_comb_encrypt_minbits = encmin;
comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
}
if (!result)
result = m;
else
m_cat(result, m);
}
return result;
fail:
if (result)
m_freem(result);
return NULL;
}
static void
key_getsizes_ah(const struct auth_hash *ah, int alg,
u_int16_t* ksmin, u_int16_t* ksmax)
{
*ksmin = *ksmax = ah->keysize;
if (ah->keysize == 0) {
/*
* Transform takes arbitrary key size but algorithm
* key size is restricted. Enforce this here.
*/
switch (alg) {
case SADB_X_AALG_MD5: *ksmin = *ksmax = 16; break;
case SADB_X_AALG_SHA: *ksmin = *ksmax = 20; break;
case SADB_X_AALG_NULL: *ksmin = 0; *ksmax = 256; break;
default:
IPSECLOG(LOG_DEBUG, "unknown AH algorithm %u\n", alg);
break;
}
}
}
/*
* XXX reorder combinations by preference
*/
static struct mbuf *
key_getcomb_ah(int mflag)
{
struct sadb_comb *comb;
const struct auth_hash *algo;
struct mbuf *m;
u_int16_t minkeysize, maxkeysize;
int i;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
m = NULL;
for (i = 1; i <= SADB_AALG_MAX; i++) {
#if 1
/* we prefer HMAC algorithms, not old algorithms */
if (i != SADB_AALG_SHA1HMAC &&
i != SADB_AALG_MD5HMAC &&
i != SADB_X_AALG_SHA2_256 &&
i != SADB_X_AALG_SHA2_384 &&
i != SADB_X_AALG_SHA2_512)
continue;
#endif
algo = ah_algorithm_lookup(i);
if (!algo)
continue;
key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
/* discard algorithms with key size smaller than system min */
if (_BITS(minkeysize) < ipsec_ah_keymin)
continue;
if (!m) {
KASSERTMSG(l <= MLEN,
"l=%u > MLEN=%lu", l, (u_long) MLEN);
MGET(m, mflag, MT_DATA);
if (m) {
M_ALIGN(m, l);
m->m_len = l;
m->m_next = NULL;
}
} else
M_PREPEND(m, l, mflag);
if (!m)
return NULL;
if (m->m_len < sizeof(struct sadb_comb)) {
m = m_pullup(m, sizeof(struct sadb_comb));
if (m == NULL)
return NULL;
}
comb = mtod(m, struct sadb_comb *);
memset(comb, 0, sizeof(*comb));
key_getcomb_setlifetime(comb);
comb->sadb_comb_auth = i;
comb->sadb_comb_auth_minbits = _BITS(minkeysize);
comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
}
return m;
}
/*
* not really an official behavior. discussed in pf_key@inner.net in Sep2000.
* XXX reorder combinations by preference
*/
static struct mbuf *
key_getcomb_ipcomp(int mflag)
{
struct sadb_comb *comb;
const struct comp_algo *algo;
struct mbuf *m;
int i;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
m = NULL;
for (i = 1; i <= SADB_X_CALG_MAX; i++) {
algo = ipcomp_algorithm_lookup(i);
if (!algo)
continue;
if (!m) {
KASSERTMSG(l <= MLEN,
"l=%u > MLEN=%lu", l, (u_long) MLEN);
MGET(m, mflag, MT_DATA);
if (m) {
M_ALIGN(m, l);
m->m_len = l;
m->m_next = NULL;
}
} else
M_PREPEND(m, l, mflag);
if (!m)
return NULL;
if (m->m_len < sizeof(struct sadb_comb)) {
m = m_pullup(m, sizeof(struct sadb_comb));
if (m == NULL)
return NULL;
}
comb = mtod(m, struct sadb_comb *);
memset(comb, 0, sizeof(*comb));
key_getcomb_setlifetime(comb);
comb->sadb_comb_encrypt = i;
/* what should we set into sadb_comb_*_{min,max}bits? */
}
return m;
}
/*
* XXX no way to pass mode (transport/tunnel) to userland
* XXX replay checking?
* XXX sysctl interface to ipsec_{ah,esp}_keymin
*/
static struct mbuf *
key_getprop(const struct secasindex *saidx, int mflag)
{
struct sadb_prop *prop;
struct mbuf *m, *n;
const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
int totlen;
switch (saidx->proto) {
case IPPROTO_ESP:
m = key_getcomb_esp(mflag);
break;
case IPPROTO_AH:
m = key_getcomb_ah(mflag);
break;
case IPPROTO_IPCOMP:
m = key_getcomb_ipcomp(mflag);
break;
default:
return NULL;
}
if (!m)
return NULL;
M_PREPEND(m, l, mflag);
if (!m)
return NULL;
totlen = 0;
for (n = m; n; n = n->m_next)
totlen += n->m_len;
prop = mtod(m, struct sadb_prop *);
memset(prop, 0, sizeof(*prop));
prop->sadb_prop_len = PFKEY_UNIT64(totlen);
prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
prop->sadb_prop_replay = 32; /* XXX */
return m;
}
/*
* SADB_ACQUIRE processing called by key_checkrequest() and key_api_acquire().
* send
* <base, SA, address(SD), (address(P)), x_policy,
* (identity(SD),) (sensitivity,) proposal>
* to KMD, and expect to receive
* <base> with SADB_ACQUIRE if error occurred,
* or
* <base, src address, dst address, (SPI range)> with SADB_GETSPI
* from KMD by PF_KEY.
*
* XXX x_policy is outside of RFC2367 (KAME extension).
* XXX sensitivity is not supported.
* XXX for ipcomp, RFC2367 does not define how to fill in proposal.
* see comment for key_getcomb_ipcomp().
*
* OUT:
* 0 : succeed
* others: error number
*/
static int
key_acquire(const struct secasindex *saidx, const struct secpolicy *sp, int mflag)
{
struct mbuf *result = NULL, *m;
#ifndef IPSEC_NONBLOCK_ACQUIRE
struct secacq *newacq;
#endif
u_int8_t satype;
int error = -1;
u_int32_t seq;
/* sanity check */
KASSERT(saidx != NULL);
satype = key_proto2satype(saidx->proto);
KASSERTMSG(satype != 0, "null satype, protocol %u", saidx->proto);
#ifndef IPSEC_NONBLOCK_ACQUIRE
/*
* We never do anything about acquirng SA. There is anather
* solution that kernel blocks to send SADB_ACQUIRE message until
* getting something message from IKEd. In later case, to be
* managed with ACQUIRING list.
*/
/* Get an entry to check whether sending message or not. */
mutex_enter(&key_misc.lock);
newacq = key_getacq(saidx);
if (newacq != NULL) {
if (key_blockacq_count < newacq->count) {
/* reset counter and do send message. */
newacq->count = 0;
} else {
/* increment counter and do nothing. */
newacq->count++;
mutex_exit(&key_misc.lock);
return 0;
}
} else {
/* make new entry for blocking to send SADB_ACQUIRE. */
newacq = key_newacq(saidx);
if (newacq == NULL) {
mutex_exit(&key_misc.lock);
return ENOBUFS;
}
/* add to key_misc.acqlist */
LIST_INSERT_HEAD(&key_misc.acqlist, newacq, chain);
}
seq = newacq->seq;
mutex_exit(&key_misc.lock);
#else
seq = (acq_seq = (acq_seq == ~0 ? 1 : ++acq_seq));
#endif
m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0, mflag);
if (!m) {
error = ENOBUFS;
goto fail;
}
result = m;
/* set sadb_address for saidx's. */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &saidx->src.sa, FULLMASK,
IPSEC_ULPROTO_ANY, mflag);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &saidx->dst.sa, FULLMASK,
IPSEC_ULPROTO_ANY, mflag);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
/* XXX proxy address (optional) */
/* set sadb_x_policy */
if (sp) {
m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id,
mflag);
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
}
/* XXX identity (optional) */
#if 0
if (idexttype && fqdn) {
/* create identity extension (FQDN) */
struct sadb_ident *id;
int fqdnlen;
fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */
id = (struct sadb_ident *)p;
memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
id->sadb_ident_exttype = idexttype;
id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
memcpy(id + 1, fqdn, fqdnlen);
p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
}
if (idexttype) {
/* create identity extension (USERFQDN) */
struct sadb_ident *id;
int userfqdnlen;
if (userfqdn) {
/* +1 for terminating-NUL */
userfqdnlen = strlen(userfqdn) + 1;
} else
userfqdnlen = 0;
id = (struct sadb_ident *)p;
memset(id, 0, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
id->sadb_ident_exttype = idexttype;
id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
/* XXX is it correct? */
if (curlwp)
id->sadb_ident_id = kauth_cred_getuid(curlwp->l_cred);
if (userfqdn && userfqdnlen)
memcpy(id + 1, userfqdn, userfqdnlen);
p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
}
#endif
/* XXX sensitivity (optional) */
/* create proposal/combination extension */
m = key_getprop(saidx, mflag);
#if 0
/*
* spec conformant: always attach proposal/combination extension,
* the problem is that we have no way to attach it for ipcomp,
* due to the way sadb_comb is declared in RFC2367.
*/
if (!m) {
error = ENOBUFS;
goto fail;
}
m_cat(result, m);
#else
/*
* outside of spec; make proposal/combination extension optional.
*/
if (m)
m_cat(result, m);
#endif
KASSERT(result->m_flags & M_PKTHDR);
KASSERT(result->m_len >= sizeof(struct sadb_msg));
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
/*
* Called from key_api_acquire that must come from userland, so
* we can call key_sendup_mbuf immediately.
*/
if (mflag == M_WAITOK)
return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
/*
* XXX we cannot call key_sendup_mbuf directly here because
* it can cause a deadlock:
* - We have a reference to an SP (and an SA) here
* - key_sendup_mbuf will try to take key_so_mtx
* - Some other thread may try to localcount_drain to the SP with
* holding key_so_mtx in say key_api_spdflush
* - In this case localcount_drain never return because key_sendup_mbuf
* that has stuck on key_so_mtx never release a reference to the SP
*
* So defer key_sendup_mbuf to the timer.
*/
return key_acquire_sendup_mbuf_later(result);
fail:
if (result)
m_freem(result);
return error;
}
static struct mbuf *key_acquire_mbuf_head = NULL;
static unsigned key_acquire_mbuf_count = 0;
#define KEY_ACQUIRE_MBUF_MAX 10
static void
key_acquire_sendup_pending_mbuf(void)
{
struct mbuf *m, *prev;
int error;
again:
prev = NULL;
mutex_enter(&key_misc.lock);
m = key_acquire_mbuf_head;
/* Get an earliest mbuf (one at the tail of the list) */
while (m != NULL) {
if (m->m_nextpkt == NULL) {
if (prev != NULL)
prev->m_nextpkt = NULL;
if (m == key_acquire_mbuf_head)
key_acquire_mbuf_head = NULL;
key_acquire_mbuf_count--;
break;
}
prev = m;
m = m->m_nextpkt;
}
mutex_exit(&key_misc.lock);
if (m == NULL)
return;
m->m_nextpkt = NULL;
error = key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
if (error != 0)
IPSECLOG(LOG_WARNING, "key_sendup_mbuf failed (error=%d)\n",
error);
if (prev != NULL)
goto again;
}
static int
key_acquire_sendup_mbuf_later(struct mbuf *m)
{
mutex_enter(&key_misc.lock);
/* Avoid queuing too much mbufs */
if (key_acquire_mbuf_count >= KEY_ACQUIRE_MBUF_MAX) {
mutex_exit(&key_misc.lock);
m_freem(m);
return ENOBUFS; /* XXX */
}
/* Enqueue mbuf at the head of the list */
m->m_nextpkt = key_acquire_mbuf_head;
key_acquire_mbuf_head = m;
key_acquire_mbuf_count++;
mutex_exit(&key_misc.lock);
/* Kick the timer */
key_timehandler(NULL);
return 0;
}
#ifndef IPSEC_NONBLOCK_ACQUIRE
static struct secacq *
key_newacq(const struct secasindex *saidx)
{
struct secacq *newacq;
/* get new entry */
newacq = kmem_intr_zalloc(sizeof(struct secacq), KM_NOSLEEP);
if (newacq == NULL) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return NULL;
}
/* copy secindex */
memcpy(&newacq->saidx, saidx, sizeof(newacq->saidx));
newacq->seq = (acq_seq == ~0 ? 1 : ++acq_seq);
newacq->created = time_uptime;
newacq->count = 0;
return newacq;
}
static struct secacq *
key_getacq(const struct secasindex *saidx)
{
struct secacq *acq;
KASSERT(mutex_owned(&key_misc.lock));
LIST_FOREACH(acq, &key_misc.acqlist, chain) {
if (key_saidx_match(saidx, &acq->saidx, CMP_EXACTLY))
return acq;
}
return NULL;
}
static struct secacq *
key_getacqbyseq(u_int32_t seq)
{
struct secacq *acq;
KASSERT(mutex_owned(&key_misc.lock));
LIST_FOREACH(acq, &key_misc.acqlist, chain) {
if (acq->seq == seq)
return acq;
}
return NULL;
}
#endif
#ifdef notyet
static struct secspacq *
key_newspacq(const struct secpolicyindex *spidx)
{
struct secspacq *acq;
/* get new entry */
acq = kmem_intr_zalloc(sizeof(struct secspacq), KM_NOSLEEP);
if (acq == NULL) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return NULL;
}
/* copy secindex */
memcpy(&acq->spidx, spidx, sizeof(acq->spidx));
acq->created = time_uptime;
acq->count = 0;
return acq;
}
static struct secspacq *
key_getspacq(const struct secpolicyindex *spidx)
{
struct secspacq *acq;
LIST_FOREACH(acq, &key_misc.spacqlist, chain) {
if (key_spidx_match_exactly(spidx, &acq->spidx))
return acq;
}
return NULL;
}
#endif /* notyet */
/*
* SADB_ACQUIRE processing,
* in first situation, is receiving
* <base>
* from the ikmpd, and clear sequence of its secasvar entry.
*
* In second situation, is receiving
* <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
* from a user land process, and return
* <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
* to the socket.
*
* m will always be freed.
*/
static int
key_api_acquire(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
const struct sockaddr *src, *dst;
struct secasindex saidx;
u_int16_t proto;
int error;
/*
* Error message from KMd.
* We assume that if error was occurred in IKEd, the length of PFKEY
* message is equal to the size of sadb_msg structure.
* We do not raise error even if error occurred in this function.
*/
if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
#ifndef IPSEC_NONBLOCK_ACQUIRE
struct secacq *acq;
/* check sequence number */
if (mhp->msg->sadb_msg_seq == 0) {
IPSECLOG(LOG_DEBUG, "must specify sequence number.\n");
m_freem(m);
return 0;
}
mutex_enter(&key_misc.lock);
acq = key_getacqbyseq(mhp->msg->sadb_msg_seq);
if (acq == NULL) {
mutex_exit(&key_misc.lock);
/*
* the specified larval SA is already gone, or we got
* a bogus sequence number. we can silently ignore it.
*/
m_freem(m);
return 0;
}
/* reset acq counter in order to deletion by timehander. */
acq->created = time_uptime;
acq->count = 0;
mutex_exit(&key_misc.lock);
#endif
m_freem(m);
return 0;
}
/*
* This message is from user land.
*/
/* map satype to proto */
proto = key_satype2proto(mhp->msg->sadb_msg_satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
/* error */
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
/* error */
IPSECLOG(LOG_DEBUG, "invalid message is passed.\n");
return key_senderror(so, m, EINVAL);
}
src = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_SRC);
dst = key_msghdr_get_sockaddr(mhp, SADB_EXT_ADDRESS_DST);
error = key_setsecasidx(proto, IPSEC_MODE_ANY, 0, src, dst, &saidx);
if (error != 0)
return key_senderror(so, m, EINVAL);
error = key_set_natt_ports(&saidx.src, &saidx.dst, mhp);
if (error != 0)
return key_senderror(so, m, EINVAL);
/* get a SA index */
{
struct secashead *sah;
int s = pserialize_read_enter();
sah = key_getsah(&saidx, CMP_MODE_REQID);
if (sah != NULL) {
pserialize_read_exit(s);
IPSECLOG(LOG_DEBUG, "a SA exists already.\n");
return key_senderror(so, m, EEXIST);
}
pserialize_read_exit(s);
}
error = key_acquire(&saidx, NULL, M_WAITOK);
if (error != 0) {
IPSECLOG(LOG_DEBUG, "error %d returned from key_acquire.\n",
error);
return key_senderror(so, m, error);
}
return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
}
/*
* SADB_REGISTER processing.
* If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
* receive
* <base>
* from the ikmpd, and register a socket to send PF_KEY messages,
* and send
* <base, supported>
* to KMD by PF_KEY.
* If socket is detached, must free from regnode.
*
* m will always be freed.
*/
static int
key_api_register(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct secreg *reg, *newreg = 0;
/* check for invalid register message */
if (mhp->msg->sadb_msg_satype >= __arraycount(key_misc.reglist))
return key_senderror(so, m, EINVAL);
/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
goto setmsg;
/* Allocate regnode in advance, out of mutex */
newreg = kmem_zalloc(sizeof(*newreg), KM_SLEEP);
/* check whether existing or not */
mutex_enter(&key_misc.lock);
LIST_FOREACH(reg, &key_misc.reglist[mhp->msg->sadb_msg_satype], chain) {
if (reg->so == so) {
IPSECLOG(LOG_DEBUG, "socket exists already.\n");
mutex_exit(&key_misc.lock);
kmem_free(newreg, sizeof(*newreg));
return key_senderror(so, m, EEXIST);
}
}
newreg->so = so;
((struct keycb *)sotorawcb(so))->kp_registered++;
/* add regnode to key_misc.reglist. */
LIST_INSERT_HEAD(&key_misc.reglist[mhp->msg->sadb_msg_satype], newreg, chain);
mutex_exit(&key_misc.lock);
setmsg:
{
struct mbuf *n;
struct sadb_supported *sup;
u_int len, alen, elen;
int off;
int i;
struct sadb_alg *alg;
/* create new sadb_msg to reply. */
alen = 0;
for (i = 1; i <= SADB_AALG_MAX; i++) {
if (ah_algorithm_lookup(i))
alen += sizeof(struct sadb_alg);
}
if (alen)
alen += sizeof(struct sadb_supported);
elen = 0;
for (i = 1; i <= SADB_EALG_MAX; i++) {
if (esp_algorithm_lookup(i))
elen += sizeof(struct sadb_alg);
}
if (elen)
elen += sizeof(struct sadb_supported);
len = sizeof(struct sadb_msg) + alen + elen;
if (len > MCLBYTES)
return key_senderror(so, m, ENOBUFS);
n = key_alloc_mbuf_simple(len, M_WAITOK);
n->m_pkthdr.len = n->m_len = len;
n->m_next = NULL;
off = 0;
m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, char *) + off);
key_fill_replymsg(n, 0);
off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
/* for authentication algorithm */
if (alen) {
sup = (struct sadb_supported *)(mtod(n, char *) + off);
sup->sadb_supported_len = PFKEY_UNIT64(alen);
sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
off += PFKEY_ALIGN8(sizeof(*sup));
for (i = 1; i <= SADB_AALG_MAX; i++) {
const struct auth_hash *aalgo;
u_int16_t minkeysize, maxkeysize;
aalgo = ah_algorithm_lookup(i);
if (!aalgo)
continue;
alg = (struct sadb_alg *)(mtod(n, char *) + off);
alg->sadb_alg_id = i;
alg->sadb_alg_ivlen = 0;
key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
alg->sadb_alg_minbits = _BITS(minkeysize);
alg->sadb_alg_maxbits = _BITS(maxkeysize);
off += PFKEY_ALIGN8(sizeof(*alg));
}
}
/* for encryption algorithm */
if (elen) {
sup = (struct sadb_supported *)(mtod(n, char *) + off);
sup->sadb_supported_len = PFKEY_UNIT64(elen);
sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
off += PFKEY_ALIGN8(sizeof(*sup));
for (i = 1; i <= SADB_EALG_MAX; i++) {
const struct enc_xform *ealgo;
ealgo = esp_algorithm_lookup(i);
if (!ealgo)
continue;
alg = (struct sadb_alg *)(mtod(n, char *) + off);
alg->sadb_alg_id = i;
alg->sadb_alg_ivlen = ealgo->blocksize;
alg->sadb_alg_minbits = _BITS(ealgo->minkey);
alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
}
}
KASSERTMSG(off == len, "length inconsistency");
m_freem(m);
return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
}
}
/*
* free secreg entry registered.
* XXX: I want to do free a socket marked done SADB_RESIGER to socket.
*/
void
key_freereg(struct socket *so)
{
struct secreg *reg;
int i;
KASSERT(!cpu_softintr_p());
KASSERT(so != NULL);
/*
* check whether existing or not.
* check all type of SA, because there is a potential that
* one socket is registered to multiple type of SA.
*/
for (i = 0; i <= SADB_SATYPE_MAX; i++) {
mutex_enter(&key_misc.lock);
LIST_FOREACH(reg, &key_misc.reglist[i], chain) {
if (reg->so == so) {
LIST_REMOVE(reg, chain);
break;
}
}
mutex_exit(&key_misc.lock);
if (reg != NULL)
kmem_free(reg, sizeof(*reg));
}
return;
}
/*
* SADB_EXPIRE processing
* send
* <base, SA, SA2, lifetime(C and one of HS), address(SD)>
* to KMD by PF_KEY.
* NOTE: We send only soft lifetime extension.
*
* OUT: 0 : succeed
* others : error number
*/
static int
key_expire(struct secasvar *sav)
{
int s;
int satype;
struct mbuf *result = NULL, *m;
int len;
int error = -1;
struct sadb_lifetime *lt;
lifetime_counters_t sum = {0};
/* XXX: Why do we lock ? */
s = splsoftnet(); /*called from softclock()*/
KASSERT(sav != NULL);
satype = key_proto2satype(sav->sah->saidx.proto);
KASSERTMSG(satype != 0, "invalid proto is passed");
/* set msg header */
m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, key_sa_refcnt(sav),
M_WAITOK);
result = m;
/* create SA extension */
m = key_setsadbsa(sav);
m_cat(result, m);
/* create SA extension */
m = key_setsadbxsa2(sav->sah->saidx.mode,
sav->replay ? sav->replay->count : 0, sav->sah->saidx.reqid);
m_cat(result, m);
/* create lifetime extension (current and soft) */
len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
m = key_alloc_mbuf(len, M_WAITOK);
KASSERT(m->m_next == NULL);
memset(mtod(m, void *), 0, len);
lt = mtod(m, struct sadb_lifetime *);
lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
percpu_foreach(sav->lft_c_counters_percpu,
key_sum_lifetime_counters, sum);
lt->sadb_lifetime_allocations = sum[LIFETIME_COUNTER_ALLOCATIONS];
lt->sadb_lifetime_bytes = sum[LIFETIME_COUNTER_BYTES];
lt->sadb_lifetime_addtime =
time_mono_to_wall(sav->lft_c->sadb_lifetime_addtime);
lt->sadb_lifetime_usetime =
time_mono_to_wall(sav->lft_c->sadb_lifetime_usetime);
lt = (struct sadb_lifetime *)(mtod(m, char *) + len / 2);
memcpy(lt, sav->lft_s, sizeof(*lt));
m_cat(result, m);
/* set sadb_address for source */
m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &sav->sah->saidx.src.sa,
FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
m_cat(result, m);
/* set sadb_address for destination */
m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &sav->sah->saidx.dst.sa,
FULLMASK, IPSEC_ULPROTO_ANY, M_WAITOK);
m_cat(result, m);
if ((result->m_flags & M_PKTHDR) == 0) {
error = EINVAL;
goto fail;
}
if (result->m_len < sizeof(struct sadb_msg)) {
result = m_pullup(result, sizeof(struct sadb_msg));
if (result == NULL) {
error = ENOBUFS;
goto fail;
}
}
result->m_pkthdr.len = 0;
for (m = result; m; m = m->m_next)
result->m_pkthdr.len += m->m_len;
mtod(result, struct sadb_msg *)->sadb_msg_len =
PFKEY_UNIT64(result->m_pkthdr.len);
splx(s);
return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
fail:
if (result)
m_freem(result);
splx(s);
return error;
}
/*
* SADB_FLUSH processing
* receive
* <base>
* from the ikmpd, and free all entries in secastree.
* and send,
* <base>
* to the ikmpd.
* NOTE: to do is only marking SADB_SASTATE_DEAD.
*
* m will always be freed.
*/
static int
key_api_flush(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
struct sadb_msg *newmsg;
struct secashead *sah;
struct secasvar *sav;
u_int16_t proto;
u_int8_t state;
int s;
/* map satype to proto */
proto = key_satype2proto(mhp->msg->sadb_msg_satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m, EINVAL);
}
/* no SATYPE specified, i.e. flushing all SA. */
s = pserialize_read_enter();
SAHLIST_READER_FOREACH(sah) {
if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC &&
proto != sah->saidx.proto)
continue;
key_sah_ref(sah);
pserialize_read_exit(s);
SASTATE_ALIVE_FOREACH(state) {
restart:
mutex_enter(&key_sad.lock);
SAVLIST_WRITER_FOREACH(sav, sah, state) {
sav->state = SADB_SASTATE_DEAD;
key_unlink_sav(sav);
mutex_exit(&key_sad.lock);
key_destroy_sav(sav);
goto restart;
}
mutex_exit(&key_sad.lock);
}
s = pserialize_read_enter();
sah->state = SADB_SASTATE_DEAD;
key_sah_unref(sah);
}
pserialize_read_exit(s);
if (m->m_len < sizeof(struct sadb_msg) ||
sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
IPSECLOG(LOG_DEBUG, "No more memory.\n");
return key_senderror(so, m, ENOBUFS);
}
if (m->m_next)
m_freem(m->m_next);
m->m_next = NULL;
m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
newmsg = mtod(m, struct sadb_msg *);
newmsg->sadb_msg_errno = 0;
newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
}
static struct mbuf *
key_setdump_chain(u_int8_t req_satype, int *errorp, int *lenp, pid_t pid)
{
struct secashead *sah;
struct secasvar *sav;
u_int16_t proto;
u_int8_t satype;
u_int8_t state;
int cnt;
struct mbuf *m, *n, *prev;
KASSERT(mutex_owned(&key_sad.lock));
*lenp = 0;
/* map satype to proto */
proto = key_satype2proto(req_satype);
if (proto == 0) {
*errorp = EINVAL;
return (NULL);
}
/* count sav entries to be sent to userland. */
cnt = 0;
SAHLIST_WRITER_FOREACH(sah) {
if (req_satype != SADB_SATYPE_UNSPEC &&
proto != sah->saidx.proto)
continue;
SASTATE_ANY_FOREACH(state) {
SAVLIST_WRITER_FOREACH(sav, sah, state) {
cnt++;
}
}
}
if (cnt == 0) {
*errorp = ENOENT;
return (NULL);
}
/* send this to the userland, one at a time. */
m = NULL;
prev = m;
SAHLIST_WRITER_FOREACH(sah) {
if (req_satype != SADB_SATYPE_UNSPEC &&
proto != sah->saidx.proto)
continue;
/* map proto to satype */
satype = key_proto2satype(sah->saidx.proto);
if (satype == 0) {
m_freem(m);
*errorp = EINVAL;
return (NULL);
}
SASTATE_ANY_FOREACH(state) {
SAVLIST_WRITER_FOREACH(sav, sah, state) {
n = key_setdumpsa(sav, SADB_DUMP, satype,
--cnt, pid);
if (!m)
m = n;
else
prev->m_nextpkt = n;
prev = n;
}
}
}
if (!m) {
*errorp = EINVAL;
return (NULL);
}
if ((m->m_flags & M_PKTHDR) != 0) {
m->m_pkthdr.len = 0;
for (n = m; n; n = n->m_next)
m->m_pkthdr.len += n->m_len;
}
*errorp = 0;
return (m);
}
/*
* SADB_DUMP processing
* dump all entries including status of DEAD in SAD.
* receive
* <base>
* from the ikmpd, and dump all secasvar leaves
* and send,
* <base> .....
* to the ikmpd.
*
* m will always be freed.
*/
static int
key_api_dump(struct socket *so, struct mbuf *m0,
const struct sadb_msghdr *mhp)
{
u_int16_t proto;
u_int8_t satype;
struct mbuf *n;
int error, len, ok;
/* map satype to proto */
satype = mhp->msg->sadb_msg_satype;
proto = key_satype2proto(satype);
if (proto == 0) {
IPSECLOG(LOG_DEBUG, "invalid satype is passed.\n");
return key_senderror(so, m0, EINVAL);
}
/*
* If the requestor has insufficient socket-buffer space
* for the entire chain, nobody gets any response to the DUMP.
* XXX For now, only the requestor ever gets anything.
* Moreover, if the requestor has any space at all, they receive
* the entire chain, otherwise the request is refused with ENOBUFS.
*/
if (sbspace(&so->so_rcv) <= 0) {
return key_senderror(so, m0, ENOBUFS);
}
mutex_enter(&key_sad.lock);
n = key_setdump_chain(satype, &error, &len, mhp->msg->sadb_msg_pid);
mutex_exit(&key_sad.lock);
if (n == NULL) {
return key_senderror(so, m0, ENOENT);
}
{
uint64_t *ps = PFKEY_STAT_GETREF();
ps[PFKEY_STAT_IN_TOTAL]++;
ps[PFKEY_STAT_IN_BYTES] += len;
PFKEY_STAT_PUTREF();
}
/*
* PF_KEY DUMP responses are no longer broadcast to all PF_KEY sockets.
* The requestor receives either the entire chain, or an
* error message with ENOBUFS.
*
* sbappendaddrchain() takes the chain of entries, one
* packet-record per SPD entry, prepends the key_src sockaddr
* to each packet-record, links the sockaddr mbufs into a new
* list of records, then appends the entire resulting
* list to the requesting socket.
*/
ok = sbappendaddrchain(&so->so_rcv, (struct sockaddr *)&key_src, n,
SB_PRIO_ONESHOT_OVERFLOW);
if (!ok) {
PFKEY_STATINC(PFKEY_STAT_IN_NOMEM);
m_freem(n);
return key_senderror(so, m0, ENOBUFS);
}
m_freem(m0);
return 0;
}
/*
* SADB_X_PROMISC processing
*
* m will always be freed.
*/
static int
key_api_promisc(struct socket *so, struct mbuf *m,
const struct sadb_msghdr *mhp)
{
int olen;
olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
if (olen < sizeof(struct sadb_msg)) {
#if 1
return key_senderror(so, m, EINVAL);
#else
m_freem(m);
return 0;
#endif
} else if (olen == sizeof(struct sadb_msg)) {
/* enable/disable promisc mode */
struct keycb *kp = (struct keycb *)sotorawcb(so);
if (kp == NULL)
return key_senderror(so, m, EINVAL);
mhp->msg->sadb_msg_errno = 0;
switch (mhp->msg->sadb_msg_satype) {
case 0:
case 1:
kp->kp_promisc = mhp->msg->sadb_msg_satype;
break;
default:
return key_senderror(so, m, EINVAL);
}
/* send the original message back to everyone */
mhp->msg->sadb_msg_errno = 0;
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
} else {
/* send packet as is */
m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
/* TODO: if sadb_msg_seq is specified, send to specific pid */
return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
}
}
static int (*key_api_typesw[]) (struct socket *, struct mbuf *,
const struct sadb_msghdr *) = {
NULL, /* SADB_RESERVED */
key_api_getspi, /* SADB_GETSPI */
key_api_update, /* SADB_UPDATE */
key_api_add, /* SADB_ADD */
key_api_delete, /* SADB_DELETE */
key_api_get, /* SADB_GET */
key_api_acquire, /* SADB_ACQUIRE */
key_api_register, /* SADB_REGISTER */
NULL, /* SADB_EXPIRE */
key_api_flush, /* SADB_FLUSH */
key_api_dump, /* SADB_DUMP */
key_api_promisc, /* SADB_X_PROMISC */
NULL, /* SADB_X_PCHANGE */
key_api_spdadd, /* SADB_X_SPDUPDATE */
key_api_spdadd, /* SADB_X_SPDADD */
key_api_spddelete, /* SADB_X_SPDDELETE */
key_api_spdget, /* SADB_X_SPDGET */
NULL, /* SADB_X_SPDACQUIRE */
key_api_spddump, /* SADB_X_SPDDUMP */
key_api_spdflush, /* SADB_X_SPDFLUSH */
key_api_spdadd, /* SADB_X_SPDSETIDX */
NULL, /* SADB_X_SPDEXPIRE */
key_api_spddelete2, /* SADB_X_SPDDELETE2 */
key_api_nat_map, /* SADB_X_NAT_T_NEW_MAPPING */
};
/*
* parse sadb_msg buffer to process PFKEYv2,
* and create a data to response if needed.
* I think to be dealed with mbuf directly.
* IN:
* msgp : pointer to pointer to a received buffer pulluped.
* This is rewrited to response.
* so : pointer to socket.
* OUT:
* length for buffer to send to user process.
*/
int
key_parse(struct mbuf *m, struct socket *so)
{
struct sadb_msg *msg;
struct sadb_msghdr mh;
u_int orglen;
int error;
KASSERT(m != NULL);
KASSERT(so != NULL);
#if 0 /*kdebug_sadb assumes msg in linear buffer*/
if (KEYDEBUG_ON(KEYDEBUG_KEY_DUMP)) {
kdebug_sadb("passed sadb_msg", msg);
}
#endif
if (m->m_len < sizeof(struct sadb_msg)) {
m = m_pullup(m, sizeof(struct sadb_msg));
if (!m)
return ENOBUFS;
}
msg = mtod(m, struct sadb_msg *);
orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
if ((m->m_flags & M_PKTHDR) == 0 ||
m->m_pkthdr.len != orglen) {
IPSECLOG(LOG_DEBUG, "invalid message length.\n");
PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
error = EINVAL;
goto senderror;
}
if (msg->sadb_msg_version != PF_KEY_V2) {
IPSECLOG(LOG_DEBUG, "PF_KEY version %u is mismatched.\n",
msg->sadb_msg_version);
PFKEY_STATINC(PFKEY_STAT_OUT_INVVER);
error = EINVAL;
goto senderror;
}
if (msg->sadb_msg_type > SADB_MAX) {
IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
msg->sadb_msg_type);
PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
error = EINVAL;
goto senderror;
}
/* for old-fashioned code - should be nuked */
if (m->m_pkthdr.len > MCLBYTES) {
m_freem(m);
return ENOBUFS;
}
if (m->m_next) {
struct mbuf *n;
n = key_alloc_mbuf_simple(m->m_pkthdr.len, M_WAITOK);
m_copydata(m, 0, m->m_pkthdr.len, mtod(n, void *));
n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
n->m_next = NULL;
m_freem(m);
m = n;
}
/* align the mbuf chain so that extensions are in contiguous region. */
error = key_align(m, &mh);
if (error)
return error;
if (m->m_next) { /*XXX*/
m_freem(m);
return ENOBUFS;
}
msg = mh.msg;
/* check SA type */
switch (msg->sadb_msg_satype) {
case SADB_SATYPE_UNSPEC:
switch (msg->sadb_msg_type) {
case SADB_GETSPI:
case SADB_UPDATE:
case SADB_ADD:
case SADB_DELETE:
case SADB_GET:
case SADB_ACQUIRE:
case SADB_EXPIRE:
IPSECLOG(LOG_DEBUG,
"must specify satype when msg type=%u.\n",
msg->sadb_msg_type);
PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
error = EINVAL;
goto senderror;
}
break;
case SADB_SATYPE_AH:
case SADB_SATYPE_ESP:
case SADB_X_SATYPE_IPCOMP:
case SADB_X_SATYPE_TCPSIGNATURE:
switch (msg->sadb_msg_type) {
case SADB_X_SPDADD:
case SADB_X_SPDDELETE:
case SADB_X_SPDGET:
case SADB_X_SPDDUMP:
case SADB_X_SPDFLUSH:
case SADB_X_SPDSETIDX:
case SADB_X_SPDUPDATE:
case SADB_X_SPDDELETE2:
IPSECLOG(LOG_DEBUG, "illegal satype=%u\n",
msg->sadb_msg_type);
PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
error = EINVAL;
goto senderror;
}
break;
case SADB_SATYPE_RSVP:
case SADB_SATYPE_OSPFV2:
case SADB_SATYPE_RIPV2:
case SADB_SATYPE_MIP:
IPSECLOG(LOG_DEBUG, "type %u isn't supported.\n",
msg->sadb_msg_satype);
PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
error = EOPNOTSUPP;
goto senderror;
case 1: /* XXX: What does it do? */
if (msg->sadb_msg_type == SADB_X_PROMISC)
break;
/*FALLTHROUGH*/
default:
IPSECLOG(LOG_DEBUG, "invalid type %u is passed.\n",
msg->sadb_msg_satype);
PFKEY_STATINC(PFKEY_STAT_OUT_INVSATYPE);
error = EINVAL;
goto senderror;
}
/* check field of upper layer protocol and address family */
if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL &&
mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
const struct sadb_address *src0, *dst0;
const struct sockaddr *sa0, *da0;
u_int plen;
src0 = mh.ext[SADB_EXT_ADDRESS_SRC];
dst0 = mh.ext[SADB_EXT_ADDRESS_DST];
sa0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_SRC);
da0 = key_msghdr_get_sockaddr(&mh, SADB_EXT_ADDRESS_DST);
/* check upper layer protocol */
if (src0->sadb_address_proto != dst0->sadb_address_proto) {
IPSECLOG(LOG_DEBUG,
"upper layer protocol mismatched.\n");
goto invaddr;
}
/* check family */
if (sa0->sa_family != da0->sa_family) {
IPSECLOG(LOG_DEBUG, "address family mismatched.\n");
goto invaddr;
}
if (sa0->sa_len != da0->sa_len) {
IPSECLOG(LOG_DEBUG,
"address struct size mismatched.\n");
goto invaddr;
}
switch (sa0->sa_family) {
case AF_INET:
if (sa0->sa_len != sizeof(struct sockaddr_in))
goto invaddr;
break;
case AF_INET6:
if (sa0->sa_len != sizeof(struct sockaddr_in6))
goto invaddr;
break;
default:
IPSECLOG(LOG_DEBUG, "unsupported address family.\n");
error = EAFNOSUPPORT;
goto senderror;
}
switch (sa0->sa_family) {
case AF_INET:
plen = sizeof(struct in_addr) << 3;
break;
case AF_INET6:
plen = sizeof(struct in6_addr) << 3;
break;
default:
plen = 0; /*fool gcc*/
break;
}
/* check max prefix length */
if (src0->sadb_address_prefixlen > plen ||
dst0->sadb_address_prefixlen > plen) {
IPSECLOG(LOG_DEBUG, "illegal prefixlen.\n");
goto invaddr;
}
/*
* prefixlen == 0 is valid because there can be a case when
* all addresses are matched.
*/
}
if (msg->sadb_msg_type >= __arraycount(key_api_typesw) ||
key_api_typesw[msg->sadb_msg_type] == NULL) {
PFKEY_STATINC(PFKEY_STAT_OUT_INVMSGTYPE);
error = EINVAL;
goto senderror;
}
return (*key_api_typesw[msg->sadb_msg_type])(so, m, &mh);
invaddr:
error = EINVAL;
senderror:
PFKEY_STATINC(PFKEY_STAT_OUT_INVADDR);
return key_senderror(so, m, error);
}
static int
key_senderror(struct socket *so, struct mbuf *m, int code)
{
struct sadb_msg *msg;
KASSERT(m->m_len >= sizeof(struct sadb_msg));
if (so == NULL) {
/*
* This means the request comes from kernel.
* As the request comes from kernel, it is unnecessary to
* send message to userland. Just return errcode directly.
*/
m_freem(m);
return code;
}
msg = mtod(m, struct sadb_msg *);
msg->sadb_msg_errno = code;
return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
}
/*
* set the pointer to each header into message buffer.
* m will be freed on error.
* XXX larger-than-MCLBYTES extension?
*/
static int
key_align(struct mbuf *m, struct sadb_msghdr *mhp)
{
struct mbuf *n;
struct sadb_ext *ext;
size_t off, end;
int extlen;
int toff;
KASSERT(m != NULL);
KASSERT(mhp != NULL);
KASSERT(m->m_len >= sizeof(struct sadb_msg));
/* initialize */
memset(mhp, 0, sizeof(*mhp));
mhp->msg = mtod(m, struct sadb_msg *);
mhp->ext[0] = mhp->msg; /*XXX backward compat */
end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
extlen = end; /*just in case extlen is not updated*/
for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
if (!n) {
/* m is already freed */
return ENOBUFS;
}
ext = (struct sadb_ext *)(mtod(n, char *) + toff);
/* set pointer */
switch (ext->sadb_ext_type) {
case SADB_EXT_SA:
case SADB_EXT_ADDRESS_SRC:
case SADB_EXT_ADDRESS_DST:
case SADB_EXT_ADDRESS_PROXY:
case SADB_EXT_LIFETIME_CURRENT:
case SADB_EXT_LIFETIME_HARD:
case SADB_EXT_LIFETIME_SOFT:
case SADB_EXT_KEY_AUTH:
case SADB_EXT_KEY_ENCRYPT:
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
case SADB_EXT_SENSITIVITY:
case SADB_EXT_PROPOSAL:
case SADB_EXT_SUPPORTED_AUTH:
case SADB_EXT_SUPPORTED_ENCRYPT:
case SADB_EXT_SPIRANGE:
case SADB_X_EXT_POLICY:
case SADB_X_EXT_SA2:
case SADB_X_EXT_NAT_T_TYPE:
case SADB_X_EXT_NAT_T_SPORT:
case SADB_X_EXT_NAT_T_DPORT:
case SADB_X_EXT_NAT_T_OAI:
case SADB_X_EXT_NAT_T_OAR:
case SADB_X_EXT_NAT_T_FRAG:
/* duplicate check */
/*
* XXX Are there duplication payloads of either
* KEY_AUTH or KEY_ENCRYPT ?
*/
if (mhp->ext[ext->sadb_ext_type] != NULL) {
IPSECLOG(LOG_DEBUG,
"duplicate ext_type %u is passed.\n",
ext->sadb_ext_type);
m_freem(m);
PFKEY_STATINC(PFKEY_STAT_OUT_DUPEXT);
return EINVAL;
}
break;
default:
IPSECLOG(LOG_DEBUG, "invalid ext_type %u is passed.\n",
ext->sadb_ext_type);
m_freem(m);
PFKEY_STATINC(PFKEY_STAT_OUT_INVEXTTYPE);
return EINVAL;
}
extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
if (key_validate_ext(ext, extlen)) {
m_freem(m);
PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
return EINVAL;
}
n = m_pulldown(m, off, extlen, &toff);
if (!n) {
/* m is already freed */
return ENOBUFS;
}
ext = (struct sadb_ext *)(mtod(n, char *) + toff);
mhp->ext[ext->sadb_ext_type] = ext;
mhp->extoff[ext->sadb_ext_type] = off;
mhp->extlen[ext->sadb_ext_type] = extlen;
}
if (off != end) {
m_freem(m);
PFKEY_STATINC(PFKEY_STAT_OUT_INVLEN);
return EINVAL;
}
return 0;
}
static int
key_validate_ext(const struct sadb_ext *ext, int len)
{
const struct sockaddr *sa;
enum { NONE, ADDR } checktype = NONE;
int baselen = 0;
const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
return EINVAL;
/* if it does not match minimum/maximum length, bail */
if (ext->sadb_ext_type >= __arraycount(minsize) ||
ext->sadb_ext_type >= __arraycount(maxsize))
return EINVAL;
if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
return EINVAL;
if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
return EINVAL;
/* more checks based on sadb_ext_type XXX need more */
switch (ext->sadb_ext_type) {
case SADB_EXT_ADDRESS_SRC:
case SADB_EXT_ADDRESS_DST:
case SADB_EXT_ADDRESS_PROXY:
baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
checktype = ADDR;
break;
case SADB_EXT_IDENTITY_SRC:
case SADB_EXT_IDENTITY_DST:
if (((const struct sadb_ident *)ext)->sadb_ident_type ==
SADB_X_IDENTTYPE_ADDR) {
baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
checktype = ADDR;
} else
checktype = NONE;
break;
default:
checktype = NONE;
break;
}
switch (checktype) {
case NONE:
break;
case ADDR:
sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
if (len < baselen + sal)
return EINVAL;
if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
return EINVAL;
break;
}
return 0;
}
static int
key_do_init(void)
{
int i, error;
mutex_init(&key_misc.lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&key_spd.lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&key_spd.cv_lc, "key_sp_lc");
key_spd.psz = pserialize_create();
cv_init(&key_spd.cv_psz, "key_sp_psz");
key_spd.psz_performing = false;
mutex_init(&key_sad.lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&key_sad.cv_lc, "key_sa_lc");
key_sad.psz = pserialize_create();
cv_init(&key_sad.cv_psz, "key_sa_psz");
key_sad.psz_performing = false;
pfkeystat_percpu = percpu_alloc(sizeof(uint64_t) * PFKEY_NSTATS);
callout_init(&key_timehandler_ch, CALLOUT_MPSAFE);
error = workqueue_create(&key_timehandler_wq, "key_timehandler",
key_timehandler_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
if (error != 0)
panic("%s: workqueue_create failed (%d)\n", __func__, error);
for (i = 0; i < IPSEC_DIR_MAX; i++) {
PSLIST_INIT(&key_spd.splist[i]);
}
PSLIST_INIT(&key_spd.socksplist);
key_sad.sahlists = hashinit(SAHHASH_NHASH, HASH_PSLIST, true,
&key_sad.sahlistmask);
key_sad.savlut = hashinit(SAVLUT_NHASH, HASH_PSLIST, true,
&key_sad.savlutmask);
for (i = 0; i <= SADB_SATYPE_MAX; i++) {
LIST_INIT(&key_misc.reglist[i]);
}
#ifndef IPSEC_NONBLOCK_ACQUIRE
LIST_INIT(&key_misc.acqlist);
#endif
#ifdef notyet
LIST_INIT(&key_misc.spacqlist);
#endif
/* system default */
ip4_def_policy.policy = IPSEC_POLICY_NONE;
ip4_def_policy.state = IPSEC_SPSTATE_ALIVE;
localcount_init(&ip4_def_policy.localcount);
#ifdef INET6
ip6_def_policy.policy = IPSEC_POLICY_NONE;
ip6_def_policy.state = IPSEC_SPSTATE_ALIVE;
localcount_init(&ip6_def_policy.localcount);
#endif
callout_reset(&key_timehandler_ch, hz, key_timehandler, NULL);
/* initialize key statistics */
keystat.getspi_count = 1;
aprint_verbose("IPsec: Initialized Security Association Processing.\n");
return (0);
}
void
key_init(void)
{
static ONCE_DECL(key_init_once);
sysctl_net_keyv2_setup(NULL);
sysctl_net_key_compat_setup(NULL);
RUN_ONCE(&key_init_once, key_do_init);
key_init_so();
}
/*
* XXX: maybe This function is called after INBOUND IPsec processing.
*
* Special check for tunnel-mode packets.
* We must make some checks for consistency between inner and outer IP header.
*
* xxx more checks to be provided
*/
int
key_checktunnelsanity(
struct secasvar *sav,
u_int family,
void *src,
void *dst
)
{
/* XXX: check inner IP header */
return 1;
}
#if 0
#define hostnamelen strlen(hostname)
/*
* Get FQDN for the host.
* If the administrator configured hostname (by hostname(1)) without
* domain name, returns nothing.
*/
static const char *
key_getfqdn(void)
{
int i;
int hasdot;
static char fqdn[MAXHOSTNAMELEN + 1];
if (!hostnamelen)
return NULL;
/* check if it comes with domain name. */
hasdot = 0;
for (i = 0; i < hostnamelen; i++) {
if (hostname[i] == '.')
hasdot++;
}
if (!hasdot)
return NULL;
/* NOTE: hostname may not be NUL-terminated. */
memset(fqdn, 0, sizeof(fqdn));
memcpy(fqdn, hostname, hostnamelen);
fqdn[hostnamelen] = '\0';
return fqdn;
}
/*
* get username@FQDN for the host/user.
*/
static const char *
key_getuserfqdn(void)
{
const char *host;
static char userfqdn[MAXHOSTNAMELEN + MAXLOGNAME + 2];
struct proc *p = curproc;
char *q;
if (!p || !p->p_pgrp || !p->p_pgrp->pg_session)
return NULL;
if (!(host = key_getfqdn()))
return NULL;
/* NOTE: s_login may not be-NUL terminated. */
memset(userfqdn, 0, sizeof(userfqdn));
memcpy(userfqdn, Mp->p_pgrp->pg_session->s_login, AXLOGNAME);
userfqdn[MAXLOGNAME] = '\0'; /* safeguard */
q = userfqdn + strlen(userfqdn);
*q++ = '@';
memcpy(q, host, strlen(host));
q += strlen(host);
*q++ = '\0';
return userfqdn;
}
#endif
/* record data transfer on SA, and update timestamps */
void
key_sa_recordxfer(struct secasvar *sav, struct mbuf *m)
{
lifetime_counters_t *counters;
KASSERT(sav != NULL);
KASSERT(sav->lft_c != NULL);
KASSERT(m != NULL);
counters = percpu_getref(sav->lft_c_counters_percpu);
/*
* XXX Currently, there is a difference of bytes size
* between inbound and outbound processing.
*/
(*counters)[LIFETIME_COUNTER_BYTES] += m->m_pkthdr.len;
/* to check bytes lifetime is done in key_timehandler(). */
/*
* We use the number of packets as the unit of
* sadb_lifetime_allocations. We increment the variable
* whenever {esp,ah}_{in,out}put is called.
*/
(*counters)[LIFETIME_COUNTER_ALLOCATIONS]++;
/* XXX check for expires? */
percpu_putref(sav->lft_c_counters_percpu);
/*
* NOTE: We record CURRENT sadb_lifetime_usetime by using wall clock,
* in seconds. HARD and SOFT lifetime are measured by the time
* difference (again in seconds) from sadb_lifetime_usetime.
*
* usetime
* v expire expire
* -----+-----+--------+---> t
* <--------------> HARD
* <-----> SOFT
*/
sav->lft_c->sadb_lifetime_usetime = time_uptime;
/* XXX check for expires? */
return;
}
/* dumb version */
void
key_sa_routechange(struct sockaddr *dst)
{
struct secashead *sah;
int s;
s = pserialize_read_enter();
SAHLIST_READER_FOREACH(sah) {
struct route *ro;
const struct sockaddr *sa;
key_sah_ref(sah);
pserialize_read_exit(s);
ro = &sah->sa_route;
sa = rtcache_getdst(ro);
if (sa != NULL && dst->sa_len == sa->sa_len &&
memcmp(dst, sa, dst->sa_len) == 0)
rtcache_free(ro);
s = pserialize_read_enter();
key_sah_unref(sah);
}
pserialize_read_exit(s);
return;
}
static void
key_sa_chgstate(struct secasvar *sav, u_int8_t state)
{
struct secasvar *_sav;
ASSERT_SLEEPABLE();
KASSERT(mutex_owned(&key_sad.lock));
if (sav->state == state)
return;
key_unlink_sav(sav);
localcount_fini(&sav->localcount);
SAVLIST_ENTRY_DESTROY(sav);
key_init_sav(sav);
sav->state = state;
if (!SADB_SASTATE_USABLE_P(sav)) {
/* We don't need to care about the order */
SAVLIST_WRITER_INSERT_HEAD(sav->sah, state, sav);
return;
}
/*
* Sort the list by lft_c->sadb_lifetime_addtime
* in ascending order.
*/
SAVLIST_WRITER_FOREACH(_sav, sav->sah, state) {
if (_sav->lft_c->sadb_lifetime_addtime >
sav->lft_c->sadb_lifetime_addtime) {
SAVLIST_WRITER_INSERT_BEFORE(_sav, sav);
break;
}
}
if (_sav == NULL) {
SAVLIST_WRITER_INSERT_TAIL(sav->sah, state, sav);
}
SAVLUT_WRITER_INSERT_HEAD(sav);
key_validate_savlist(sav->sah, state);
}
/* XXX too much? */
static struct mbuf *
key_alloc_mbuf(int l, int mflag)
{
struct mbuf *m = NULL, *n;
int len, t;
KASSERT(mflag == M_NOWAIT || (mflag == M_WAITOK && !cpu_softintr_p()));
len = l;
while (len > 0) {
MGET(n, mflag, MT_DATA);
if (n && len > MLEN) {
MCLGET(n, mflag);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
n = NULL;
}
}
if (!n) {
m_freem(m);
return NULL;
}
n->m_next = NULL;
n->m_len = 0;
n->m_len = M_TRAILINGSPACE(n);
/* use the bottom of mbuf, hoping we can prepend afterwards */
if (n->m_len > len) {
t = (n->m_len - len) & ~(sizeof(long) - 1);
n->m_data += t;
n->m_len = len;
}
len -= n->m_len;
if (m)
m_cat(m, n);
else
m = n;
}
return m;
}
static struct mbuf *
key_setdump(u_int8_t req_satype, int *errorp, uint32_t pid)
{
struct secashead *sah;
struct secasvar *sav;
u_int16_t proto;
u_int8_t satype;
u_int8_t state;
int cnt;
struct mbuf *m, *n;
KASSERT(mutex_owned(&key_sad.lock));
/* map satype to proto */
proto = key_satype2proto(req_satype);
if (proto == 0) {
*errorp = EINVAL;
return (NULL);
}
/* count sav entries to be sent to the userland. */
cnt = 0;
SAHLIST_WRITER_FOREACH(sah) {
if (req_satype != SADB_SATYPE_UNSPEC &&
proto != sah->saidx.proto)
continue;
SASTATE_ANY_FOREACH(state) {
SAVLIST_WRITER_FOREACH(sav, sah, state) {
cnt++;
}
}
}
if (cnt == 0) {
*errorp = ENOENT;
return (NULL);
}
/* send this to the userland, one at a time. */
m = NULL;
SAHLIST_WRITER_FOREACH(sah) {
if (req_satype != SADB_SATYPE_UNSPEC &&
proto != sah->saidx.proto)
continue;
/* map proto to satype */
satype = key_proto2satype(sah->saidx.proto);
if (satype == 0) {
m_freem(m);
*errorp = EINVAL;
return (NULL);
}
SASTATE_ANY_FOREACH(state) {
SAVLIST_WRITER_FOREACH(sav, sah, state) {
n = key_setdumpsa(sav, SADB_DUMP, satype,
--cnt, pid);
if (!m)
m = n;
else
m_cat(m, n);
}
}
}
if (!m) {
*errorp = EINVAL;
return (NULL);
}
if ((m->m_flags & M_PKTHDR) != 0) {
m->m_pkthdr.len = 0;
for (n = m; n; n = n->m_next)
m->m_pkthdr.len += n->m_len;
}
*errorp = 0;
return (m);
}
static struct mbuf *
key_setspddump(int *errorp, pid_t pid)
{
struct secpolicy *sp;
int cnt;
u_int dir;
struct mbuf *m, *n;
KASSERT(mutex_owned(&key_spd.lock));
/* search SPD entry and get buffer size. */
cnt = 0;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
SPLIST_WRITER_FOREACH(sp, dir) {
cnt++;
}
}
if (cnt == 0) {
*errorp = ENOENT;
return (NULL);
}
m = NULL;
for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
SPLIST_WRITER_FOREACH(sp, dir) {
--cnt;
n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, pid);
if (!m)
m = n;
else {
m->m_pkthdr.len += n->m_pkthdr.len;
m_cat(m, n);
}
}
}
*errorp = 0;
return (m);
}
int
key_get_used(void) {
return !SPLIST_READER_EMPTY(IPSEC_DIR_INBOUND) ||
!SPLIST_READER_EMPTY(IPSEC_DIR_OUTBOUND) ||
!SOCKSPLIST_READER_EMPTY();
}
void
key_update_used(void)
{
switch (ipsec_enabled) {
default:
case 0:
#ifdef notyet
/* XXX: racy */
ipsec_used = 0;
#endif
break;
case 1:
#ifndef notyet
/* XXX: racy */
if (!ipsec_used)
#endif
ipsec_used = key_get_used();
break;
case 2:
ipsec_used = 1;
break;
}
}
static inline void
key_savlut_writer_insert_head(struct secasvar *sav)
{
uint32_t hash_key;
uint32_t hash;
KASSERT(mutex_owned(&key_sad.lock));
KASSERT(!sav->savlut_added);
if (sav->sah->saidx.proto == IPPROTO_IPCOMP)
hash_key = sav->alg_comp;
else
hash_key = sav->spi;
hash = key_savluthash(&sav->sah->saidx.dst.sa,
sav->sah->saidx.proto, hash_key, key_sad.savlutmask);
PSLIST_WRITER_INSERT_HEAD(&key_sad.savlut[hash], sav,
pslist_entry_savlut);
sav->savlut_added = true;
}
/*
* Calculate hash using protocol, source address,
* and destination address included in saidx.
*/
static inline uint32_t
key_saidxhash(const struct secasindex *saidx, u_long mask)
{
uint32_t hash32;
const struct sockaddr_in *sin;
const struct sockaddr_in6 *sin6;
hash32 = saidx->proto;
switch (saidx->src.sa.sa_family) {
case AF_INET:
sin = &saidx->src.sin;
hash32 = hash32_buf(&sin->sin_addr,
sizeof(sin->sin_addr), hash32);
sin = &saidx->dst.sin;
hash32 = hash32_buf(&sin->sin_addr,
sizeof(sin->sin_addr), hash32 << 1);
break;
case AF_INET6:
sin6 = &saidx->src.sin6;
hash32 = hash32_buf(&sin6->sin6_addr,
sizeof(sin6->sin6_addr), hash32);
sin6 = &saidx->dst.sin6;
hash32 = hash32_buf(&sin6->sin6_addr,
sizeof(sin6->sin6_addr), hash32 << 1);
break;
default:
hash32 = 0;
break;
}
return hash32 & mask;
}
/*
* Calculate hash using destination address, protocol,
* and spi. Those parameter depend on the search of
* key_lookup_sa().
*/
static uint32_t
key_savluthash(const struct sockaddr *dst, uint32_t proto,
uint32_t spi, u_long mask)
{
uint32_t hash32;
const struct sockaddr_in *sin;
const struct sockaddr_in6 *sin6;
hash32 = hash32_buf(&proto, sizeof(proto), spi);
switch(dst->sa_family) {
case AF_INET:
sin = satocsin(dst);
hash32 = hash32_buf(&sin->sin_addr,
sizeof(sin->sin_addr), hash32);
break;
case AF_INET6:
sin6 = satocsin6(dst);
hash32 = hash32_buf(&sin6->sin6_addr,
sizeof(sin6->sin6_addr), hash32);
break;
default:
hash32 = 0;
}
return hash32 & mask;
}
static int
sysctl_net_key_dumpsa(SYSCTLFN_ARGS)
{
struct mbuf *m, *n;
int err2 = 0;
char *p, *ep;
size_t len;
int error;
if (newp)
return (EPERM);
if (namelen != 1)
return (EINVAL);
mutex_enter(&key_sad.lock);
m = key_setdump(name[0], &error, l->l_proc->p_pid);
mutex_exit(&key_sad.lock);
if (!m)
return (error);
if (!oldp)
*oldlenp = m->m_pkthdr.len;
else {
p = oldp;
if (*oldlenp < m->m_pkthdr.len) {
err2 = ENOMEM;
ep = p + *oldlenp;
} else {
*oldlenp = m->m_pkthdr.len;
ep = p + m->m_pkthdr.len;
}
for (n = m; n; n = n->m_next) {
len = (ep - p < n->m_len) ?
ep - p : n->m_len;
error = copyout(mtod(n, const void *), p, len);
p += len;
if (error)
break;
}
if (error == 0)
error = err2;
}
m_freem(m);
return (error);
}
static int
sysctl_net_key_dumpsp(SYSCTLFN_ARGS)
{
struct mbuf *m, *n;
int err2 = 0;
char *p, *ep;
size_t len;
int error;
if (newp)
return (EPERM);
if (namelen != 0)
return (EINVAL);
mutex_enter(&key_spd.lock);
m = key_setspddump(&error, l->l_proc->p_pid);
mutex_exit(&key_spd.lock);
if (!m)
return (error);
if (!oldp)
*oldlenp = m->m_pkthdr.len;
else {
p = oldp;
if (*oldlenp < m->m_pkthdr.len) {
err2 = ENOMEM;
ep = p + *oldlenp;
} else {
*oldlenp = m->m_pkthdr.len;
ep = p + m->m_pkthdr.len;
}
for (n = m; n; n = n->m_next) {
len = (ep - p < n->m_len) ? ep - p : n->m_len;
error = copyout(mtod(n, const void *), p, len);
p += len;
if (error)
break;
}
if (error == 0)
error = err2;
}
m_freem(m);
return (error);
}
/*
* Create sysctl tree for native IPSEC key knobs, originally
* under name "net.keyv2" * with MIB number { CTL_NET, PF_KEY_V2. }.
* However, sysctl(8) never checked for nodes under { CTL_NET, PF_KEY_V2 };
* and in any case the part of our sysctl namespace used for dumping the
* SPD and SA database *HAS* to be compatible with the KAME sysctl
* namespace, for API reasons.
*
* Pending a consensus on the right way to fix this, add a level of
* indirection in how we number the `native' IPSEC key nodes;
* and (as requested by Andrew Brown) move registration of the
* KAME-compatible names to a separate function.
*/
#if 0
# define IPSEC_PFKEY PF_KEY_V2
# define IPSEC_PFKEY_NAME "keyv2"
#else
# define IPSEC_PFKEY PF_KEY
# define IPSEC_PFKEY_NAME "key"
#endif
static int
sysctl_net_key_stats(SYSCTLFN_ARGS)
{
return (NETSTAT_SYSCTL(pfkeystat_percpu, PFKEY_NSTATS));
}
static void
sysctl_net_keyv2_setup(struct sysctllog **clog)
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, IPSEC_PFKEY_NAME, NULL,
NULL, 0, NULL, 0,
CTL_NET, IPSEC_PFKEY, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "debug", NULL,
NULL, 0, &key_debug_level, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_DEBUG_LEVEL, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "spi_try", NULL,
NULL, 0, &key_spi_trycnt, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_TRY, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "spi_min_value", NULL,
NULL, 0, &key_spi_minval, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MIN_VALUE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "spi_max_value", NULL,
NULL, 0, &key_spi_maxval, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_SPI_MAX_VALUE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "random_int", NULL,
NULL, 0, &key_int_random, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_RANDOM_INT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "larval_lifetime", NULL,
NULL, 0, &key_larval_lifetime, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_LARVAL_LIFETIME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "blockacq_count", NULL,
NULL, 0, &key_blockacq_count, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_COUNT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "blockacq_lifetime", NULL,
NULL, 0, &key_blockacq_lifetime, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_BLOCKACQ_LIFETIME, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "esp_keymin", NULL,
NULL, 0, &ipsec_esp_keymin, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_KEYMIN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "prefered_oldsa", NULL,
NULL, 0, &key_prefered_oldsa, 0,
CTL_NET, PF_KEY, KEYCTL_PREFERED_OLDSA, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "esp_auth", NULL,
NULL, 0, &ipsec_esp_auth, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_ESP_AUTH, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "ah_keymin", NULL,
NULL, 0, &ipsec_ah_keymin, 0,
CTL_NET, IPSEC_PFKEY, KEYCTL_AH_KEYMIN, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("PF_KEY statistics"),
sysctl_net_key_stats, 0, NULL, 0,
CTL_NET, IPSEC_PFKEY, CTL_CREATE, CTL_EOL);
}
/*
* Register sysctl names used by setkey(8). For historical reasons,
* and to share a single API, these names appear under { CTL_NET, PF_KEY }
* for both IPSEC and KAME IPSEC.
*/
static void
sysctl_net_key_compat_setup(struct sysctllog **clog)
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "key", NULL,
NULL, 0, NULL, 0,
CTL_NET, PF_KEY, CTL_EOL);
/* Register the net.key.dump{sa,sp} nodes used by setkey(8). */
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "dumpsa", NULL,
sysctl_net_key_dumpsa, 0, NULL, 0,
CTL_NET, PF_KEY, KEYCTL_DUMPSA, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "dumpsp", NULL,
sysctl_net_key_dumpsp, 0, NULL, 0,
CTL_NET, PF_KEY, KEYCTL_DUMPSP, CTL_EOL);
}