abc88641ad
needed to wait in delay(). New code overflowed for large delay values. Broke, among other things, the RTC probe for the TS-7200.
285 lines
7.7 KiB
C
285 lines
7.7 KiB
C
/* $NetBSD: epclk.c,v 1.16 2008/12/19 04:26:35 kenh Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2004 Jesse Off
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Driver for the ep93xx clock tick.
|
|
*
|
|
* We use the 64Hz RTC interrupt as its the only thing that allows for timekeeping
|
|
* of a second (crystal error only). There are two general purpose timers
|
|
* on the ep93xx, but they run at a frequency that makes a perfect integer
|
|
* number of ticks per second impossible. Note that there was an errata with
|
|
* the ep93xx processor and many early boards (including the Cirrus eval board) have
|
|
* a broken crystal oscillator input that may make this 64Hz unreliable. However,
|
|
* not all boards are susceptible, the Technologic Systems TS-7200 is a notable
|
|
* exception that is immune to this errata. --joff
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: epclk.c,v 1.16 2008/12/19 04:26:35 kenh Exp $");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/time.h>
|
|
#include <sys/timetc.h>
|
|
#include <sys/device.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <arm/cpufunc.h>
|
|
|
|
#include <arm/ep93xx/epsocvar.h>
|
|
#include <arm/ep93xx/epclkreg.h>
|
|
#include <arm/ep93xx/ep93xxreg.h>
|
|
#include <arm/ep93xx/ep93xxvar.h>
|
|
#include <dev/clock_subr.h>
|
|
|
|
#include "opt_hz.h"
|
|
|
|
#define TIMER_FREQ 983040
|
|
|
|
static int epclk_match(struct device *, struct cfdata *, void *);
|
|
static void epclk_attach(struct device *, struct device *, void *);
|
|
static u_int epclk_get_timecount(struct timecounter *);
|
|
|
|
void rtcinit(void);
|
|
|
|
/* callback functions for intr_functions */
|
|
static int epclk_intr(void* arg);
|
|
|
|
struct epclk_softc {
|
|
struct device sc_dev;
|
|
bus_addr_t sc_baseaddr;
|
|
bus_space_tag_t sc_iot;
|
|
bus_space_handle_t sc_ioh;
|
|
#if defined(HZ) && (HZ == 64)
|
|
bus_space_handle_t sc_teoi_ioh;
|
|
#endif
|
|
int sc_intr;
|
|
};
|
|
|
|
static struct timecounter epclk_timecounter = {
|
|
epclk_get_timecount, /* get_timecount */
|
|
0, /* no poll_pps */
|
|
~0u, /* counter_mask */
|
|
TIMER_FREQ, /* frequency */
|
|
"epclk", /* name */
|
|
100, /* quality */
|
|
NULL, /* prev */
|
|
NULL, /* next */
|
|
};
|
|
|
|
static struct epclk_softc *epclk_sc = NULL;
|
|
|
|
CFATTACH_DECL(epclk, sizeof(struct epclk_softc),
|
|
epclk_match, epclk_attach, NULL, NULL);
|
|
|
|
/* This is a quick ARM way to multiply by 983040/1000000 (w/o overflow) */
|
|
#define US_TO_TIMER4VAL(x, y) { \
|
|
u_int32_t hi, lo, scalar = 4222124650UL; \
|
|
__asm volatile ( \
|
|
"umull %0, %1, %2, %3;" \
|
|
: "=&r"(lo), "=&r"(hi) \
|
|
: "r"((x)), "r"(scalar) \
|
|
); \
|
|
(y) = hi; \
|
|
}
|
|
|
|
#define TIMER4VAL() (*(volatile u_int32_t *)(EP93XX_APB_VBASE + \
|
|
EP93XX_APB_TIMERS + EP93XX_TIMERS_Timer4ValueLow))
|
|
|
|
static int
|
|
epclk_match(struct device *parent, struct cfdata *match, void *aux)
|
|
{
|
|
|
|
return 2;
|
|
}
|
|
|
|
static void
|
|
epclk_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct epclk_softc *sc;
|
|
struct epsoc_attach_args *sa;
|
|
bool first_run;
|
|
|
|
printf("\n");
|
|
|
|
sc = (struct epclk_softc*) self;
|
|
sa = aux;
|
|
sc->sc_iot = sa->sa_iot;
|
|
sc->sc_baseaddr = sa->sa_addr;
|
|
sc->sc_intr = sa->sa_intr;
|
|
|
|
if (epclk_sc == NULL) {
|
|
first_run = true;
|
|
epclk_sc = sc;
|
|
}
|
|
|
|
if (bus_space_map(sa->sa_iot, sa->sa_addr, sa->sa_size,
|
|
0, &sc->sc_ioh))
|
|
panic("%s: Cannot map registers", self->dv_xname);
|
|
#if defined(HZ) && (HZ == 64)
|
|
if (bus_space_map(sa->sa_iot, EP93XX_APB_HWBASE + EP93XX_APB_SYSCON +
|
|
EP93XX_SYSCON_TEOI, 4, 0, &sc->sc_teoi_ioh))
|
|
panic("%s: Cannot map registers", self->dv_xname);
|
|
#endif
|
|
|
|
/* clear and start the debug timer (Timer4) */
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EP93XX_TIMERS_Timer4Enable, 0);
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EP93XX_TIMERS_Timer4Enable, 0x100);
|
|
|
|
if (first_run)
|
|
tc_init(&epclk_timecounter);
|
|
}
|
|
|
|
/*
|
|
* epclk_intr:
|
|
*
|
|
* Handle the hardclock interrupt.
|
|
*/
|
|
static int
|
|
epclk_intr(void *arg)
|
|
{
|
|
struct epclk_softc* sc;
|
|
|
|
sc = epclk_sc;
|
|
|
|
#if defined(HZ) && (HZ == 64)
|
|
bus_space_write_4(sc->sc_iot, sc->sc_teoi_ioh, 0, 1);
|
|
#else
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh, EP93XX_TIMERS_Timer1Clear, 1);
|
|
#endif
|
|
hardclock((struct clockframe*) arg);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* setstatclockrate:
|
|
*
|
|
* Set the rate of the statistics clock.
|
|
*
|
|
* We assume that hz is either stathz or profhz, and that neither
|
|
* will change after being set by cpu_initclocks(). We could
|
|
* recalculate the intervals here, but that would be a pain.
|
|
*/
|
|
void
|
|
setstatclockrate(int newhz)
|
|
{
|
|
|
|
/* use hardclock */
|
|
}
|
|
|
|
/*
|
|
* cpu_initclocks:
|
|
*
|
|
* Initialize the clock and get them going.
|
|
*/
|
|
void
|
|
cpu_initclocks(void)
|
|
{
|
|
struct epclk_softc* sc;
|
|
|
|
sc = epclk_sc;
|
|
stathz = profhz = 0;
|
|
|
|
#if defined(HZ) && (HZ == 64)
|
|
if (hz != 64) panic("HZ must be 64!");
|
|
|
|
/* clear 64Hz interrupt status */
|
|
bus_space_write_4(sc->sc_iot, sc->sc_teoi_ioh, 0, 1);
|
|
#else
|
|
#define CLOCK_SOURCE_RATE 14745600UL
|
|
#define CLOCK_TICK_DIV 29
|
|
#define CLOCK_TICK_RATE \
|
|
(((CLOCK_SOURCE_RATE+(CLOCK_TICK_DIV*hz-1))/(CLOCK_TICK_DIV*hz))*hz)
|
|
#define LATCH ((CLOCK_TICK_RATE + hz/2) / hz)
|
|
/* setup and start the 16bit timer (Timer1) */
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
EP93XX_TIMERS_Timer1Control,
|
|
(TimerControl_MODE)|(TimerControl_CLKSEL));
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
EP93XX_TIMERS_Timer1Load, LATCH-1);
|
|
bus_space_write_4(sc->sc_iot, sc->sc_ioh,
|
|
EP93XX_TIMERS_Timer1Control,
|
|
(TimerControl_ENABLE)|(TimerControl_MODE)|(TimerControl_CLKSEL));
|
|
#endif
|
|
|
|
ep93xx_intr_establish(sc->sc_intr, IPL_CLOCK, epclk_intr, NULL);
|
|
}
|
|
|
|
/*
|
|
* delay:
|
|
*
|
|
* Delay for at least N microseconds.
|
|
*/
|
|
void
|
|
delay(unsigned int n)
|
|
{
|
|
unsigned int cur_tick, initial_tick;
|
|
int remaining;
|
|
|
|
#ifdef DEBUG
|
|
if (epclk_sc == NULL) {
|
|
printf("delay: called before start epclk\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Read the counter first, so that the rest of the setup overhead is
|
|
* counted.
|
|
*/
|
|
initial_tick = TIMER4VAL();
|
|
|
|
US_TO_TIMER4VAL(n, remaining);
|
|
|
|
while (remaining > 0) {
|
|
cur_tick = TIMER4VAL();
|
|
if (cur_tick >= initial_tick)
|
|
remaining -= cur_tick - initial_tick;
|
|
else
|
|
remaining -= UINT_MAX - initial_tick + cur_tick + 1;
|
|
initial_tick = cur_tick;
|
|
}
|
|
}
|
|
|
|
static u_int
|
|
epclk_get_timecount(struct timecounter *tc)
|
|
{
|
|
return TIMER4VAL();
|
|
}
|