a6ef389457
instead of silently corrupting the filesystem.
1924 lines
52 KiB
C
1924 lines
52 KiB
C
/* $NetBSD: lfs_segment.c,v 1.67 2001/01/09 05:05:35 joff Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Konrad E. Schroder <perseant@hhhh.org>.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
|
|
*/
|
|
|
|
#define ivndebug(vp,str) printf("ino %d: %s\n",VTOI(vp)->i_number,(str))
|
|
|
|
#if defined(_KERNEL) && !defined(_LKM)
|
|
#include "opt_ddb.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mount.h>
|
|
|
|
#include <miscfs/specfs/specdev.h>
|
|
#include <miscfs/fifofs/fifo.h>
|
|
|
|
#include <ufs/ufs/quota.h>
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/dir.h>
|
|
#include <ufs/ufs/ufsmount.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <ufs/lfs/lfs.h>
|
|
#include <ufs/lfs/lfs_extern.h>
|
|
|
|
extern int count_lock_queue __P((void));
|
|
extern struct simplelock vnode_free_list_slock; /* XXX */
|
|
|
|
/*
|
|
* Determine if it's OK to start a partial in this segment, or if we need
|
|
* to go on to a new segment.
|
|
*/
|
|
#define LFS_PARTIAL_FITS(fs) \
|
|
((fs)->lfs_dbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
|
|
1 << (fs)->lfs_fsbtodb)
|
|
|
|
void lfs_callback __P((struct buf *));
|
|
int lfs_gather __P((struct lfs *, struct segment *,
|
|
struct vnode *, int (*) __P((struct lfs *, struct buf *))));
|
|
int lfs_gatherblock __P((struct segment *, struct buf *, int *));
|
|
void lfs_iset __P((struct inode *, ufs_daddr_t, time_t));
|
|
int lfs_match_fake __P((struct lfs *, struct buf *));
|
|
int lfs_match_data __P((struct lfs *, struct buf *));
|
|
int lfs_match_dindir __P((struct lfs *, struct buf *));
|
|
int lfs_match_indir __P((struct lfs *, struct buf *));
|
|
int lfs_match_tindir __P((struct lfs *, struct buf *));
|
|
void lfs_newseg __P((struct lfs *));
|
|
void lfs_shellsort __P((struct buf **, ufs_daddr_t *, int));
|
|
void lfs_supercallback __P((struct buf *));
|
|
void lfs_updatemeta __P((struct segment *));
|
|
int lfs_vref __P((struct vnode *));
|
|
void lfs_vunref __P((struct vnode *));
|
|
void lfs_writefile __P((struct lfs *, struct segment *, struct vnode *));
|
|
int lfs_writeinode __P((struct lfs *, struct segment *, struct inode *));
|
|
int lfs_writeseg __P((struct lfs *, struct segment *));
|
|
void lfs_writesuper __P((struct lfs *, daddr_t));
|
|
int lfs_writevnodes __P((struct lfs *fs, struct mount *mp,
|
|
struct segment *sp, int dirops));
|
|
|
|
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
|
|
int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
|
|
int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
|
|
int lfs_dirvcount = 0; /* # active dirops */
|
|
|
|
/* Statistics Counters */
|
|
int lfs_dostats = 1;
|
|
struct lfs_stats lfs_stats;
|
|
|
|
extern int locked_queue_count;
|
|
extern long locked_queue_bytes;
|
|
|
|
/* op values to lfs_writevnodes */
|
|
#define VN_REG 0
|
|
#define VN_DIROP 1
|
|
#define VN_EMPTY 2
|
|
#define VN_CLEAN 3
|
|
|
|
#define LFS_MAX_ACTIVE 10
|
|
|
|
/*
|
|
* XXX KS - Set modification time on the Ifile, so the cleaner can
|
|
* read the fs mod time off of it. We don't set IN_UPDATE here,
|
|
* since we don't really need this to be flushed to disk (and in any
|
|
* case that wouldn't happen to the Ifile until we checkpoint).
|
|
*/
|
|
void
|
|
lfs_imtime(fs)
|
|
struct lfs *fs;
|
|
{
|
|
struct timespec ts;
|
|
struct inode *ip;
|
|
|
|
TIMEVAL_TO_TIMESPEC(&time, &ts);
|
|
ip = VTOI(fs->lfs_ivnode);
|
|
ip->i_ffs_mtime = ts.tv_sec;
|
|
ip->i_ffs_mtimensec = ts.tv_nsec;
|
|
}
|
|
|
|
/*
|
|
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
|
|
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
|
|
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
|
|
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
|
|
*/
|
|
|
|
#define SET_FLUSHING(fs,vp) (fs)->lfs_flushvp = (vp)
|
|
#define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
|
|
#define CLR_FLUSHING(fs,vp) (fs)->lfs_flushvp = NULL
|
|
|
|
int
|
|
lfs_vflush(vp)
|
|
struct vnode *vp;
|
|
{
|
|
struct inode *ip;
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct buf *bp, *nbp, *tbp, *tnbp;
|
|
int error, s;
|
|
|
|
ip = VTOI(vp);
|
|
fs = VFSTOUFS(vp->v_mount)->um_lfs;
|
|
|
|
if(ip->i_flag & IN_CLEANING) {
|
|
#ifdef DEBUG_LFS
|
|
ivndebug(vp,"vflush/in_cleaning");
|
|
#endif
|
|
LFS_CLR_UINO(ip, IN_CLEANING);
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
|
|
/*
|
|
* Toss any cleaning buffers that have real counterparts
|
|
* to avoid losing new data
|
|
*/
|
|
s = splbio();
|
|
for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
|
|
nbp = bp->b_vnbufs.le_next;
|
|
if(bp->b_flags & B_CALL) {
|
|
for(tbp=vp->v_dirtyblkhd.lh_first; tbp;
|
|
tbp=tnbp)
|
|
{
|
|
tnbp = tbp->b_vnbufs.le_next;
|
|
if(tbp->b_vp == bp->b_vp
|
|
&& tbp->b_lblkno == bp->b_lblkno
|
|
&& tbp != bp)
|
|
{
|
|
fs->lfs_avail += btodb(bp->b_bcount);
|
|
wakeup(&fs->lfs_avail);
|
|
lfs_freebuf(bp);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/* If the node is being written, wait until that is done */
|
|
if(WRITEINPROG(vp)) {
|
|
#ifdef DEBUG_LFS
|
|
ivndebug(vp,"vflush/writeinprog");
|
|
#endif
|
|
tsleep(vp, PRIBIO+1, "lfs_vw", 0);
|
|
}
|
|
|
|
/* Protect against VXLOCK deadlock in vinvalbuf() */
|
|
lfs_seglock(fs, SEGM_SYNC);
|
|
|
|
/* If we're supposed to flush a freed inode, just toss it */
|
|
/* XXX - seglock, so these buffers can't be gathered, right? */
|
|
if(ip->i_ffs_mode == 0) {
|
|
printf("lfs_vflush: ino %d is freed, not flushing\n",
|
|
ip->i_number);
|
|
s = splbio();
|
|
for(bp=vp->v_dirtyblkhd.lh_first; bp; bp=nbp) {
|
|
nbp = bp->b_vnbufs.le_next;
|
|
if (bp->b_flags & B_DELWRI) { /* XXX always true? */
|
|
fs->lfs_avail += btodb(bp->b_bcount);
|
|
wakeup(&fs->lfs_avail);
|
|
}
|
|
/* Copied from lfs_writeseg */
|
|
if (bp->b_flags & B_CALL) {
|
|
/* if B_CALL, it was created with newbuf */
|
|
lfs_freebuf(bp);
|
|
} else {
|
|
bremfree(bp);
|
|
LFS_UNLOCK_BUF(bp);
|
|
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
|
|
B_GATHERED);
|
|
bp->b_flags |= B_DONE;
|
|
reassignbuf(bp, vp);
|
|
brelse(bp);
|
|
}
|
|
}
|
|
splx(s);
|
|
LFS_CLR_UINO(ip, IN_CLEANING);
|
|
LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
|
|
ip->i_flag &= ~IN_ALLMOD;
|
|
printf("lfs_vflush: done not flushing ino %d\n",
|
|
ip->i_number);
|
|
lfs_segunlock(fs);
|
|
return 0;
|
|
}
|
|
|
|
SET_FLUSHING(fs,vp);
|
|
if (fs->lfs_nactive > LFS_MAX_ACTIVE) {
|
|
error = lfs_segwrite(vp->v_mount, SEGM_SYNC|SEGM_CKP);
|
|
CLR_FLUSHING(fs,vp);
|
|
lfs_segunlock(fs);
|
|
return error;
|
|
}
|
|
sp = fs->lfs_sp;
|
|
|
|
if (vp->v_dirtyblkhd.lh_first == NULL) {
|
|
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
|
|
} else if((ip->i_flag & IN_CLEANING) &&
|
|
(fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
|
|
#ifdef DEBUG_LFS
|
|
ivndebug(vp,"vflush/clean");
|
|
#endif
|
|
lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
|
|
}
|
|
else if(lfs_dostats) {
|
|
if(vp->v_dirtyblkhd.lh_first || (VTOI(vp)->i_flag & IN_ALLMOD))
|
|
++lfs_stats.vflush_invoked;
|
|
#ifdef DEBUG_LFS
|
|
ivndebug(vp,"vflush");
|
|
#endif
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* XXX KS This actually can happen right now, though it shouldn't(?) */
|
|
if(vp->v_flag & VDIROP) {
|
|
printf("lfs_vflush: flushing VDIROP, this shouldn\'t be\n");
|
|
/* panic("VDIROP being flushed...this can\'t happen"); */
|
|
}
|
|
if(vp->v_usecount<0) {
|
|
printf("usecount=%d\n",vp->v_usecount);
|
|
panic("lfs_vflush: usecount<0");
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
do {
|
|
if (vp->v_dirtyblkhd.lh_first != NULL)
|
|
lfs_writefile(fs, sp, vp);
|
|
} while (lfs_writeinode(fs, sp, ip));
|
|
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
|
|
|
|
if(lfs_dostats) {
|
|
++lfs_stats.nwrites;
|
|
if (sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.nsync_writes;
|
|
if (sp->seg_flags & SEGM_CKP)
|
|
++lfs_stats.ncheckpoints;
|
|
}
|
|
lfs_segunlock(fs);
|
|
|
|
CLR_FLUSHING(fs,vp);
|
|
return (0);
|
|
}
|
|
|
|
#ifdef DEBUG_LFS_VERBOSE
|
|
# define vndebug(vp,str) if(VTOI(vp)->i_flag & IN_CLEANING) printf("not writing ino %d because %s (op %d)\n",VTOI(vp)->i_number,(str),op)
|
|
#else
|
|
# define vndebug(vp,str)
|
|
#endif
|
|
|
|
int
|
|
lfs_writevnodes(fs, mp, sp, op)
|
|
struct lfs *fs;
|
|
struct mount *mp;
|
|
struct segment *sp;
|
|
int op;
|
|
{
|
|
struct inode *ip;
|
|
struct vnode *vp;
|
|
int inodes_written=0, only_cleaning;
|
|
int needs_unlock;
|
|
|
|
#ifndef LFS_NO_BACKVP_HACK
|
|
/* BEGIN HACK */
|
|
#define VN_OFFSET (((caddr_t)&vp->v_mntvnodes.le_next) - (caddr_t)vp)
|
|
#define BACK_VP(VP) ((struct vnode *)(((caddr_t)VP->v_mntvnodes.le_prev) - VN_OFFSET))
|
|
#define BEG_OF_VLIST ((struct vnode *)(((caddr_t)&mp->mnt_vnodelist.lh_first) - VN_OFFSET))
|
|
|
|
/* Find last vnode. */
|
|
loop: for (vp = mp->mnt_vnodelist.lh_first;
|
|
vp && vp->v_mntvnodes.le_next != NULL;
|
|
vp = vp->v_mntvnodes.le_next);
|
|
for (; vp && vp != BEG_OF_VLIST; vp = BACK_VP(vp)) {
|
|
#else
|
|
loop:
|
|
for (vp = mp->mnt_vnodelist.lh_first;
|
|
vp != NULL;
|
|
vp = vp->v_mntvnodes.le_next) {
|
|
#endif
|
|
/*
|
|
* If the vnode that we are about to sync is no longer
|
|
* associated with this mount point, start over.
|
|
*/
|
|
if (vp->v_mount != mp) {
|
|
printf("lfs_writevnodes: starting over\n");
|
|
goto loop;
|
|
}
|
|
|
|
ip = VTOI(vp);
|
|
if ((op == VN_DIROP && !(vp->v_flag & VDIROP)) ||
|
|
(op != VN_DIROP && op != VN_CLEAN && (vp->v_flag & VDIROP))) {
|
|
vndebug(vp,"dirop");
|
|
continue;
|
|
}
|
|
|
|
if (op == VN_EMPTY && vp->v_dirtyblkhd.lh_first) {
|
|
vndebug(vp,"empty");
|
|
continue;
|
|
}
|
|
|
|
if (vp->v_type == VNON) {
|
|
continue;
|
|
}
|
|
|
|
if(op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
|
|
&& vp != fs->lfs_flushvp
|
|
&& !(ip->i_flag & IN_CLEANING)) {
|
|
vndebug(vp,"cleaning");
|
|
continue;
|
|
}
|
|
|
|
if (lfs_vref(vp)) {
|
|
vndebug(vp,"vref");
|
|
continue;
|
|
}
|
|
|
|
needs_unlock = 0;
|
|
if (VOP_ISLOCKED(vp)) {
|
|
if (vp != fs->lfs_ivnode &&
|
|
vp->v_lock.lk_lockholder != curproc->p_pid) {
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_writevnodes: not writing ino %d,"
|
|
" locked by pid %d\n",
|
|
VTOI(vp)->i_number,
|
|
vp->v_lock.lk_lockholder);
|
|
#endif
|
|
lfs_vunref(vp);
|
|
continue;
|
|
}
|
|
} else if (vp != fs->lfs_ivnode) {
|
|
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
|
|
needs_unlock = 1;
|
|
}
|
|
|
|
only_cleaning = 0;
|
|
/*
|
|
* Write the inode/file if dirty and it's not the IFILE.
|
|
*/
|
|
if ((ip->i_flag & IN_ALLMOD) ||
|
|
(vp->v_dirtyblkhd.lh_first != NULL))
|
|
{
|
|
only_cleaning = ((ip->i_flag & IN_ALLMOD)==IN_CLEANING);
|
|
|
|
if(ip->i_number != LFS_IFILE_INUM
|
|
&& vp->v_dirtyblkhd.lh_first != NULL)
|
|
{
|
|
lfs_writefile(fs, sp, vp);
|
|
}
|
|
if(vp->v_dirtyblkhd.lh_first != NULL) {
|
|
if(WRITEINPROG(vp)) {
|
|
#ifdef DEBUG_LFS
|
|
ivndebug(vp,"writevnodes/write2");
|
|
#endif
|
|
} else if(!(ip->i_flag & IN_ALLMOD)) {
|
|
#ifdef DEBUG_LFS
|
|
printf("<%d>",ip->i_number);
|
|
#endif
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
}
|
|
}
|
|
(void) lfs_writeinode(fs, sp, ip);
|
|
inodes_written++;
|
|
}
|
|
|
|
if (needs_unlock)
|
|
VOP_UNLOCK(vp, 0);
|
|
|
|
if (lfs_clean_vnhead && only_cleaning)
|
|
lfs_vunref_head(vp);
|
|
else
|
|
lfs_vunref(vp);
|
|
}
|
|
return inodes_written;
|
|
}
|
|
|
|
int
|
|
lfs_segwrite(mp, flags)
|
|
struct mount *mp;
|
|
int flags; /* Do a checkpoint. */
|
|
{
|
|
struct buf *bp;
|
|
struct inode *ip;
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
SEGUSE *segusep;
|
|
ufs_daddr_t ibno;
|
|
int do_ckp, did_ckp, error, i;
|
|
int writer_set = 0;
|
|
int dirty;
|
|
|
|
fs = VFSTOUFS(mp)->um_lfs;
|
|
|
|
if (fs->lfs_ronly)
|
|
return EROFS;
|
|
|
|
lfs_imtime(fs);
|
|
|
|
/* printf("lfs_segwrite: ifile flags are 0x%lx\n",
|
|
(long)(VTOI(fs->lfs_ivnode)->i_flag)); */
|
|
|
|
#if 0
|
|
/*
|
|
* If we are not the cleaner, and there is no space available,
|
|
* wait until cleaner writes.
|
|
*/
|
|
if(!(flags & SEGM_CLEAN) && !(fs->lfs_seglock && fs->lfs_sp &&
|
|
(fs->lfs_sp->seg_flags & SEGM_CLEAN)))
|
|
{
|
|
while (fs->lfs_avail <= 0) {
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
|
|
|
|
wakeup(&lfs_allclean_wakeup);
|
|
wakeup(&fs->lfs_nextseg);
|
|
error = tsleep(&fs->lfs_avail, PRIBIO + 1, "lfs_av2",
|
|
0);
|
|
if (error) {
|
|
return (error);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
/*
|
|
* Allocate a segment structure and enough space to hold pointers to
|
|
* the maximum possible number of buffers which can be described in a
|
|
* single summary block.
|
|
*/
|
|
do_ckp = (flags & SEGM_CKP) || fs->lfs_nactive > LFS_MAX_ACTIVE;
|
|
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
|
|
sp = fs->lfs_sp;
|
|
|
|
/*
|
|
* If lfs_flushvp is non-NULL, we are called from lfs_vflush,
|
|
* in which case we have to flush *all* buffers off of this vnode.
|
|
* We don't care about other nodes, but write any non-dirop nodes
|
|
* anyway in anticipation of another getnewvnode().
|
|
*
|
|
* If we're cleaning we only write cleaning and ifile blocks, and
|
|
* no dirops, since otherwise we'd risk corruption in a crash.
|
|
*/
|
|
if(sp->seg_flags & SEGM_CLEAN)
|
|
lfs_writevnodes(fs, mp, sp, VN_CLEAN);
|
|
else {
|
|
lfs_writevnodes(fs, mp, sp, VN_REG);
|
|
if(!fs->lfs_dirops || !fs->lfs_flushvp) {
|
|
while(fs->lfs_dirops)
|
|
if((error = tsleep(&fs->lfs_writer, PRIBIO + 1,
|
|
"lfs writer", 0)))
|
|
{
|
|
free(sp->bpp, M_SEGMENT);
|
|
free(sp, M_SEGMENT);
|
|
return (error);
|
|
}
|
|
fs->lfs_writer++;
|
|
writer_set=1;
|
|
lfs_writevnodes(fs, mp, sp, VN_DIROP);
|
|
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we are doing a checkpoint, mark everything since the
|
|
* last checkpoint as no longer ACTIVE.
|
|
*/
|
|
if (do_ckp) {
|
|
for (ibno = fs->lfs_cleansz + fs->lfs_segtabsz;
|
|
--ibno >= fs->lfs_cleansz; ) {
|
|
dirty = 0;
|
|
if (bread(fs->lfs_ivnode, ibno, fs->lfs_bsize, NOCRED, &bp))
|
|
|
|
panic("lfs_segwrite: ifile read");
|
|
segusep = (SEGUSE *)bp->b_data;
|
|
for (i = fs->lfs_sepb; i--; segusep++) {
|
|
if (segusep->su_flags & SEGUSE_ACTIVE) {
|
|
segusep->su_flags &= ~SEGUSE_ACTIVE;
|
|
++dirty;
|
|
}
|
|
}
|
|
|
|
/* But the current segment is still ACTIVE */
|
|
segusep = (SEGUSE *)bp->b_data;
|
|
if (datosn(fs, fs->lfs_curseg) / fs->lfs_sepb ==
|
|
(ibno-fs->lfs_cleansz)) {
|
|
segusep[datosn(fs, fs->lfs_curseg) %
|
|
fs->lfs_sepb].su_flags |= SEGUSE_ACTIVE;
|
|
--dirty;
|
|
}
|
|
if (dirty)
|
|
error = VOP_BWRITE(bp); /* Ifile */
|
|
else
|
|
brelse(bp);
|
|
}
|
|
}
|
|
|
|
did_ckp = 0;
|
|
if (do_ckp || fs->lfs_doifile) {
|
|
do {
|
|
vp = fs->lfs_ivnode;
|
|
|
|
vget(vp, LK_EXCLUSIVE | LK_CANRECURSE | LK_RETRY);
|
|
|
|
ip = VTOI(vp);
|
|
if (vp->v_dirtyblkhd.lh_first != NULL)
|
|
lfs_writefile(fs, sp, vp);
|
|
if (ip->i_flag & IN_ALLMOD)
|
|
++did_ckp;
|
|
(void) lfs_writeinode(fs, sp, ip);
|
|
|
|
vput(vp);
|
|
} while (lfs_writeseg(fs, sp) && do_ckp);
|
|
|
|
/* The ifile should now be all clear */
|
|
LFS_CLR_UINO(ip, IN_ALLMOD);
|
|
} else {
|
|
(void) lfs_writeseg(fs, sp);
|
|
}
|
|
|
|
/*
|
|
* If the I/O count is non-zero, sleep until it reaches zero.
|
|
* At the moment, the user's process hangs around so we can
|
|
* sleep.
|
|
*/
|
|
fs->lfs_doifile = 0;
|
|
if(writer_set && --fs->lfs_writer==0)
|
|
wakeup(&fs->lfs_dirops);
|
|
|
|
/*
|
|
* If we didn't write the Ifile, we didn't really do anything.
|
|
* That means that (1) there is a checkpoint on disk and (2)
|
|
* nothing has changed since it was written.
|
|
*
|
|
* Take the flags off of the segment so that lfs_segunlock
|
|
* doesn't have to write the superblock either.
|
|
*/
|
|
if (did_ckp == 0) {
|
|
sp->seg_flags &= ~(SEGM_SYNC|SEGM_CKP);
|
|
/* if(do_ckp) printf("lfs_segwrite: no checkpoint\n"); */
|
|
}
|
|
|
|
if(lfs_dostats) {
|
|
++lfs_stats.nwrites;
|
|
if (sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.nsync_writes;
|
|
if (sp->seg_flags & SEGM_CKP)
|
|
++lfs_stats.ncheckpoints;
|
|
}
|
|
lfs_segunlock(fs);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write the dirty blocks associated with a vnode.
|
|
*/
|
|
void
|
|
lfs_writefile(fs, sp, vp)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
{
|
|
struct buf *bp;
|
|
struct finfo *fip;
|
|
IFILE *ifp;
|
|
|
|
|
|
if (sp->seg_bytes_left < fs->lfs_bsize ||
|
|
sp->sum_bytes_left < sizeof(struct finfo))
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(ufs_daddr_t);
|
|
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
|
|
if(vp->v_flag & VDIROP)
|
|
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
|
|
|
|
fip = sp->fip;
|
|
fip->fi_nblocks = 0;
|
|
fip->fi_ino = VTOI(vp)->i_number;
|
|
LFS_IENTRY(ifp, fs, fip->fi_ino, bp);
|
|
fip->fi_version = ifp->if_version;
|
|
brelse(bp);
|
|
|
|
if(sp->seg_flags & SEGM_CLEAN)
|
|
{
|
|
lfs_gather(fs, sp, vp, lfs_match_fake);
|
|
/*
|
|
* For a file being flushed, we need to write *all* blocks.
|
|
* This means writing the cleaning blocks first, and then
|
|
* immediately following with any non-cleaning blocks.
|
|
* The same is true of the Ifile since checkpoints assume
|
|
* that all valid Ifile blocks are written.
|
|
*/
|
|
if(IS_FLUSHING(fs,vp) || VTOI(vp)->i_number == LFS_IFILE_INUM)
|
|
lfs_gather(fs, sp, vp, lfs_match_data);
|
|
} else
|
|
lfs_gather(fs, sp, vp, lfs_match_data);
|
|
|
|
/*
|
|
* It may not be necessary to write the meta-data blocks at this point,
|
|
* as the roll-forward recovery code should be able to reconstruct the
|
|
* list.
|
|
*
|
|
* We have to write them anyway, though, under two conditions: (1) the
|
|
* vnode is being flushed (for reuse by vinvalbuf); or (2) we are
|
|
* checkpointing.
|
|
*/
|
|
if(lfs_writeindir
|
|
|| IS_FLUSHING(fs,vp)
|
|
|| (sp->seg_flags & SEGM_CKP))
|
|
{
|
|
lfs_gather(fs, sp, vp, lfs_match_indir);
|
|
lfs_gather(fs, sp, vp, lfs_match_dindir);
|
|
lfs_gather(fs, sp, vp, lfs_match_tindir);
|
|
}
|
|
fip = sp->fip;
|
|
if (fip->fi_nblocks != 0) {
|
|
sp->fip = (FINFO*)((caddr_t)fip + sizeof(struct finfo) +
|
|
sizeof(ufs_daddr_t) * (fip->fi_nblocks-1));
|
|
sp->start_lbp = &sp->fip->fi_blocks[0];
|
|
} else {
|
|
sp->sum_bytes_left += sizeof(FINFO) - sizeof(ufs_daddr_t);
|
|
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
}
|
|
}
|
|
|
|
int
|
|
lfs_writeinode(fs, sp, ip)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct inode *ip;
|
|
{
|
|
struct buf *bp, *ibp;
|
|
struct dinode *cdp;
|
|
IFILE *ifp;
|
|
SEGUSE *sup;
|
|
ufs_daddr_t daddr;
|
|
daddr_t *daddrp;
|
|
ino_t ino;
|
|
int error, i, ndx;
|
|
int redo_ifile = 0;
|
|
struct timespec ts;
|
|
int gotblk=0;
|
|
|
|
if (!(ip->i_flag & IN_ALLMOD))
|
|
return(0);
|
|
|
|
/* Allocate a new inode block if necessary. */
|
|
if ((ip->i_number != LFS_IFILE_INUM || sp->idp==NULL) && sp->ibp == NULL) {
|
|
/* Allocate a new segment if necessary. */
|
|
if (sp->seg_bytes_left < fs->lfs_bsize ||
|
|
sp->sum_bytes_left < sizeof(ufs_daddr_t))
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
/* Get next inode block. */
|
|
daddr = fs->lfs_offset;
|
|
fs->lfs_offset += fsbtodb(fs, 1);
|
|
sp->ibp = *sp->cbpp++ =
|
|
getblk(VTOI(fs->lfs_ivnode)->i_devvp, daddr, fs->lfs_bsize, 0, 0);
|
|
gotblk++;
|
|
|
|
/* Zero out inode numbers */
|
|
for (i = 0; i < INOPB(fs); ++i)
|
|
((struct dinode *)sp->ibp->b_data)[i].di_inumber = 0;
|
|
|
|
++sp->start_bpp;
|
|
fs->lfs_avail -= fsbtodb(fs, 1);
|
|
/* Set remaining space counters. */
|
|
sp->seg_bytes_left -= fs->lfs_bsize;
|
|
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
|
|
ndx = LFS_SUMMARY_SIZE / sizeof(ufs_daddr_t) -
|
|
sp->ninodes / INOPB(fs) - 1;
|
|
((ufs_daddr_t *)(sp->segsum))[ndx] = daddr;
|
|
}
|
|
|
|
/* Update the inode times and copy the inode onto the inode page. */
|
|
TIMEVAL_TO_TIMESPEC(&time, &ts);
|
|
LFS_ITIMES(ip, &ts, &ts, &ts);
|
|
|
|
/*
|
|
* If this is the Ifile, and we've already written the Ifile in this
|
|
* partial segment, just overwrite it (it's not on disk yet) and
|
|
* continue.
|
|
*
|
|
* XXX we know that the bp that we get the second time around has
|
|
* already been gathered.
|
|
*/
|
|
if(ip->i_number == LFS_IFILE_INUM && sp->idp) {
|
|
*(sp->idp) = ip->i_din.ffs_din;
|
|
return 0;
|
|
}
|
|
|
|
bp = sp->ibp;
|
|
cdp = ((struct dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
|
|
*cdp = ip->i_din.ffs_din;
|
|
|
|
/*
|
|
* If we are cleaning, ensure that we don't write UNWRITTEN disk
|
|
* addresses to disk.
|
|
*/
|
|
if (ip->i_lfs_effnblks != ip->i_ffs_blocks) {
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_writeinode: cleansing ino %d (%d != %d)\n",
|
|
ip->i_number, ip->i_lfs_effnblks, ip->i_ffs_blocks);
|
|
#endif
|
|
for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
|
|
daddrp++) {
|
|
if (*daddrp == UNWRITTEN) {
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_writeinode: wiping UNWRITTEN\n");
|
|
#endif
|
|
*daddrp = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if(ip->i_flag & IN_CLEANING)
|
|
LFS_CLR_UINO(ip, IN_CLEANING);
|
|
else {
|
|
/* XXX IN_ALLMOD */
|
|
LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
|
|
IN_UPDATE);
|
|
if (ip->i_lfs_effnblks == ip->i_ffs_blocks)
|
|
LFS_CLR_UINO(ip, IN_MODIFIED);
|
|
#ifdef DEBUG_LFS
|
|
else
|
|
printf("lfs_writeinode: ino %d: real blks=%d, "
|
|
"eff=%d\n", ip->i_number, ip->i_ffs_blocks,
|
|
ip->i_lfs_effnblks);
|
|
#endif
|
|
}
|
|
|
|
if(ip->i_number == LFS_IFILE_INUM) /* We know sp->idp == NULL */
|
|
sp->idp = ((struct dinode *)bp->b_data) +
|
|
(sp->ninodes % INOPB(fs));
|
|
if(gotblk) {
|
|
LFS_LOCK_BUF(bp);
|
|
brelse(bp);
|
|
}
|
|
|
|
/* Increment inode count in segment summary block. */
|
|
++((SEGSUM *)(sp->segsum))->ss_ninos;
|
|
|
|
/* If this page is full, set flag to allocate a new page. */
|
|
if (++sp->ninodes % INOPB(fs) == 0)
|
|
sp->ibp = NULL;
|
|
|
|
/*
|
|
* If updating the ifile, update the super-block. Update the disk
|
|
* address and access times for this inode in the ifile.
|
|
*/
|
|
ino = ip->i_number;
|
|
if (ino == LFS_IFILE_INUM) {
|
|
daddr = fs->lfs_idaddr;
|
|
fs->lfs_idaddr = bp->b_blkno;
|
|
} else {
|
|
LFS_IENTRY(ifp, fs, ino, ibp);
|
|
daddr = ifp->if_daddr;
|
|
ifp->if_daddr = bp->b_blkno;
|
|
#ifdef LFS_DEBUG_NEXTFREE
|
|
if(ino > 3 && ifp->if_nextfree) {
|
|
vprint("lfs_writeinode",ITOV(ip));
|
|
printf("lfs_writeinode: updating free ino %d\n",
|
|
ip->i_number);
|
|
}
|
|
#endif
|
|
error = VOP_BWRITE(ibp); /* Ifile */
|
|
}
|
|
|
|
/*
|
|
* Account the inode: it no longer belongs to its former segment,
|
|
* though it will not belong to the new segment until that segment
|
|
* is actually written.
|
|
*/
|
|
#ifdef DEBUG
|
|
/*
|
|
* The inode's last address should not be in the current partial
|
|
* segment, except under exceptional circumstances (lfs_writevnodes
|
|
* had to start over, and in the meantime more blocks were written
|
|
* to a vnode). Although the previous inode won't be accounted in
|
|
* su_nbytes until lfs_writeseg, this shouldn't be a problem as we
|
|
* have more data blocks in the current partial segment.
|
|
*/
|
|
if (daddr >= fs->lfs_lastpseg && daddr <= bp->b_blkno)
|
|
printf("lfs_writeinode: last inode addr in current pseg "
|
|
"(ino %d daddr 0x%x)\n", ino, daddr);
|
|
#endif
|
|
if (daddr != LFS_UNUSED_DADDR) {
|
|
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
|
|
#ifdef DIAGNOSTIC
|
|
if (sup->su_nbytes < DINODE_SIZE) {
|
|
printf("lfs_writeinode: negative bytes "
|
|
"(segment %d short by %d)\n",
|
|
datosn(fs, daddr),
|
|
(int)DINODE_SIZE - sup->su_nbytes);
|
|
panic("lfs_writeinode: negative bytes");
|
|
sup->su_nbytes = DINODE_SIZE;
|
|
}
|
|
#endif
|
|
sup->su_nbytes -= DINODE_SIZE;
|
|
redo_ifile =
|
|
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
|
|
error = VOP_BWRITE(bp); /* Ifile */
|
|
}
|
|
return (redo_ifile);
|
|
}
|
|
|
|
int
|
|
lfs_gatherblock(sp, bp, sptr)
|
|
struct segment *sp;
|
|
struct buf *bp;
|
|
int *sptr;
|
|
{
|
|
struct lfs *fs;
|
|
int version;
|
|
|
|
/*
|
|
* If full, finish this segment. We may be doing I/O, so
|
|
* release and reacquire the splbio().
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (sp->vp == NULL)
|
|
panic ("lfs_gatherblock: Null vp in segment");
|
|
#endif
|
|
fs = sp->fs;
|
|
if (sp->sum_bytes_left < sizeof(ufs_daddr_t) ||
|
|
sp->seg_bytes_left < bp->b_bcount) {
|
|
if (sptr)
|
|
splx(*sptr);
|
|
lfs_updatemeta(sp);
|
|
|
|
version = sp->fip->fi_version;
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
sp->fip->fi_version = version;
|
|
sp->fip->fi_ino = VTOI(sp->vp)->i_number;
|
|
/* Add the current file to the segment summary. */
|
|
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
sp->sum_bytes_left -=
|
|
sizeof(struct finfo) - sizeof(ufs_daddr_t);
|
|
|
|
if (sptr)
|
|
*sptr = splbio();
|
|
return(1);
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
if(bp->b_flags & B_GATHERED) {
|
|
printf("lfs_gatherblock: already gathered! Ino %d, lbn %d\n",
|
|
sp->fip->fi_ino, bp->b_lblkno);
|
|
return(0);
|
|
}
|
|
#endif
|
|
/* Insert into the buffer list, update the FINFO block. */
|
|
bp->b_flags |= B_GATHERED;
|
|
*sp->cbpp++ = bp;
|
|
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno;
|
|
|
|
sp->sum_bytes_left -= sizeof(ufs_daddr_t);
|
|
sp->seg_bytes_left -= bp->b_bcount;
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
lfs_gather(fs, sp, vp, match)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
int (*match) __P((struct lfs *, struct buf *));
|
|
{
|
|
struct buf *bp;
|
|
int s, count=0;
|
|
|
|
sp->vp = vp;
|
|
s = splbio();
|
|
|
|
#ifndef LFS_NO_BACKBUF_HACK
|
|
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp; bp = bp->b_vnbufs.le_next) {
|
|
#else /* LFS_NO_BACKBUF_HACK */
|
|
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
|
|
# define BUF_OFFSET (((void *)&bp->b_vnbufs.le_next) - (void *)bp)
|
|
# define BACK_BUF(BP) ((struct buf *)(((void *)BP->b_vnbufs.le_prev) - BUF_OFFSET))
|
|
# define BEG_OF_LIST ((struct buf *)(((void *)&vp->v_dirtyblkhd.lh_first) - BUF_OFFSET))
|
|
/* Find last buffer. */
|
|
loop: for (bp = vp->v_dirtyblkhd.lh_first; bp && bp->b_vnbufs.le_next != NULL;
|
|
bp = bp->b_vnbufs.le_next);
|
|
for (; bp && bp != BEG_OF_LIST; bp = BACK_BUF(bp)) {
|
|
#endif /* LFS_NO_BACKBUF_HACK */
|
|
if ((bp->b_flags & (B_BUSY|B_GATHERED)) || !match(fs, bp))
|
|
continue;
|
|
if(vp->v_type == VBLK) {
|
|
/* For block devices, just write the blocks. */
|
|
/* XXX Do we really need to even do this? */
|
|
#ifdef DEBUG_LFS
|
|
if(count==0)
|
|
printf("BLK(");
|
|
printf(".");
|
|
#endif
|
|
/* Get the block before bwrite, so we don't corrupt the free list */
|
|
bp->b_flags |= B_BUSY;
|
|
bremfree(bp);
|
|
bwrite(bp);
|
|
} else {
|
|
#ifdef DIAGNOSTIC
|
|
if ((bp->b_flags & (B_CALL|B_INVAL))==B_INVAL) {
|
|
printf("lfs_gather: lbn %d is B_INVAL\n",
|
|
bp->b_lblkno);
|
|
VOP_PRINT(bp->b_vp);
|
|
}
|
|
if (!(bp->b_flags & B_DELWRI))
|
|
panic("lfs_gather: bp not B_DELWRI");
|
|
if (!(bp->b_flags & B_LOCKED)) {
|
|
printf("lfs_gather: lbn %d blk %d"
|
|
" not B_LOCKED\n", bp->b_lblkno,
|
|
bp->b_blkno);
|
|
VOP_PRINT(bp->b_vp);
|
|
panic("lfs_gather: bp not B_LOCKED");
|
|
}
|
|
#endif
|
|
if (lfs_gatherblock(sp, bp, &s)) {
|
|
goto loop;
|
|
}
|
|
}
|
|
count++;
|
|
}
|
|
splx(s);
|
|
#ifdef DEBUG_LFS
|
|
if(vp->v_type == VBLK && count)
|
|
printf(")\n");
|
|
#endif
|
|
lfs_updatemeta(sp);
|
|
sp->vp = NULL;
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Update the metadata that points to the blocks listed in the FINFO
|
|
* array.
|
|
*/
|
|
void
|
|
lfs_updatemeta(sp)
|
|
struct segment *sp;
|
|
{
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
struct lfs *fs;
|
|
struct vnode *vp;
|
|
struct indir a[NIADDR + 2], *ap;
|
|
struct inode *ip;
|
|
ufs_daddr_t daddr, lbn, off;
|
|
daddr_t ooff;
|
|
int error, i, nblocks, num;
|
|
int bb;
|
|
|
|
vp = sp->vp;
|
|
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
|
|
if (nblocks < 0)
|
|
panic("This is a bad thing\n");
|
|
if (vp == NULL || nblocks == 0)
|
|
return;
|
|
|
|
/* Sort the blocks. */
|
|
/*
|
|
* XXX KS - We have to sort even if the blocks come from the
|
|
* cleaner, because there might be other pending blocks on the
|
|
* same inode...and if we don't sort, and there are fragments
|
|
* present, blocks may be written in the wrong place.
|
|
*/
|
|
/* if (!(sp->seg_flags & SEGM_CLEAN)) */
|
|
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks);
|
|
|
|
/*
|
|
* Record the length of the last block in case it's a fragment.
|
|
* If there are indirect blocks present, they sort last. An
|
|
* indirect block will be lfs_bsize and its presence indicates
|
|
* that you cannot have fragments.
|
|
*/
|
|
sp->fip->fi_lastlength = sp->start_bpp[nblocks - 1]->b_bcount;
|
|
|
|
/*
|
|
* Assign disk addresses, and update references to the logical
|
|
* block and the segment usage information.
|
|
*/
|
|
fs = sp->fs;
|
|
for (i = nblocks; i--; ++sp->start_bpp) {
|
|
lbn = *sp->start_lbp++;
|
|
|
|
(*sp->start_bpp)->b_blkno = off = fs->lfs_offset;
|
|
if((*sp->start_bpp)->b_blkno == (*sp->start_bpp)->b_lblkno) {
|
|
printf("lfs_updatemeta: ino %d blk %d"
|
|
" has same lbn and daddr\n",
|
|
VTOI(vp)->i_number, off);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if((*sp->start_bpp)->b_bcount < fs->lfs_bsize && i != 0)
|
|
panic("lfs_updatemeta: fragment is not last block\n");
|
|
#endif
|
|
bb = fragstodb(fs, numfrags(fs, (*sp->start_bpp)->b_bcount));
|
|
fs->lfs_offset += bb;
|
|
error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL);
|
|
if (error)
|
|
panic("lfs_updatemeta: ufs_bmaparray %d", error);
|
|
ip = VTOI(vp);
|
|
switch (num) {
|
|
case 0:
|
|
ooff = ip->i_ffs_db[lbn];
|
|
#ifdef DEBUG
|
|
if (ooff == 0) {
|
|
printf("lfs_updatemeta[1]: warning: writing "
|
|
"ino %d lbn %d at 0x%x, was 0x0\n",
|
|
ip->i_number, lbn, off);
|
|
}
|
|
#endif
|
|
if (ooff == UNWRITTEN)
|
|
ip->i_ffs_blocks += bb;
|
|
ip->i_ffs_db[lbn] = off;
|
|
break;
|
|
case 1:
|
|
ooff = ip->i_ffs_ib[a[0].in_off];
|
|
#ifdef DEBUG
|
|
if (ooff == 0) {
|
|
printf("lfs_updatemeta[2]: warning: writing "
|
|
"ino %d lbn %d at 0x%x, was 0x0\n",
|
|
ip->i_number, lbn, off);
|
|
}
|
|
#endif
|
|
if (ooff == UNWRITTEN)
|
|
ip->i_ffs_blocks += bb;
|
|
ip->i_ffs_ib[a[0].in_off] = off;
|
|
break;
|
|
default:
|
|
ap = &a[num - 1];
|
|
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
|
|
panic("lfs_updatemeta: bread bno %d",
|
|
ap->in_lbn);
|
|
|
|
ooff = ((ufs_daddr_t *)bp->b_data)[ap->in_off];
|
|
#if DEBUG
|
|
if (ooff == 0) {
|
|
printf("lfs_updatemeta[3]: warning: writing "
|
|
"ino %d lbn %d at 0x%x, was 0x0\n",
|
|
ip->i_number, lbn, off);
|
|
}
|
|
#endif
|
|
if (ooff == UNWRITTEN)
|
|
ip->i_ffs_blocks += bb;
|
|
((ufs_daddr_t *)bp->b_data)[ap->in_off] = off;
|
|
(void) VOP_BWRITE(bp);
|
|
}
|
|
#ifdef DEBUG
|
|
if (daddr >= fs->lfs_lastpseg && daddr <= off) {
|
|
printf("lfs_updatemeta: ino %d, lbn %d, addr = %x "
|
|
"in same pseg\n", VTOI(sp->vp)->i_number,
|
|
(*sp->start_bpp)->b_lblkno, daddr);
|
|
}
|
|
#endif
|
|
/* Update segment usage information. */
|
|
if (daddr > 0) {
|
|
LFS_SEGENTRY(sup, fs, datosn(fs, daddr), bp);
|
|
#ifdef DIAGNOSTIC
|
|
if (sup->su_nbytes < (*sp->start_bpp)->b_bcount) {
|
|
/* XXX -- Change to a panic. */
|
|
printf("lfs_updatemeta: negative bytes "
|
|
"(segment %d short by %ld)\n",
|
|
datosn(fs, daddr),
|
|
(*sp->start_bpp)->b_bcount -
|
|
sup->su_nbytes);
|
|
printf("lfs_updatemeta: ino %d, lbn %d, "
|
|
"addr = %x\n", VTOI(sp->vp)->i_number,
|
|
(*sp->start_bpp)->b_lblkno, daddr);
|
|
panic("lfs_updatemeta: negative bytes");
|
|
sup->su_nbytes = (*sp->start_bpp)->b_bcount;
|
|
}
|
|
#endif
|
|
sup->su_nbytes -= (*sp->start_bpp)->b_bcount;
|
|
error = VOP_BWRITE(bp); /* Ifile */
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Start a new segment.
|
|
*/
|
|
int
|
|
lfs_initseg(fs)
|
|
struct lfs *fs;
|
|
{
|
|
struct segment *sp;
|
|
SEGUSE *sup;
|
|
SEGSUM *ssp;
|
|
struct buf *bp;
|
|
int repeat;
|
|
|
|
sp = fs->lfs_sp;
|
|
|
|
repeat = 0;
|
|
/* Advance to the next segment. */
|
|
if (!LFS_PARTIAL_FITS(fs)) {
|
|
/* lfs_avail eats the remaining space */
|
|
fs->lfs_avail -= fs->lfs_dbpseg - (fs->lfs_offset -
|
|
fs->lfs_curseg);
|
|
/* Wake up any cleaning procs waiting on this file system. */
|
|
wakeup(&lfs_allclean_wakeup);
|
|
wakeup(&fs->lfs_nextseg);
|
|
lfs_newseg(fs);
|
|
repeat = 1;
|
|
fs->lfs_offset = fs->lfs_curseg;
|
|
sp->seg_number = datosn(fs, fs->lfs_curseg);
|
|
sp->seg_bytes_left = dbtob(fs->lfs_dbpseg);
|
|
/*
|
|
* If the segment contains a superblock, update the offset
|
|
* and summary address to skip over it.
|
|
*/
|
|
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
|
|
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
|
|
fs->lfs_offset += btodb(LFS_SBPAD);
|
|
sp->seg_bytes_left -= LFS_SBPAD;
|
|
}
|
|
brelse(bp);
|
|
} else {
|
|
sp->seg_number = datosn(fs, fs->lfs_curseg);
|
|
sp->seg_bytes_left = dbtob(fs->lfs_dbpseg -
|
|
(fs->lfs_offset - fs->lfs_curseg));
|
|
}
|
|
fs->lfs_lastpseg = fs->lfs_offset;
|
|
|
|
sp->fs = fs;
|
|
sp->ibp = NULL;
|
|
sp->idp = NULL;
|
|
sp->ninodes = 0;
|
|
|
|
/* Get a new buffer for SEGSUM and enter it into the buffer list. */
|
|
sp->cbpp = sp->bpp;
|
|
*sp->cbpp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp,
|
|
fs->lfs_offset, LFS_SUMMARY_SIZE);
|
|
sp->segsum = (*sp->cbpp)->b_data;
|
|
bzero(sp->segsum, LFS_SUMMARY_SIZE);
|
|
sp->start_bpp = ++sp->cbpp;
|
|
fs->lfs_offset += btodb(LFS_SUMMARY_SIZE);
|
|
|
|
/* Set point to SEGSUM, initialize it. */
|
|
ssp = sp->segsum;
|
|
ssp->ss_next = fs->lfs_nextseg;
|
|
ssp->ss_nfinfo = ssp->ss_ninos = 0;
|
|
ssp->ss_magic = SS_MAGIC;
|
|
|
|
/* Set pointer to first FINFO, initialize it. */
|
|
sp->fip = (struct finfo *)((caddr_t)sp->segsum + sizeof(SEGSUM));
|
|
sp->fip->fi_nblocks = 0;
|
|
sp->start_lbp = &sp->fip->fi_blocks[0];
|
|
sp->fip->fi_lastlength = 0;
|
|
|
|
sp->seg_bytes_left -= LFS_SUMMARY_SIZE;
|
|
sp->sum_bytes_left = LFS_SUMMARY_SIZE - sizeof(SEGSUM);
|
|
|
|
return(repeat);
|
|
}
|
|
|
|
/*
|
|
* Return the next segment to write.
|
|
*/
|
|
void
|
|
lfs_newseg(fs)
|
|
struct lfs *fs;
|
|
{
|
|
CLEANERINFO *cip;
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
int curseg, isdirty, sn;
|
|
|
|
LFS_SEGENTRY(sup, fs, datosn(fs, fs->lfs_nextseg), bp);
|
|
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
|
|
sup->su_nbytes = 0;
|
|
sup->su_nsums = 0;
|
|
sup->su_ninos = 0;
|
|
(void) VOP_BWRITE(bp); /* Ifile */
|
|
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
--cip->clean;
|
|
++cip->dirty;
|
|
fs->lfs_nclean = cip->clean;
|
|
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
|
|
|
|
fs->lfs_lastseg = fs->lfs_curseg;
|
|
fs->lfs_curseg = fs->lfs_nextseg;
|
|
for (sn = curseg = datosn(fs, fs->lfs_curseg);;) {
|
|
sn = (sn + 1) % fs->lfs_nseg;
|
|
if (sn == curseg)
|
|
panic("lfs_nextseg: no clean segments");
|
|
LFS_SEGENTRY(sup, fs, sn, bp);
|
|
isdirty = sup->su_flags & SEGUSE_DIRTY;
|
|
brelse(bp);
|
|
if (!isdirty)
|
|
break;
|
|
}
|
|
|
|
++fs->lfs_nactive;
|
|
fs->lfs_nextseg = sntoda(fs, sn);
|
|
if(lfs_dostats) {
|
|
++lfs_stats.segsused;
|
|
}
|
|
}
|
|
|
|
int
|
|
lfs_writeseg(fs, sp)
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
{
|
|
struct buf **bpp, *bp, *cbp, *newbp;
|
|
SEGUSE *sup;
|
|
SEGSUM *ssp;
|
|
dev_t i_dev;
|
|
u_long *datap, *dp;
|
|
int do_again, i, nblocks, s;
|
|
#ifdef LFS_TRACK_IOS
|
|
int j;
|
|
#endif
|
|
int (*strategy)__P((void *));
|
|
struct vop_strategy_args vop_strategy_a;
|
|
u_short ninos;
|
|
struct vnode *devvp;
|
|
char *p;
|
|
struct vnode *vn;
|
|
struct inode *ip;
|
|
daddr_t *daddrp;
|
|
int changed;
|
|
#if defined(DEBUG) && defined(LFS_PROPELLER)
|
|
static int propeller;
|
|
char propstring[4] = "-\\|/";
|
|
|
|
printf("%c\b",propstring[propeller++]);
|
|
if(propeller==4)
|
|
propeller = 0;
|
|
#endif
|
|
|
|
/*
|
|
* If there are no buffers other than the segment summary to write
|
|
* and it is not a checkpoint, don't do anything. On a checkpoint,
|
|
* even if there aren't any buffers, you need to write the superblock.
|
|
*/
|
|
if ((nblocks = sp->cbpp - sp->bpp) == 1)
|
|
return (0);
|
|
|
|
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
|
|
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
|
|
|
|
/* Update the segment usage information. */
|
|
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
|
|
|
|
/* Loop through all blocks, except the segment summary. */
|
|
for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
|
|
if((*bpp)->b_vp != devvp)
|
|
sup->su_nbytes += (*bpp)->b_bcount;
|
|
}
|
|
|
|
ssp = (SEGSUM *)sp->segsum;
|
|
|
|
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
|
|
sup->su_nbytes += ssp->ss_ninos * DINODE_SIZE;
|
|
/* sup->su_nbytes += LFS_SUMMARY_SIZE; */
|
|
sup->su_lastmod = time.tv_sec;
|
|
sup->su_ninos += ninos;
|
|
++sup->su_nsums;
|
|
fs->lfs_dmeta += (btodb(LFS_SUMMARY_SIZE) + fsbtodb(fs, ninos));
|
|
fs->lfs_avail -= btodb(LFS_SUMMARY_SIZE);
|
|
|
|
do_again = !(bp->b_flags & B_GATHERED);
|
|
(void)VOP_BWRITE(bp); /* Ifile */
|
|
/*
|
|
* Mark blocks B_BUSY, to prevent then from being changed between
|
|
* the checksum computation and the actual write.
|
|
*
|
|
* If we are cleaning, check indirect blocks for UNWRITTEN, and if
|
|
* there are any, replace them with copies that have UNASSIGNED
|
|
* instead.
|
|
*/
|
|
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
|
|
++bpp;
|
|
if((*bpp)->b_flags & B_CALL)
|
|
continue;
|
|
bp = *bpp;
|
|
again:
|
|
s = splbio();
|
|
if(bp->b_flags & B_BUSY) {
|
|
#ifdef DEBUG
|
|
printf("lfs_writeseg: avoiding potential data "
|
|
"summary corruption for ino %d, lbn %d\n",
|
|
VTOI(bp->b_vp)->i_number, bp->b_lblkno);
|
|
#endif
|
|
bp->b_flags |= B_WANTED;
|
|
tsleep(bp, (PRIBIO + 1), "lfs_writeseg", 0);
|
|
splx(s);
|
|
goto again;
|
|
}
|
|
bp->b_flags |= B_BUSY;
|
|
splx(s);
|
|
/* Check and replace indirect block UNWRITTEN bogosity */
|
|
if(bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
|
|
VTOI(bp->b_vp)->i_ffs_blocks !=
|
|
VTOI(bp->b_vp)->i_lfs_effnblks) {
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_writeseg: cleansing ino %d (%d != %d)\n",
|
|
VTOI(bp->b_vp)->i_number,
|
|
VTOI(bp->b_vp)->i_lfs_effnblks,
|
|
VTOI(bp->b_vp)->i_ffs_blocks);
|
|
#endif
|
|
/* Make a copy we'll make changes to */
|
|
newbp = lfs_newbuf(bp->b_vp, bp->b_lblkno,
|
|
bp->b_bcount);
|
|
newbp->b_blkno = bp->b_blkno;
|
|
memcpy(newbp->b_data, bp->b_data,
|
|
newbp->b_bcount);
|
|
*bpp = newbp;
|
|
|
|
changed = 0;
|
|
for (daddrp = (daddr_t *)(newbp->b_data);
|
|
daddrp < (daddr_t *)(newbp->b_data +
|
|
newbp->b_bcount); daddrp++) {
|
|
if (*daddrp == UNWRITTEN) {
|
|
++changed;
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_writeseg: replacing UNWRITTEN\n");
|
|
#endif
|
|
*daddrp = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Get rid of the old buffer. Don't mark it clean,
|
|
* though, if it still has dirty data on it.
|
|
*/
|
|
if (changed) {
|
|
bp->b_flags &= ~(B_ERROR | B_GATHERED);
|
|
if (bp->b_flags & B_CALL)
|
|
lfs_freebuf(bp);
|
|
else {
|
|
/* Still on free list, leave it there */
|
|
s = splbio();
|
|
bp->b_flags &= ~B_BUSY;
|
|
if (bp->b_flags & B_WANTED)
|
|
wakeup(bp);
|
|
splx(s);
|
|
/*
|
|
* We have to re-decrement lfs_avail
|
|
* since this block is going to come
|
|
* back around to us in the next
|
|
* segment.
|
|
*/
|
|
fs->lfs_avail -= btodb(bp->b_bcount);
|
|
}
|
|
} else {
|
|
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
|
|
B_GATHERED);
|
|
LFS_UNLOCK_BUF(bp);
|
|
if (bp->b_flags & B_CALL)
|
|
lfs_freebuf(bp);
|
|
else {
|
|
bremfree(bp);
|
|
bp->b_flags |= B_DONE;
|
|
reassignbuf(bp, bp->b_vp);
|
|
brelse(bp);
|
|
}
|
|
}
|
|
|
|
}
|
|
}
|
|
/*
|
|
* Compute checksum across data and then across summary; the first
|
|
* block (the summary block) is skipped. Set the create time here
|
|
* so that it's guaranteed to be later than the inode mod times.
|
|
*
|
|
* XXX
|
|
* Fix this to do it inline, instead of malloc/copy.
|
|
*/
|
|
datap = dp = malloc(nblocks * sizeof(u_long), M_SEGMENT, M_WAITOK);
|
|
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
|
|
if (((*++bpp)->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
|
|
if (copyin((*bpp)->b_saveaddr, dp++, sizeof(u_long)))
|
|
panic("lfs_writeseg: copyin failed [1]: "
|
|
"ino %d blk %d",
|
|
VTOI((*bpp)->b_vp)->i_number,
|
|
(*bpp)->b_lblkno);
|
|
} else
|
|
*dp++ = ((u_long *)(*bpp)->b_data)[0];
|
|
}
|
|
ssp->ss_create = time.tv_sec;
|
|
ssp->ss_datasum = cksum(datap, (nblocks - 1) * sizeof(u_long));
|
|
ssp->ss_sumsum =
|
|
cksum(&ssp->ss_datasum, LFS_SUMMARY_SIZE - sizeof(ssp->ss_sumsum));
|
|
free(datap, M_SEGMENT);
|
|
|
|
fs->lfs_bfree -= (fsbtodb(fs, ninos) + btodb(LFS_SUMMARY_SIZE));
|
|
|
|
strategy = devvp->v_op[VOFFSET(vop_strategy)];
|
|
|
|
/*
|
|
* When we simply write the blocks we lose a rotation for every block
|
|
* written. To avoid this problem, we allocate memory in chunks, copy
|
|
* the buffers into the chunk and write the chunk. CHUNKSIZE is the
|
|
* largest size I/O devices can handle.
|
|
* When the data is copied to the chunk, turn off the B_LOCKED bit
|
|
* and brelse the buffer (which will move them to the LRU list). Add
|
|
* the B_CALL flag to the buffer header so we can count I/O's for the
|
|
* checkpoints and so we can release the allocated memory.
|
|
*
|
|
* XXX
|
|
* This should be removed if the new virtual memory system allows us to
|
|
* easily make the buffers contiguous in kernel memory and if that's
|
|
* fast enough.
|
|
*/
|
|
|
|
#define CHUNKSIZE MAXPHYS
|
|
|
|
if(devvp==NULL)
|
|
panic("devvp is NULL");
|
|
for (bpp = sp->bpp,i = nblocks; i;) {
|
|
cbp = lfs_newbuf(devvp, (*bpp)->b_blkno, CHUNKSIZE);
|
|
cbp->b_dev = i_dev;
|
|
cbp->b_flags |= B_ASYNC | B_BUSY;
|
|
cbp->b_bcount = 0;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if(datosn(fs, (*bpp)->b_blkno + btodb((*bpp)->b_bcount) - 1) !=
|
|
datosn(fs, cbp->b_blkno)) {
|
|
panic("lfs_writeseg: Segment overwrite");
|
|
}
|
|
#endif
|
|
|
|
s = splbio();
|
|
if(fs->lfs_iocount >= LFS_THROTTLE) {
|
|
tsleep(&fs->lfs_iocount, PRIBIO+1, "lfs throttle", 0);
|
|
}
|
|
++fs->lfs_iocount;
|
|
#ifdef LFS_TRACK_IOS
|
|
for(j=0;j<LFS_THROTTLE;j++) {
|
|
if(fs->lfs_pending[j]==LFS_UNUSED_DADDR) {
|
|
fs->lfs_pending[j] = cbp->b_blkno;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* LFS_TRACK_IOS */
|
|
for (p = cbp->b_data; i && cbp->b_bcount < CHUNKSIZE; i--) {
|
|
bp = *bpp;
|
|
|
|
if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
|
|
break;
|
|
|
|
/*
|
|
* Fake buffers from the cleaner are marked as B_INVAL.
|
|
* We need to copy the data from user space rather than
|
|
* from the buffer indicated.
|
|
* XXX == what do I do on an error?
|
|
*/
|
|
if ((bp->b_flags & (B_CALL|B_INVAL)) == (B_CALL|B_INVAL)) {
|
|
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
|
|
panic("lfs_writeseg: copyin failed [2]");
|
|
} else
|
|
bcopy(bp->b_data, p, bp->b_bcount);
|
|
p += bp->b_bcount;
|
|
cbp->b_bcount += bp->b_bcount;
|
|
LFS_UNLOCK_BUF(bp);
|
|
bp->b_flags &= ~(B_ERROR | B_READ | B_DELWRI |
|
|
B_GATHERED);
|
|
vn = bp->b_vp;
|
|
if (bp->b_flags & B_CALL) {
|
|
/* if B_CALL, it was created with newbuf */
|
|
lfs_freebuf(bp);
|
|
} else {
|
|
bremfree(bp);
|
|
bp->b_flags |= B_DONE;
|
|
if(vn)
|
|
reassignbuf(bp, vn);
|
|
brelse(bp);
|
|
}
|
|
|
|
bpp++;
|
|
|
|
/*
|
|
* If this is the last block for this vnode, but
|
|
* there are other blocks on its dirty list,
|
|
* set IN_MODIFIED/IN_CLEANING depending on what
|
|
* sort of block. Only do this for our mount point,
|
|
* not for, e.g., inode blocks that are attached to
|
|
* the devvp.
|
|
*/
|
|
if(i>1 && vn && *bpp && (*bpp)->b_vp != vn
|
|
&& (*bpp)->b_vp && (bp=vn->v_dirtyblkhd.lh_first)!=NULL &&
|
|
vn->v_mount == fs->lfs_ivnode->v_mount)
|
|
{
|
|
ip = VTOI(vn);
|
|
#ifdef DEBUG_LFS
|
|
printf("lfs_writeseg: marking ino %d\n",ip->i_number);
|
|
#endif
|
|
if(bp->b_flags & B_CALL)
|
|
LFS_SET_UINO(ip, IN_CLEANING);
|
|
else
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
}
|
|
/* if(vn->v_dirtyblkhd.lh_first == NULL) */
|
|
wakeup(vn);
|
|
}
|
|
++cbp->b_vp->v_numoutput;
|
|
splx(s);
|
|
/*
|
|
* XXXX This is a gross and disgusting hack. Since these
|
|
* buffers are physically addressed, they hang off the
|
|
* device vnode (devvp). As a result, they have no way
|
|
* of getting to the LFS superblock or lfs structure to
|
|
* keep track of the number of I/O's pending. So, I am
|
|
* going to stuff the fs into the saveaddr field of
|
|
* the buffer (yuk).
|
|
*/
|
|
cbp->b_saveaddr = (caddr_t)fs;
|
|
vop_strategy_a.a_desc = VDESC(vop_strategy);
|
|
vop_strategy_a.a_bp = cbp;
|
|
(strategy)(&vop_strategy_a);
|
|
}
|
|
#if 1 || defined(DEBUG)
|
|
/*
|
|
* After doing a big write, we recalculate how many buffers are
|
|
* really still left on the locked queue.
|
|
*/
|
|
s = splbio();
|
|
lfs_countlocked(&locked_queue_count, &locked_queue_bytes);
|
|
splx(s);
|
|
wakeup(&locked_queue_count);
|
|
#endif /* 1 || DEBUG */
|
|
if(lfs_dostats) {
|
|
++lfs_stats.psegwrites;
|
|
lfs_stats.blocktot += nblocks - 1;
|
|
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.psyncwrites;
|
|
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
|
|
++lfs_stats.pcleanwrites;
|
|
lfs_stats.cleanblocks += nblocks - 1;
|
|
}
|
|
}
|
|
return (lfs_initseg(fs) || do_again);
|
|
}
|
|
|
|
void
|
|
lfs_writesuper(fs, daddr)
|
|
struct lfs *fs;
|
|
daddr_t daddr;
|
|
{
|
|
struct buf *bp;
|
|
dev_t i_dev;
|
|
int (*strategy) __P((void *));
|
|
int s;
|
|
struct vop_strategy_args vop_strategy_a;
|
|
|
|
#ifdef LFS_CANNOT_ROLLFW
|
|
/*
|
|
* If we can write one superblock while another is in
|
|
* progress, we risk not having a complete checkpoint if we crash.
|
|
* So, block here if a superblock write is in progress.
|
|
*/
|
|
s = splbio();
|
|
while(fs->lfs_sbactive) {
|
|
tsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0);
|
|
}
|
|
fs->lfs_sbactive = daddr;
|
|
splx(s);
|
|
#endif
|
|
i_dev = VTOI(fs->lfs_ivnode)->i_dev;
|
|
strategy = VTOI(fs->lfs_ivnode)->i_devvp->v_op[VOFFSET(vop_strategy)];
|
|
|
|
/* Set timestamp of this version of the superblock */
|
|
fs->lfs_tstamp = time.tv_sec;
|
|
|
|
/* Checksum the superblock and copy it into a buffer. */
|
|
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
|
|
bp = lfs_newbuf(VTOI(fs->lfs_ivnode)->i_devvp, daddr, LFS_SBPAD);
|
|
*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
|
|
|
|
bp->b_dev = i_dev;
|
|
bp->b_flags |= B_BUSY | B_CALL | B_ASYNC;
|
|
bp->b_flags &= ~(B_DONE | B_ERROR | B_READ | B_DELWRI);
|
|
bp->b_iodone = lfs_supercallback;
|
|
/* XXX KS - same nasty hack as above */
|
|
bp->b_saveaddr = (caddr_t)fs;
|
|
|
|
vop_strategy_a.a_desc = VDESC(vop_strategy);
|
|
vop_strategy_a.a_bp = bp;
|
|
s = splbio();
|
|
++bp->b_vp->v_numoutput;
|
|
++fs->lfs_iocount;
|
|
splx(s);
|
|
(strategy)(&vop_strategy_a);
|
|
}
|
|
|
|
/*
|
|
* Logical block number match routines used when traversing the dirty block
|
|
* chain.
|
|
*/
|
|
int
|
|
lfs_match_fake(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
return (bp->b_flags & B_CALL);
|
|
}
|
|
|
|
int
|
|
lfs_match_data(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
return (bp->b_lblkno >= 0);
|
|
}
|
|
|
|
int
|
|
lfs_match_indir(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
int lbn;
|
|
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
|
|
}
|
|
|
|
int
|
|
lfs_match_dindir(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
int lbn;
|
|
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
|
|
}
|
|
|
|
int
|
|
lfs_match_tindir(fs, bp)
|
|
struct lfs *fs;
|
|
struct buf *bp;
|
|
{
|
|
int lbn;
|
|
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
|
|
}
|
|
|
|
/*
|
|
* XXX - The only buffers that are going to hit these functions are the
|
|
* segment write blocks, or the segment summaries, or the superblocks.
|
|
*
|
|
* All of the above are created by lfs_newbuf, and so do not need to be
|
|
* released via brelse.
|
|
*/
|
|
void
|
|
lfs_callback(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct lfs *fs;
|
|
#ifdef LFS_TRACK_IOS
|
|
int j;
|
|
#endif
|
|
|
|
fs = (struct lfs *)bp->b_saveaddr;
|
|
#ifdef DIAGNOSTIC
|
|
if (fs->lfs_iocount == 0)
|
|
panic("lfs_callback: zero iocount\n");
|
|
#endif
|
|
if (--fs->lfs_iocount < LFS_THROTTLE)
|
|
wakeup(&fs->lfs_iocount);
|
|
#ifdef LFS_TRACK_IOS
|
|
for(j=0;j<LFS_THROTTLE;j++) {
|
|
if(fs->lfs_pending[j]==bp->b_blkno) {
|
|
fs->lfs_pending[j] = LFS_UNUSED_DADDR;
|
|
wakeup(&(fs->lfs_pending[j]));
|
|
break;
|
|
}
|
|
}
|
|
#endif /* LFS_TRACK_IOS */
|
|
|
|
lfs_freebuf(bp);
|
|
}
|
|
|
|
void
|
|
lfs_supercallback(bp)
|
|
struct buf *bp;
|
|
{
|
|
struct lfs *fs;
|
|
|
|
fs = (struct lfs *)bp->b_saveaddr;
|
|
#ifdef LFS_CANNOT_ROLLFW
|
|
fs->lfs_sbactive = 0;
|
|
wakeup(&fs->lfs_sbactive);
|
|
#endif
|
|
if (--fs->lfs_iocount < LFS_THROTTLE)
|
|
wakeup(&fs->lfs_iocount);
|
|
lfs_freebuf(bp);
|
|
}
|
|
|
|
/*
|
|
* Shellsort (diminishing increment sort) from Data Structures and
|
|
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
|
|
* see also Knuth Vol. 3, page 84. The increments are selected from
|
|
* formula (8), page 95. Roughly O(N^3/2).
|
|
*/
|
|
/*
|
|
* This is our own private copy of shellsort because we want to sort
|
|
* two parallel arrays (the array of buffer pointers and the array of
|
|
* logical block numbers) simultaneously. Note that we cast the array
|
|
* of logical block numbers to a unsigned in this routine so that the
|
|
* negative block numbers (meta data blocks) sort AFTER the data blocks.
|
|
*/
|
|
|
|
void
|
|
lfs_shellsort(bp_array, lb_array, nmemb)
|
|
struct buf **bp_array;
|
|
ufs_daddr_t *lb_array;
|
|
int nmemb;
|
|
{
|
|
static int __rsshell_increments[] = { 4, 1, 0 };
|
|
int incr, *incrp, t1, t2;
|
|
struct buf *bp_temp;
|
|
u_long lb_temp;
|
|
|
|
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
|
|
for (t1 = incr; t1 < nmemb; ++t1)
|
|
for (t2 = t1 - incr; t2 >= 0;)
|
|
if (lb_array[t2] > lb_array[t2 + incr]) {
|
|
lb_temp = lb_array[t2];
|
|
lb_array[t2] = lb_array[t2 + incr];
|
|
lb_array[t2 + incr] = lb_temp;
|
|
bp_temp = bp_array[t2];
|
|
bp_array[t2] = bp_array[t2 + incr];
|
|
bp_array[t2 + incr] = bp_temp;
|
|
t2 -= incr;
|
|
} else
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Check VXLOCK. Return 1 if the vnode is locked. Otherwise, vget it.
|
|
*/
|
|
int
|
|
lfs_vref(vp)
|
|
struct vnode *vp;
|
|
{
|
|
/*
|
|
* If we return 1 here during a flush, we risk vinvalbuf() not
|
|
* being able to flush all of the pages from this vnode, which
|
|
* will cause it to panic. So, return 0 if a flush is in progress.
|
|
*/
|
|
if (vp->v_flag & VXLOCK) {
|
|
if(IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
|
|
return 0;
|
|
}
|
|
return(1);
|
|
}
|
|
return (vget(vp, 0));
|
|
}
|
|
|
|
/*
|
|
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
|
|
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
|
|
*/
|
|
void
|
|
lfs_vunref(vp)
|
|
struct vnode *vp;
|
|
{
|
|
/*
|
|
* Analogous to lfs_vref, if the node is flushing, fake it.
|
|
*/
|
|
if((vp->v_flag & VXLOCK) && IS_FLUSHING(VTOI(vp)->i_lfs,vp)) {
|
|
return;
|
|
}
|
|
|
|
simple_lock(&vp->v_interlock);
|
|
#ifdef DIAGNOSTIC
|
|
if(vp->v_usecount<=0) {
|
|
printf("lfs_vunref: inum is %d\n", VTOI(vp)->i_number);
|
|
printf("lfs_vunref: flags are 0x%x\n", vp->v_flag);
|
|
printf("lfs_vunref: usecount = %d\n", vp->v_usecount);
|
|
panic("lfs_vunref: v_usecount<0");
|
|
}
|
|
#endif
|
|
vp->v_usecount--;
|
|
if (vp->v_usecount > 0) {
|
|
simple_unlock(&vp->v_interlock);
|
|
return;
|
|
}
|
|
/*
|
|
* insert at tail of LRU list
|
|
*/
|
|
simple_lock(&vnode_free_list_slock);
|
|
if (vp->v_holdcnt > 0)
|
|
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
|
|
else
|
|
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
|
|
simple_unlock(&vnode_free_list_slock);
|
|
simple_unlock(&vp->v_interlock);
|
|
}
|
|
|
|
/*
|
|
* We use this when we have vnodes that were loaded in solely for cleaning.
|
|
* There is no reason to believe that these vnodes will be referenced again
|
|
* soon, since the cleaning process is unrelated to normal filesystem
|
|
* activity. Putting cleaned vnodes at the tail of the list has the effect
|
|
* of flushing the vnode LRU. So, put vnodes that were loaded only for
|
|
* cleaning at the head of the list, instead.
|
|
*/
|
|
void
|
|
lfs_vunref_head(vp)
|
|
struct vnode *vp;
|
|
{
|
|
simple_lock(&vp->v_interlock);
|
|
#ifdef DIAGNOSTIC
|
|
if(vp->v_usecount==0) {
|
|
panic("lfs_vunref: v_usecount<0");
|
|
}
|
|
#endif
|
|
vp->v_usecount--;
|
|
if (vp->v_usecount > 0) {
|
|
simple_unlock(&vp->v_interlock);
|
|
return;
|
|
}
|
|
/*
|
|
* insert at head of LRU list
|
|
*/
|
|
simple_lock(&vnode_free_list_slock);
|
|
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
|
|
simple_unlock(&vnode_free_list_slock);
|
|
simple_unlock(&vp->v_interlock);
|
|
}
|
|
|