NetBSD/sys/arch/powerpc/oea/cpu_subr.c

863 lines
22 KiB
C

/* $NetBSD: cpu_subr.c,v 1.11 2003/10/09 20:49:06 matt Exp $ */
/*-
* Copyright (c) 2001 Matt Thomas.
* Copyright (c) 2001 Tsubai Masanari.
* Copyright (c) 1998, 1999, 2001 Internet Research Institute, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by
* Internet Research Institute, Inc.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpu_subr.c,v 1.11 2003/10/09 20:49:06 matt Exp $");
#include "opt_ppcparam.h"
#include "opt_multiprocessor.h"
#include "opt_altivec.h"
#include "sysmon_envsys.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <powerpc/oea/hid.h>
#include <powerpc/oea/hid_601.h>
#include <powerpc/spr.h>
#include <dev/sysmon/sysmonvar.h>
static void cpu_enable_l2cr(register_t);
static void cpu_enable_l3cr(register_t);
static void cpu_config_l2cr(int);
static void cpu_config_l3cr(int);
static void cpu_print_speed(void);
#if NSYSMON_ENVSYS > 0
static void cpu_tau_setup(struct cpu_info *);
static int cpu_tau_gtredata __P((struct sysmon_envsys *,
struct envsys_tre_data *));
static int cpu_tau_streinfo __P((struct sysmon_envsys *,
struct envsys_basic_info *));
#endif
int cpu;
int ncpus;
struct fmttab {
register_t fmt_mask;
register_t fmt_value;
const char *fmt_string;
};
static const struct fmttab cpu_7450_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2E, ~0, " 256KB L2 cache" },
{ 0 }
};
static const struct fmttab cpu_7457_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2E, ~0, " 512KB L2 cache" },
{ 0 }
};
static const struct fmttab cpu_7450_l3cr_formats[] = {
{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO, " data-only" },
{ L3CR_L3DO|L3CR_L3IO, L3CR_L3IO, " instruction-only" },
{ L3CR_L3DO|L3CR_L3IO, L3CR_L3DO|L3CR_L3IO, " locked" },
{ L3CR_L3SIZ, L3SIZ_2M, " 2MB" },
{ L3CR_L3SIZ, L3SIZ_1M, " 1MB" },
{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE|L3CR_L3APE, " parity" },
{ L3CR_L3PE|L3CR_L3APE, L3CR_L3PE, " data-parity" },
{ L3CR_L3PE|L3CR_L3APE, L3CR_L3APE, " address-parity" },
{ L3CR_L3PE|L3CR_L3APE, 0, " no-parity" },
{ L3CR_L3SIZ, ~0, " L3 cache" },
{ L3CR_L3RT, L3RT_MSUG2_DDR, " (DDR SRAM)" },
{ L3CR_L3RT, L3RT_PIPELINE_LATE, " (LW SRAM)" },
{ L3CR_L3RT, L3RT_PB2_SRAM, " (PB2 SRAM)" },
{ L3CR_L3CLK, ~0, " at" },
{ L3CR_L3CLK, L3CLK_20, " 2:1" },
{ L3CR_L3CLK, L3CLK_25, " 2.5:1" },
{ L3CR_L3CLK, L3CLK_30, " 3:1" },
{ L3CR_L3CLK, L3CLK_35, " 3.5:1" },
{ L3CR_L3CLK, L3CLK_40, " 4:1" },
{ L3CR_L3CLK, L3CLK_50, " 5:1" },
{ L3CR_L3CLK, L3CLK_60, " 6:1" },
{ L3CR_L3CLK, ~0, " ratio" },
{ 0, 0 },
};
static const struct fmttab cpu_ibm750_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ 0, ~0, " 512KB" },
{ L2CR_L2WT, L2CR_L2WT, " WT" },
{ L2CR_L2WT, 0, " WB" },
{ L2CR_L2PE, L2CR_L2PE, " with ECC" },
{ 0, ~0, " L2 cache" },
{ 0 }
};
static const struct fmttab cpu_l2cr_formats[] = {
{ L2CR_L2E, 0, " disabled" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO, " data-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2IO, " instruction-only" },
{ L2CR_L2DO|L2CR_L2IO, L2CR_L2DO|L2CR_L2IO, " locked" },
{ L2CR_L2PE, L2CR_L2PE, " parity" },
{ L2CR_L2PE, 0, " no-parity" },
{ L2CR_L2SIZ, L2SIZ_2M, " 2MB" },
{ L2CR_L2SIZ, L2SIZ_1M, " 1MB" },
{ L2CR_L2SIZ, L2SIZ_512K, " 512KB" },
{ L2CR_L2SIZ, L2SIZ_256K, " 256KB" },
{ L2CR_L2WT, L2CR_L2WT, " WT" },
{ L2CR_L2WT, 0, " WB" },
{ L2CR_L2E, ~0, " L2 cache" },
{ L2CR_L2RAM, L2RAM_FLOWTHRU_BURST, " (FB SRAM)" },
{ L2CR_L2RAM, L2RAM_PIPELINE_LATE, " (LW SRAM)" },
{ L2CR_L2RAM, L2RAM_PIPELINE_BURST, " (PB SRAM)" },
{ L2CR_L2CLK, ~0, " at" },
{ L2CR_L2CLK, L2CLK_10, " 1:1" },
{ L2CR_L2CLK, L2CLK_15, " 1.5:1" },
{ L2CR_L2CLK, L2CLK_20, " 2:1" },
{ L2CR_L2CLK, L2CLK_25, " 2.5:1" },
{ L2CR_L2CLK, L2CLK_30, " 3:1" },
{ L2CR_L2CLK, L2CLK_35, " 3.5:1" },
{ L2CR_L2CLK, L2CLK_40, " 4:1" },
{ L2CR_L2CLK, ~0, " ratio" },
{ 0 }
};
static void cpu_fmttab_print(const struct fmttab *, register_t);
struct cputab {
const char name[8];
uint16_t version;
uint16_t revfmt;
};
#define REVFMT_MAJMIN 1 /* %u.%u */
#define REVFMT_HEX 2 /* 0x%04x */
#define REVFMT_DEC 3 /* %u */
static const struct cputab models[] = {
{ "601", MPC601, REVFMT_DEC },
{ "602", MPC602, REVFMT_DEC },
{ "603", MPC603, REVFMT_MAJMIN },
{ "603e", MPC603e, REVFMT_MAJMIN },
{ "603ev", MPC603ev, REVFMT_MAJMIN },
{ "604", MPC604, REVFMT_MAJMIN },
{ "604ev", MPC604ev, REVFMT_MAJMIN },
{ "620", MPC620, REVFMT_HEX },
{ "750", MPC750, REVFMT_MAJMIN },
{ "750FX", IBM750FX, REVFMT_MAJMIN },
{ "7400", MPC7400, REVFMT_MAJMIN },
{ "7410", MPC7410, REVFMT_MAJMIN },
{ "7450", MPC7450, REVFMT_MAJMIN },
{ "7455", MPC7455, REVFMT_MAJMIN },
{ "7457", MPC7457, REVFMT_MAJMIN },
{ "8240", MPC8240, REVFMT_MAJMIN },
{ "", 0, REVFMT_HEX }
};
#ifdef MULTIPROCESSOR
struct cpu_info cpu_info[CPU_MAXNUM];
#else
struct cpu_info cpu_info[1];
#endif
int cpu_altivec;
char cpu_model[80];
void
cpu_fmttab_print(const struct fmttab *fmt, register_t data)
{
for (; fmt->fmt_mask != 0 || fmt->fmt_value != 0; fmt++) {
if ((~fmt->fmt_mask & fmt->fmt_value) != 0 ||
(data & fmt->fmt_mask) == fmt->fmt_value)
aprint_normal("%s", fmt->fmt_string);
}
}
void
cpu_probe_cache(void)
{
u_int assoc, pvr, vers;
pvr = mfpvr();
vers = pvr >> 16;
switch (vers) {
#define K *1024
case IBM750FX:
case MPC601:
case MPC750:
case MPC7450:
case MPC7455:
case MPC7457:
curcpu()->ci_ci.dcache_size = 32 K;
curcpu()->ci_ci.icache_size = 32 K;
assoc = 8;
break;
case MPC603:
curcpu()->ci_ci.dcache_size = 8 K;
curcpu()->ci_ci.icache_size = 8 K;
assoc = 2;
break;
case MPC603e:
case MPC603ev:
case MPC604:
case MPC8240:
case MPC8245:
curcpu()->ci_ci.dcache_size = 16 K;
curcpu()->ci_ci.icache_size = 16 K;
assoc = 4;
break;
case MPC604ev:
curcpu()->ci_ci.dcache_size = 32 K;
curcpu()->ci_ci.icache_size = 32 K;
assoc = 4;
break;
default:
curcpu()->ci_ci.dcache_size = PAGE_SIZE;
curcpu()->ci_ci.icache_size = PAGE_SIZE;
assoc = 1;
#undef K
}
/* Presently common across all implementations. */
curcpu()->ci_ci.dcache_line_size = CACHELINESIZE;
curcpu()->ci_ci.icache_line_size = CACHELINESIZE;
/*
* Possibly recolor.
*/
uvm_page_recolor(atop(curcpu()->ci_ci.dcache_size / assoc));
}
struct cpu_info *
cpu_attach_common(struct device *self, int id)
{
struct cpu_info *ci;
u_int pvr, vers;
ncpus++;
ci = &cpu_info[id];
#ifndef MULTIPROCESSOR
/*
* If this isn't the primary CPU, print an error message
* and just bail out.
*/
if (id != 0) {
aprint_normal(": ID %d\n", id);
aprint_normal("%s: processor off-line; multiprocessor support "
"not present in kernel\n", self->dv_xname);
return (NULL);
}
#endif
ci->ci_cpuid = id;
ci->ci_intrdepth = -1;
ci->ci_dev = self;
pvr = mfpvr();
vers = (pvr >> 16) & 0xffff;
switch (id) {
case 0:
/* load my cpu_number to PIR */
switch (vers) {
case MPC601:
case MPC604:
case MPC604ev:
case MPC7400:
case MPC7410:
case MPC7450:
case MPC7455:
case MPC7457:
mtspr(SPR_PIR, id);
}
cpu_setup(self, ci);
break;
default:
if (id >= CPU_MAXNUM) {
aprint_normal(": more than %d cpus?\n", CPU_MAXNUM);
panic("cpuattach");
}
#ifndef MULTIPROCESSOR
aprint_normal(" not configured\n");
return NULL;
#endif
}
return (ci);
}
void
cpu_setup(self, ci)
struct device *self;
struct cpu_info *ci;
{
u_int hid0, pvr, vers;
char *bitmask, hidbuf[128];
char model[80];
pvr = mfpvr();
vers = (pvr >> 16) & 0xffff;
cpu_identify(model, sizeof(model));
aprint_normal(": %s, ID %d%s\n", model, cpu_number(),
cpu_number() == 0 ? " (primary)" : "");
hid0 = mfspr(SPR_HID0);
cpu_probe_cache();
/*
* Configure power-saving mode.
*/
switch (vers) {
case MPC603:
case MPC603e:
case MPC603ev:
case MPC604ev:
case MPC750:
case IBM750FX:
case MPC7400:
case MPC7410:
case MPC8240:
case MPC8245:
/* Select DOZE mode. */
hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
hid0 |= HID0_DOZE | HID0_DPM;
powersave = 1;
break;
case MPC7457:
case MPC7455:
case MPC7450:
/* Enable the 7450 branch caches */
hid0 |= HID0_SGE | HID0_BTIC;
hid0 |= HID0_LRSTK | HID0_FOLD | HID0_BHT;
/* Disable BTIC on 7450 Rev 2.0 or earlier */
if (vers == MPC7450 && (pvr & 0xFFFF) <= 0x0200)
hid0 &= ~HID0_BTIC;
/* Select NAP mode. */
hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
hid0 |= HID0_NAP | HID0_DPM;
powersave = 0; /* but don't use it */
break;
default:
/* No power-saving mode is available. */ ;
}
#ifdef NAPMODE
switch (vers) {
case IBM750FX:
case MPC750:
case MPC7400:
/* Select NAP mode. */
hid0 &= ~(HID0_DOZE | HID0_NAP | HID0_SLEEP);
hid0 |= HID0_NAP;
break;
}
#endif
switch (vers) {
case IBM750FX:
case MPC750:
hid0 &= ~HID0_DBP; /* XXX correct? */
hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
break;
case MPC7400:
case MPC7410:
hid0 &= ~HID0_SPD;
hid0 |= HID0_EMCP | HID0_BTIC | HID0_SGE | HID0_BHT;
hid0 |= HID0_EIEC;
break;
}
mtspr(SPR_HID0, hid0);
switch (vers) {
case MPC601:
bitmask = HID0_601_BITMASK;
break;
case MPC7450:
case MPC7455:
case MPC7457:
bitmask = HID0_7450_BITMASK;
break;
default:
bitmask = HID0_BITMASK;
break;
}
bitmask_snprintf(hid0, bitmask, hidbuf, sizeof hidbuf);
aprint_normal("%s: HID0 %s\n", self->dv_xname, hidbuf);
/*
* Display speed and cache configuration.
*/
if (vers == MPC750 || vers == MPC7400 || vers == IBM750FX ||
vers == MPC7410 || MPC745X_P(vers)) {
aprint_normal("%s: ", self->dv_xname);
cpu_print_speed();
if (MPC745X_P(vers)) {
cpu_config_l3cr(vers);
} else {
cpu_config_l2cr(pvr);
}
aprint_normal("\n");
}
#if NSYSMON_ENVSYS > 0
/*
* Attach MPC750 temperature sensor to the envsys subsystem.
* XXX the 74xx series also has this sensor, but it is not
* XXX supported by Motorola and may return values that are off by
* XXX 35-55 degrees C.
*/
if (vers == MPC750 || vers == IBM750FX)
cpu_tau_setup(ci);
#endif
evcnt_attach_dynamic(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "clock");
evcnt_attach_dynamic(&ci->ci_ev_softclock, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "soft clock");
evcnt_attach_dynamic(&ci->ci_ev_softnet, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "soft net");
evcnt_attach_dynamic(&ci->ci_ev_softserial, EVCNT_TYPE_INTR,
NULL, self->dv_xname, "soft serial");
evcnt_attach_dynamic(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
NULL, self->dv_xname, "traps");
evcnt_attach_dynamic(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "kernel DSI traps");
evcnt_attach_dynamic(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "user DSI traps");
evcnt_attach_dynamic(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_udsi, self->dv_xname, "user DSI failures");
evcnt_attach_dynamic(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "kernel ISI traps");
evcnt_attach_dynamic(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "user ISI traps");
evcnt_attach_dynamic(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_isi, self->dv_xname, "user ISI failures");
evcnt_attach_dynamic(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "system call traps");
evcnt_attach_dynamic(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "PGM traps");
evcnt_attach_dynamic(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "FPU unavailable traps");
evcnt_attach_dynamic(&ci->ci_ev_fpusw, EVCNT_TYPE_TRAP,
&ci->ci_ev_fpu, self->dv_xname, "FPU context switches");
evcnt_attach_dynamic(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "user alignment traps");
evcnt_attach_dynamic(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
&ci->ci_ev_ali, self->dv_xname, "user alignment traps");
evcnt_attach_dynamic(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
&ci->ci_ev_umchk, self->dv_xname, "user MCHK failures");
evcnt_attach_dynamic(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
&ci->ci_ev_traps, self->dv_xname, "AltiVec unavailable");
#ifdef ALTIVEC
if (cpu_altivec) {
evcnt_attach_dynamic(&ci->ci_ev_vecsw, EVCNT_TYPE_TRAP,
&ci->ci_ev_vec, self->dv_xname, "AltiVec context switches");
}
#endif
}
void
cpu_identify(char *str, size_t len)
{
u_int pvr, maj, min;
uint16_t vers, rev, revfmt;
const struct cputab *cp;
const char *name;
size_t n;
pvr = mfpvr();
vers = pvr >> 16;
rev = pvr;
switch (vers) {
case MPC7410:
min = (pvr >> 0) & 0xff;
maj = min <= 4 ? 1 : 2;
break;
default:
maj = (pvr >> 8) & 0xf;
min = (pvr >> 0) & 0xf;
}
for (cp = models; cp->name[0] != '\0'; cp++) {
if (cp->version == vers)
break;
}
if (str == NULL) {
str = cpu_model;
len = sizeof(cpu_model);
cpu = vers;
}
revfmt = cp->revfmt;
name = cp->name;
if (rev == MPC750 && pvr == 15) {
name = "755";
revfmt = REVFMT_HEX;
}
if (cp->name[0] != '\0') {
n = snprintf(str, len, "%s (Revision ", cp->name);
} else {
n = snprintf(str, len, "Version %#x (Revision ", vers);
}
if (len > n) {
switch (revfmt) {
case REVFMT_MAJMIN:
snprintf(str + n, len - n, "%u.%u)", maj, min);
break;
case REVFMT_HEX:
snprintf(str + n, len - n, "0x%04x)", rev);
break;
case REVFMT_DEC:
snprintf(str + n, len - n, "%u)", rev);
break;
}
}
}
#ifdef L2CR_CONFIG
u_int l2cr_config = L2CR_CONFIG;
#else
u_int l2cr_config = 0;
#endif
#ifdef L3CR_CONFIG
u_int l3cr_config = L3CR_CONFIG;
#else
u_int l3cr_config = 0;
#endif
void
cpu_enable_l2cr(register_t l2cr)
{
register_t msr, x;
/* Disable interrupts and set the cache config bits. */
msr = mfmsr();
mtmsr(msr & ~PSL_EE);
#ifdef ALTIVEC
if (cpu_altivec)
__asm __volatile("dssall");
#endif
__asm __volatile("sync");
mtspr(SPR_L2CR, l2cr & ~L2CR_L2E);
__asm __volatile("sync");
/* Wait for L2 clock to be stable (640 L2 clocks). */
delay(100);
/* Invalidate all L2 contents. */
mtspr(SPR_L2CR, l2cr | L2CR_L2I);
do {
x = mfspr(SPR_L2CR);
} while (x & L2CR_L2IP);
/* Enable L2 cache. */
l2cr |= L2CR_L2E;
mtspr(SPR_L2CR, l2cr);
mtmsr(msr);
}
void
cpu_enable_l3cr(register_t l3cr)
{
register_t x;
/* By The Book (numbered steps from section 3.7.1.3 of MPC7450UM) */
/*
* 1: Set all L3CR bits for final config except L3E, L3I, L3PE, and
* L3CLKEN. (also mask off reserved bits in case they were included
* in L3CR_CONFIG)
*/
l3cr &= ~(L3CR_L3E|L3CR_L3I|L3CR_L3PE|L3CR_L3CLKEN|L3CR_RESERVED);
mtspr(SPR_L3CR, l3cr);
/* 2: Set L3CR[5] (otherwise reserved bit) to 1 */
l3cr |= 0x04000000;
mtspr(SPR_L3CR, l3cr);
/* 3: Set L3CLKEN to 1*/
l3cr |= L3CR_L3CLKEN;
mtspr(SPR_L3CR, l3cr);
/* 4/5: Perform a global cache invalidate (ref section 3.7.3.6) */
__asm __volatile("dssall;sync");
/* L3 cache is already disabled, no need to clear L3E */
mtspr(SPR_L3CR, l3cr|L3CR_L3I);
do {
x = mfspr(SPR_L3CR);
} while (x & L3CR_L3I);
/* 6: Clear L3CLKEN to 0 */
l3cr &= ~L3CR_L3CLKEN;
mtspr(SPR_L3CR, l3cr);
/* 7: Perform a 'sync' and wait at least 100 CPU cycles */
__asm __volatile("sync");
delay(100);
/* 8: Set L3E and L3CLKEN */
l3cr |= (L3CR_L3E|L3CR_L3CLKEN);
mtspr(SPR_L3CR, l3cr);
/* 9: Perform a 'sync' and wait at least 100 CPU cycles */
__asm __volatile("sync");
delay(100);
}
void
cpu_config_l2cr(int pvr)
{
register_t l2cr;
l2cr = mfspr(SPR_L2CR);
/*
* For MP systems, the firmware may only configure the L2 cache
* on the first CPU. In this case, assume that the other CPUs
* should use the same value for L2CR.
*/
if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
l2cr_config = l2cr;
}
/*
* Configure L2 cache if not enabled.
*/
if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
cpu_enable_l2cr(l2cr_config);
l2cr = mfspr(SPR_L2CR);
}
if ((l2cr & L2CR_L2E) == 0)
return;
aprint_normal(",");
if ((pvr >> 16) == IBM750FX ||
(pvr & 0xffffff00) == 0x00082200 /* IBM750CX */ ||
(pvr & 0xffffef00) == 0x00082300 /* IBM750CXe */) {
cpu_fmttab_print(cpu_ibm750_l2cr_formats, l2cr);
} else {
cpu_fmttab_print(cpu_l2cr_formats, l2cr);
}
}
void
cpu_config_l3cr(int vers)
{
register_t l2cr;
register_t l3cr;
l2cr = mfspr(SPR_L2CR);
/*
* For MP systems, the firmware may only configure the L2 cache
* on the first CPU. In this case, assume that the other CPUs
* should use the same value for L2CR.
*/
if ((l2cr & L2CR_L2E) != 0 && l2cr_config == 0) {
l2cr_config = l2cr;
}
/*
* Configure L2 cache if not enabled.
*/
if ((l2cr & L2CR_L2E) == 0 && l2cr_config != 0) {
cpu_enable_l2cr(l2cr_config);
l2cr = mfspr(SPR_L2CR);
}
aprint_normal(",");
cpu_fmttab_print(vers == MPC7457
? cpu_7457_l2cr_formats : cpu_7450_l2cr_formats, l2cr);
l3cr = mfspr(SPR_L3CR);
/*
* For MP systems, the firmware may only configure the L3 cache
* on the first CPU. In this case, assume that the other CPUs
* should use the same value for L3CR.
*/
if ((l3cr & L3CR_L3E) != 0 && l3cr_config == 0) {
l3cr_config = l3cr;
}
/*
* Configure L3 cache if not enabled.
*/
if ((l3cr & L3CR_L3E) == 0 && l3cr_config != 0) {
cpu_enable_l3cr(l3cr_config);
l3cr = mfspr(SPR_L3CR);
}
if (l3cr & L3CR_L3E) {
aprint_normal(",");
cpu_fmttab_print(cpu_7450_l3cr_formats, l3cr);
}
}
void
cpu_print_speed(void)
{
uint64_t cps;
mtspr(SPR_MMCR0, MMCR0_FC);
mtspr(SPR_PMC1, 0);
mtspr(SPR_MMCR0, MMCR0_PMC1SEL(PMCN_CYCLES));
delay(100000);
cps = (mfspr(SPR_PMC1) * 10) + 4999;
aprint_normal("%lld.%02lld MHz", cps / 1000000, (cps / 10000) % 100);
}
#if NSYSMON_ENVSYS > 0
const struct envsys_range cpu_tau_ranges[] = {
{ 0, 0, ENVSYS_STEMP}
};
struct envsys_basic_info cpu_tau_info[] = {
{ 0, ENVSYS_STEMP, "CPU temp", 0, 0, ENVSYS_FVALID}
};
void
cpu_tau_setup(struct cpu_info *ci)
{
struct sysmon_envsys *sme;
int error;
sme = &ci->ci_sysmon;
sme->sme_nsensors = 1;
sme->sme_envsys_version = 1000;
sme->sme_ranges = cpu_tau_ranges;
sme->sme_sensor_info = cpu_tau_info;
sme->sme_sensor_data = &ci->ci_tau_info;
sme->sme_sensor_data->sensor = 0;
sme->sme_sensor_data->warnflags = ENVSYS_WARN_OK;
sme->sme_sensor_data->validflags = ENVSYS_FVALID|ENVSYS_FCURVALID;
sme->sme_cookie = ci;
sme->sme_gtredata = cpu_tau_gtredata;
sme->sme_streinfo = cpu_tau_streinfo;
if ((error = sysmon_envsys_register(sme)) != 0)
aprint_error("%s: unable to register with sysmon (%d)\n",
ci->ci_dev->dv_xname, error);
}
/* Find the temperature of the CPU. */
int
cpu_tau_gtredata(sme, tred)
struct sysmon_envsys *sme;
struct envsys_tre_data *tred;
{
struct cpu_info *ci;
int i, threshold, count;
if (tred->sensor != 0) {
tred->validflags = 0;
return 0;
}
threshold = 64; /* Half of the 7-bit sensor range */
mtspr(SPR_THRM1, 0);
mtspr(SPR_THRM2, 0);
/* XXX This counter is supposed to be "at least 20 microseonds, in
* XXX units of clock cycles". Since we don't have convenient
* XXX access to the CPU speed, set it to a conservative value,
* XXX that is, assuming a fast (1GHz) G3 CPU (As of February 2002,
* XXX the fastest G3 processor is 700MHz) . The cost is that
* XXX measuring the temperature takes a bit longer.
*/
mtspr(SPR_THRM3, SPR_THRM_TIMER(20000) | SPR_THRM_ENABLE);
/* Successive-approximation code adapted from Motorola
* application note AN1800/D, "Programming the Thermal Assist
* Unit in the MPC750 Microprocessor".
*/
for (i = 4; i >= 0 ; i--) {
mtspr(SPR_THRM1,
SPR_THRM_THRESHOLD(threshold) | SPR_THRM_VALID);
count = 0;
while ((count < 100) &&
((mfspr(SPR_THRM1) & SPR_THRM_TIV) == 0)) {
count++;
delay(1);
}
if (mfspr(SPR_THRM1) & SPR_THRM_TIN) {
/* The interrupt bit was set, meaning the
* temperature was above the threshold
*/
threshold += 2 << i;
} else {
/* Temperature was below the threshold */
threshold -= 2 << i;
}
}
threshold += 2;
ci = (struct cpu_info *)sme->sme_cookie;
/* Convert the temperature in degrees C to microkelvin */
ci->ci_tau_info.cur.data_us = (threshold * 1000000) + 273150000;
*tred = ci->ci_tau_info;
return 0;
}
int
cpu_tau_streinfo(sme, binfo)
struct sysmon_envsys *sme;
struct envsys_basic_info *binfo;
{
/* There is nothing to set here. */
return (EINVAL);
}
#endif /* NSYSMON_ENVSYS > 0 */