NetBSD/sys/kern/subr_kmem.c

510 lines
13 KiB
C

/* $NetBSD: subr_kmem.c,v 1.78 2020/01/25 15:08:40 ad Exp $ */
/*
* Copyright (c) 2009-2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran and Maxime Villard.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c)2006 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Allocator of kernel wired memory. This allocator has some debug features
* enabled with "option DIAGNOSTIC" and "option DEBUG".
*/
/*
* KMEM_SIZE: detect alloc/free size mismatch bugs.
* Prefix each allocations with a fixed-sized, aligned header and record
* the exact user-requested allocation size in it. When freeing, compare
* it with kmem_free's "size" argument.
*
* This option is enabled on DIAGNOSTIC.
*
* |CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|CHUNK|
* +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
* |/////| | | | | | | | | |U|
* |/HSZ/| | | | | | | | | |U|
* |/////| | | | | | | | | |U|
* +-----+-----+-----+-----+-----+-----+-----+-----+-----+---+-+
* |Size | Buffer usable by the caller (requested size) |Unused\
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_kmem.c,v 1.78 2020/01/25 15:08:40 ad Exp $");
#ifdef _KERNEL_OPT
#include "opt_kmem.h"
#endif
#include <sys/param.h>
#include <sys/callback.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/debug.h>
#include <sys/lockdebug.h>
#include <sys/cpu.h>
#include <sys/asan.h>
#include <sys/msan.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_map.h>
#include <lib/libkern/libkern.h>
struct kmem_cache_info {
size_t kc_size;
const char * kc_name;
};
static const struct kmem_cache_info kmem_cache_sizes[] = {
{ 8, "kmem-00008" },
{ 16, "kmem-00016" },
{ 24, "kmem-00024" },
{ 32, "kmem-00032" },
{ 40, "kmem-00040" },
{ 48, "kmem-00048" },
{ 56, "kmem-00056" },
{ 64, "kmem-00064" },
{ 80, "kmem-00080" },
{ 96, "kmem-00096" },
{ 112, "kmem-00112" },
{ 128, "kmem-00128" },
{ 160, "kmem-00160" },
{ 192, "kmem-00192" },
{ 224, "kmem-00224" },
{ 256, "kmem-00256" },
{ 320, "kmem-00320" },
{ 384, "kmem-00384" },
{ 448, "kmem-00448" },
{ 512, "kmem-00512" },
{ 768, "kmem-00768" },
{ 1024, "kmem-01024" },
{ 0, NULL }
};
static const struct kmem_cache_info kmem_cache_big_sizes[] = {
{ 2048, "kmem-02048" },
{ 4096, "kmem-04096" },
{ 8192, "kmem-08192" },
{ 16384, "kmem-16384" },
{ 0, NULL }
};
/*
* KMEM_ALIGN is the smallest guaranteed alignment and also the
* smallest allocateable quantum.
* Every cache size >= CACHE_LINE_SIZE gets CACHE_LINE_SIZE alignment.
*/
#define KMEM_ALIGN 8
#define KMEM_SHIFT 3
#define KMEM_MAXSIZE 1024
#define KMEM_CACHE_COUNT (KMEM_MAXSIZE >> KMEM_SHIFT)
static pool_cache_t kmem_cache[KMEM_CACHE_COUNT] __cacheline_aligned;
static size_t kmem_cache_maxidx __read_mostly;
#define KMEM_BIG_ALIGN 2048
#define KMEM_BIG_SHIFT 11
#define KMEM_BIG_MAXSIZE 16384
#define KMEM_CACHE_BIG_COUNT (KMEM_BIG_MAXSIZE >> KMEM_BIG_SHIFT)
static pool_cache_t kmem_cache_big[KMEM_CACHE_BIG_COUNT] __cacheline_aligned;
static size_t kmem_cache_big_maxidx __read_mostly;
#if defined(DIAGNOSTIC) && defined(_HARDKERNEL)
#define KMEM_SIZE
#endif
#if defined(DEBUG) && defined(_HARDKERNEL)
static void *kmem_freecheck;
#endif
#if defined(KMEM_SIZE)
struct kmem_header {
size_t size;
} __aligned(KMEM_ALIGN);
#define SIZE_SIZE sizeof(struct kmem_header)
static void kmem_size_set(void *, size_t);
static void kmem_size_check(void *, size_t);
#else
#define SIZE_SIZE 0
#define kmem_size_set(p, sz) /* nothing */
#define kmem_size_check(p, sz) /* nothing */
#endif
CTASSERT(KM_SLEEP == PR_WAITOK);
CTASSERT(KM_NOSLEEP == PR_NOWAIT);
/*
* kmem_intr_alloc: allocate wired memory.
*/
void *
kmem_intr_alloc(size_t requested_size, km_flag_t kmflags)
{
#ifdef KASAN
const size_t origsize = requested_size;
#endif
size_t allocsz, index;
size_t size;
pool_cache_t pc;
uint8_t *p;
KASSERT(requested_size > 0);
KASSERT((kmflags & KM_SLEEP) || (kmflags & KM_NOSLEEP));
KASSERT(!(kmflags & KM_SLEEP) || !(kmflags & KM_NOSLEEP));
kasan_add_redzone(&requested_size);
size = kmem_roundup_size(requested_size);
allocsz = size + SIZE_SIZE;
if ((index = ((allocsz -1) >> KMEM_SHIFT))
< kmem_cache_maxidx) {
pc = kmem_cache[index];
} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
< kmem_cache_big_maxidx) {
pc = kmem_cache_big[index];
} else {
int ret = uvm_km_kmem_alloc(kmem_va_arena,
(vsize_t)round_page(size),
((kmflags & KM_SLEEP) ? VM_SLEEP : VM_NOSLEEP)
| VM_INSTANTFIT, (vmem_addr_t *)&p);
if (ret) {
return NULL;
}
FREECHECK_OUT(&kmem_freecheck, p);
return p;
}
p = pool_cache_get(pc, kmflags);
if (__predict_true(p != NULL)) {
FREECHECK_OUT(&kmem_freecheck, p);
kmem_size_set(p, requested_size);
p += SIZE_SIZE;
kasan_mark(p, origsize, size, KASAN_KMEM_REDZONE);
return p;
}
return p;
}
/*
* kmem_intr_zalloc: allocate zeroed wired memory.
*/
void *
kmem_intr_zalloc(size_t size, km_flag_t kmflags)
{
void *p;
p = kmem_intr_alloc(size, kmflags);
if (p != NULL) {
memset(p, 0, size);
}
return p;
}
/*
* kmem_intr_free: free wired memory allocated by kmem_alloc.
*/
void
kmem_intr_free(void *p, size_t requested_size)
{
size_t allocsz, index;
size_t size;
pool_cache_t pc;
KASSERT(p != NULL);
KASSERT(requested_size > 0);
kasan_add_redzone(&requested_size);
size = kmem_roundup_size(requested_size);
allocsz = size + SIZE_SIZE;
if ((index = ((allocsz -1) >> KMEM_SHIFT))
< kmem_cache_maxidx) {
pc = kmem_cache[index];
} else if ((index = ((allocsz - 1) >> KMEM_BIG_SHIFT))
< kmem_cache_big_maxidx) {
pc = kmem_cache_big[index];
} else {
FREECHECK_IN(&kmem_freecheck, p);
uvm_km_kmem_free(kmem_va_arena, (vaddr_t)p,
round_page(size));
return;
}
kasan_mark(p, size, size, 0);
p = (uint8_t *)p - SIZE_SIZE;
kmem_size_check(p, requested_size);
FREECHECK_IN(&kmem_freecheck, p);
LOCKDEBUG_MEM_CHECK(p, size);
pool_cache_put(pc, p);
}
/* -------------------------------- Kmem API -------------------------------- */
/*
* kmem_alloc: allocate wired memory.
* => must not be called from interrupt context.
*/
void *
kmem_alloc(size_t size, km_flag_t kmflags)
{
void *v;
KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
"kmem(9) should not be used from the interrupt context");
v = kmem_intr_alloc(size, kmflags);
if (__predict_true(v != NULL)) {
kmsan_mark(v, size, KMSAN_STATE_UNINIT);
kmsan_orig(v, size, KMSAN_TYPE_KMEM, __RET_ADDR);
}
KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
return v;
}
/*
* kmem_zalloc: allocate zeroed wired memory.
* => must not be called from interrupt context.
*/
void *
kmem_zalloc(size_t size, km_flag_t kmflags)
{
void *v;
KASSERTMSG((!cpu_intr_p() && !cpu_softintr_p()),
"kmem(9) should not be used from the interrupt context");
v = kmem_intr_zalloc(size, kmflags);
KASSERT(v || (kmflags & KM_NOSLEEP) != 0);
return v;
}
/*
* kmem_free: free wired memory allocated by kmem_alloc.
* => must not be called from interrupt context.
*/
void
kmem_free(void *p, size_t size)
{
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
kmem_intr_free(p, size);
kmsan_mark(p, size, KMSAN_STATE_INITED);
}
static size_t
kmem_create_caches(const struct kmem_cache_info *array,
pool_cache_t alloc_table[], size_t maxsize, int shift, int ipl)
{
size_t maxidx = 0;
size_t table_unit = (1 << shift);
size_t size = table_unit;
int i;
for (i = 0; array[i].kc_size != 0 ; i++) {
const char *name = array[i].kc_name;
size_t cache_size = array[i].kc_size;
struct pool_allocator *pa;
int flags = 0;
pool_cache_t pc;
size_t align;
/* check if we reached the requested size */
if (cache_size > maxsize || cache_size > PAGE_SIZE) {
break;
}
/*
* Exclude caches with size not a factor or multiple of the
* coherency unit.
*/
if (cache_size < COHERENCY_UNIT) {
if (COHERENCY_UNIT % cache_size > 0) {
continue;
}
flags |= PR_NOTOUCH;
align = KMEM_ALIGN;
} else if ((cache_size & (PAGE_SIZE - 1)) == 0) {
align = PAGE_SIZE;
} else {
if ((cache_size % COHERENCY_UNIT) > 0) {
continue;
}
align = COHERENCY_UNIT;
}
if ((cache_size >> shift) > maxidx) {
maxidx = cache_size >> shift;
}
pa = &pool_allocator_kmem;
pc = pool_cache_init(cache_size, align, 0, flags,
name, pa, ipl, NULL, NULL, NULL);
while (size <= cache_size) {
alloc_table[(size - 1) >> shift] = pc;
size += table_unit;
}
}
return maxidx;
}
void
kmem_init(void)
{
kmem_cache_maxidx = kmem_create_caches(kmem_cache_sizes,
kmem_cache, KMEM_MAXSIZE, KMEM_SHIFT, IPL_VM);
kmem_cache_big_maxidx = kmem_create_caches(kmem_cache_big_sizes,
kmem_cache_big, PAGE_SIZE, KMEM_BIG_SHIFT, IPL_VM);
}
size_t
kmem_roundup_size(size_t size)
{
return (size + (KMEM_ALIGN - 1)) & ~(KMEM_ALIGN - 1);
}
/*
* Used to dynamically allocate string with kmem accordingly to format.
*/
char *
kmem_asprintf(const char *fmt, ...)
{
int size __diagused, len;
va_list va;
char *str;
va_start(va, fmt);
len = vsnprintf(NULL, 0, fmt, va);
va_end(va);
str = kmem_alloc(len + 1, KM_SLEEP);
va_start(va, fmt);
size = vsnprintf(str, len + 1, fmt, va);
va_end(va);
KASSERT(size == len);
return str;
}
char *
kmem_strdupsize(const char *str, size_t *lenp, km_flag_t flags)
{
size_t len = strlen(str) + 1;
char *ptr = kmem_alloc(len, flags);
if (ptr == NULL)
return NULL;
if (lenp)
*lenp = len;
memcpy(ptr, str, len);
return ptr;
}
char *
kmem_strndup(const char *str, size_t maxlen, km_flag_t flags)
{
KASSERT(str != NULL);
KASSERT(maxlen != 0);
size_t len = strnlen(str, maxlen);
char *ptr = kmem_alloc(len + 1, flags);
if (ptr == NULL)
return NULL;
memcpy(ptr, str, len);
ptr[len] = '\0';
return ptr;
}
void
kmem_strfree(char *str)
{
if (str == NULL)
return;
kmem_free(str, strlen(str) + 1);
}
/* --------------------------- DEBUG / DIAGNOSTIC --------------------------- */
#if defined(KMEM_SIZE)
static void
kmem_size_set(void *p, size_t sz)
{
struct kmem_header *hd;
hd = (struct kmem_header *)p;
hd->size = sz;
}
static void
kmem_size_check(void *p, size_t sz)
{
struct kmem_header *hd;
size_t hsz;
hd = (struct kmem_header *)p;
hsz = hd->size;
if (hsz != sz) {
panic("kmem_free(%p, %zu) != allocated size %zu",
(const uint8_t *)p + SIZE_SIZE, sz, hsz);
}
hd->size = -1;
}
#endif /* defined(KMEM_SIZE) */