f5a82c952d
No functional change.
2817 lines
69 KiB
C
2817 lines
69 KiB
C
/* $NetBSD: nd6.c,v 1.214 2016/12/12 03:13:14 ozaki-r Exp $ */
|
|
/* $KAME: nd6.c,v 1.279 2002/06/08 11:16:51 itojun Exp $ */
|
|
|
|
/*
|
|
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the project nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: nd6.c,v 1.214 2016/12/12 03:13:14 ozaki-r Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_net_mpsafe.h"
|
|
#endif
|
|
|
|
#include "bridge.h"
|
|
#include "carp.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/socketvar.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/cprng.h>
|
|
#include <sys/workqueue.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_llatbl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/route.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_fddi.h>
|
|
#include <net/if_arc.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet6/in6_var.h>
|
|
#include <netinet/ip6.h>
|
|
#include <netinet6/ip6_var.h>
|
|
#include <netinet6/scope6_var.h>
|
|
#include <netinet6/nd6.h>
|
|
#include <netinet6/in6_ifattach.h>
|
|
#include <netinet/icmp6.h>
|
|
#include <netinet6/icmp6_private.h>
|
|
|
|
#include <net/net_osdep.h>
|
|
|
|
#define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */
|
|
#define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */
|
|
|
|
/* timer values */
|
|
int nd6_prune = 1; /* walk list every 1 seconds */
|
|
int nd6_delay = 5; /* delay first probe time 5 second */
|
|
int nd6_umaxtries = 3; /* maximum unicast query */
|
|
int nd6_mmaxtries = 3; /* maximum multicast query */
|
|
int nd6_useloopback = 1; /* use loopback interface for local traffic */
|
|
int nd6_gctimer = (60 * 60 * 24); /* 1 day: garbage collection timer */
|
|
|
|
/* preventing too many loops in ND option parsing */
|
|
int nd6_maxndopt = 10; /* max # of ND options allowed */
|
|
|
|
int nd6_maxnudhint = 0; /* max # of subsequent upper layer hints */
|
|
|
|
int nd6_maxqueuelen = 1; /* max # of packets cached in unresolved ND entries */
|
|
|
|
#ifdef ND6_DEBUG
|
|
int nd6_debug = 1;
|
|
#else
|
|
int nd6_debug = 0;
|
|
#endif
|
|
|
|
struct nd_drhead nd_defrouter;
|
|
struct nd_prhead nd_prefix = { 0 };
|
|
|
|
int nd6_recalc_reachtm_interval = ND6_RECALC_REACHTM_INTERVAL;
|
|
|
|
static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *);
|
|
static void nd6_slowtimo(void *);
|
|
static int regen_tmpaddr(const struct in6_ifaddr *);
|
|
static void nd6_free(struct llentry *, int);
|
|
static void nd6_llinfo_timer(void *);
|
|
static void nd6_timer(void *);
|
|
static void nd6_timer_work(struct work *, void *);
|
|
static void clear_llinfo_pqueue(struct llentry *);
|
|
|
|
static callout_t nd6_slowtimo_ch;
|
|
static callout_t nd6_timer_ch;
|
|
static struct workqueue *nd6_timer_wq;
|
|
static struct work nd6_timer_wk;
|
|
|
|
static int fill_drlist(void *, size_t *, size_t);
|
|
static int fill_prlist(void *, size_t *, size_t);
|
|
|
|
static struct ifnet *nd6_defifp;
|
|
static int nd6_defifindex;
|
|
|
|
static int nd6_setdefaultiface(int);
|
|
|
|
MALLOC_DEFINE(M_IP6NDP, "NDP", "IPv6 Neighbour Discovery");
|
|
|
|
void
|
|
nd6_init(void)
|
|
{
|
|
int error;
|
|
|
|
/* initialization of the default router list */
|
|
ND_DEFROUTER_LIST_INIT();
|
|
|
|
callout_init(&nd6_slowtimo_ch, CALLOUT_MPSAFE);
|
|
callout_init(&nd6_timer_ch, CALLOUT_MPSAFE);
|
|
|
|
error = workqueue_create(&nd6_timer_wq, "nd6_timer",
|
|
nd6_timer_work, NULL, PRI_SOFTNET, IPL_SOFTNET, WQ_MPSAFE);
|
|
if (error)
|
|
panic("%s: workqueue_create failed (%d)\n", __func__, error);
|
|
|
|
/* start timer */
|
|
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
|
|
nd6_slowtimo, NULL);
|
|
callout_reset(&nd6_timer_ch, hz, nd6_timer, NULL);
|
|
}
|
|
|
|
struct nd_ifinfo *
|
|
nd6_ifattach(struct ifnet *ifp)
|
|
{
|
|
struct nd_ifinfo *nd;
|
|
|
|
nd = (struct nd_ifinfo *)malloc(sizeof(*nd), M_IP6NDP, M_WAITOK|M_ZERO);
|
|
|
|
nd->initialized = 1;
|
|
|
|
nd->chlim = IPV6_DEFHLIM;
|
|
nd->basereachable = REACHABLE_TIME;
|
|
nd->reachable = ND_COMPUTE_RTIME(nd->basereachable);
|
|
nd->retrans = RETRANS_TIMER;
|
|
|
|
nd->flags = ND6_IFF_PERFORMNUD | ND6_IFF_ACCEPT_RTADV;
|
|
|
|
/* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL.
|
|
* A bridge interface should not have ND6_IFF_AUTO_LINKLOCAL
|
|
* because one of its members should. */
|
|
if ((ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) ||
|
|
(ifp->if_flags & IFF_LOOPBACK))
|
|
nd->flags |= ND6_IFF_AUTO_LINKLOCAL;
|
|
|
|
/* A loopback interface does not need to accept RTADV.
|
|
* A bridge interface should not accept RTADV
|
|
* because one of its members should. */
|
|
if (ip6_accept_rtadv &&
|
|
!(ifp->if_flags & IFF_LOOPBACK) &&
|
|
!(ifp->if_type != IFT_BRIDGE))
|
|
nd->flags |= ND6_IFF_ACCEPT_RTADV;
|
|
|
|
/* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */
|
|
nd6_setmtu0(ifp, nd);
|
|
|
|
return nd;
|
|
}
|
|
|
|
void
|
|
nd6_ifdetach(struct ifnet *ifp, struct in6_ifextra *ext)
|
|
{
|
|
|
|
nd6_purge(ifp, ext);
|
|
free(ext->nd_ifinfo, M_IP6NDP);
|
|
}
|
|
|
|
void
|
|
nd6_setmtu(struct ifnet *ifp)
|
|
{
|
|
nd6_setmtu0(ifp, ND_IFINFO(ifp));
|
|
}
|
|
|
|
void
|
|
nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi)
|
|
{
|
|
u_int32_t omaxmtu;
|
|
|
|
omaxmtu = ndi->maxmtu;
|
|
|
|
switch (ifp->if_type) {
|
|
case IFT_ARCNET:
|
|
ndi->maxmtu = MIN(ARC_PHDS_MAXMTU, ifp->if_mtu); /* RFC2497 */
|
|
break;
|
|
case IFT_FDDI:
|
|
ndi->maxmtu = MIN(FDDIIPMTU, ifp->if_mtu);
|
|
break;
|
|
default:
|
|
ndi->maxmtu = ifp->if_mtu;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Decreasing the interface MTU under IPV6 minimum MTU may cause
|
|
* undesirable situation. We thus notify the operator of the change
|
|
* explicitly. The check for omaxmtu is necessary to restrict the
|
|
* log to the case of changing the MTU, not initializing it.
|
|
*/
|
|
if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) {
|
|
log(LOG_NOTICE, "nd6_setmtu0: new link MTU on %s (%lu) is too"
|
|
" small for IPv6 which needs %lu\n",
|
|
if_name(ifp), (unsigned long)ndi->maxmtu, (unsigned long)
|
|
IPV6_MMTU);
|
|
}
|
|
|
|
if (ndi->maxmtu > in6_maxmtu)
|
|
in6_setmaxmtu(); /* check all interfaces just in case */
|
|
}
|
|
|
|
void
|
|
nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts)
|
|
{
|
|
|
|
memset(ndopts, 0, sizeof(*ndopts));
|
|
ndopts->nd_opts_search = (struct nd_opt_hdr *)opt;
|
|
ndopts->nd_opts_last
|
|
= (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len);
|
|
|
|
if (icmp6len == 0) {
|
|
ndopts->nd_opts_done = 1;
|
|
ndopts->nd_opts_search = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Take one ND option.
|
|
*/
|
|
struct nd_opt_hdr *
|
|
nd6_option(union nd_opts *ndopts)
|
|
{
|
|
struct nd_opt_hdr *nd_opt;
|
|
int olen;
|
|
|
|
KASSERT(ndopts != NULL);
|
|
KASSERT(ndopts->nd_opts_last != NULL);
|
|
|
|
if (ndopts->nd_opts_search == NULL)
|
|
return NULL;
|
|
if (ndopts->nd_opts_done)
|
|
return NULL;
|
|
|
|
nd_opt = ndopts->nd_opts_search;
|
|
|
|
/* make sure nd_opt_len is inside the buffer */
|
|
if ((void *)&nd_opt->nd_opt_len >= (void *)ndopts->nd_opts_last) {
|
|
memset(ndopts, 0, sizeof(*ndopts));
|
|
return NULL;
|
|
}
|
|
|
|
olen = nd_opt->nd_opt_len << 3;
|
|
if (olen == 0) {
|
|
/*
|
|
* Message validation requires that all included
|
|
* options have a length that is greater than zero.
|
|
*/
|
|
memset(ndopts, 0, sizeof(*ndopts));
|
|
return NULL;
|
|
}
|
|
|
|
ndopts->nd_opts_search = (struct nd_opt_hdr *)((char *)nd_opt + olen);
|
|
if (ndopts->nd_opts_search > ndopts->nd_opts_last) {
|
|
/* option overruns the end of buffer, invalid */
|
|
memset(ndopts, 0, sizeof(*ndopts));
|
|
return NULL;
|
|
} else if (ndopts->nd_opts_search == ndopts->nd_opts_last) {
|
|
/* reached the end of options chain */
|
|
ndopts->nd_opts_done = 1;
|
|
ndopts->nd_opts_search = NULL;
|
|
}
|
|
return nd_opt;
|
|
}
|
|
|
|
/*
|
|
* Parse multiple ND options.
|
|
* This function is much easier to use, for ND routines that do not need
|
|
* multiple options of the same type.
|
|
*/
|
|
int
|
|
nd6_options(union nd_opts *ndopts)
|
|
{
|
|
struct nd_opt_hdr *nd_opt;
|
|
int i = 0;
|
|
|
|
KASSERT(ndopts != NULL);
|
|
KASSERT(ndopts->nd_opts_last != NULL);
|
|
|
|
if (ndopts->nd_opts_search == NULL)
|
|
return 0;
|
|
|
|
while (1) {
|
|
nd_opt = nd6_option(ndopts);
|
|
if (nd_opt == NULL && ndopts->nd_opts_last == NULL) {
|
|
/*
|
|
* Message validation requires that all included
|
|
* options have a length that is greater than zero.
|
|
*/
|
|
ICMP6_STATINC(ICMP6_STAT_ND_BADOPT);
|
|
memset(ndopts, 0, sizeof(*ndopts));
|
|
return -1;
|
|
}
|
|
|
|
if (nd_opt == NULL)
|
|
goto skip1;
|
|
|
|
switch (nd_opt->nd_opt_type) {
|
|
case ND_OPT_SOURCE_LINKADDR:
|
|
case ND_OPT_TARGET_LINKADDR:
|
|
case ND_OPT_MTU:
|
|
case ND_OPT_REDIRECTED_HEADER:
|
|
if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) {
|
|
nd6log(LOG_INFO,
|
|
"duplicated ND6 option found (type=%d)\n",
|
|
nd_opt->nd_opt_type);
|
|
/* XXX bark? */
|
|
} else {
|
|
ndopts->nd_opt_array[nd_opt->nd_opt_type]
|
|
= nd_opt;
|
|
}
|
|
break;
|
|
case ND_OPT_PREFIX_INFORMATION:
|
|
if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) {
|
|
ndopts->nd_opt_array[nd_opt->nd_opt_type]
|
|
= nd_opt;
|
|
}
|
|
ndopts->nd_opts_pi_end =
|
|
(struct nd_opt_prefix_info *)nd_opt;
|
|
break;
|
|
default:
|
|
/*
|
|
* Unknown options must be silently ignored,
|
|
* to accommodate future extension to the protocol.
|
|
*/
|
|
nd6log(LOG_DEBUG,
|
|
"nd6_options: unsupported option %d - "
|
|
"option ignored\n", nd_opt->nd_opt_type);
|
|
}
|
|
|
|
skip1:
|
|
i++;
|
|
if (i > nd6_maxndopt) {
|
|
ICMP6_STATINC(ICMP6_STAT_ND_TOOMANYOPT);
|
|
nd6log(LOG_INFO, "too many loop in nd opt\n");
|
|
break;
|
|
}
|
|
|
|
if (ndopts->nd_opts_done)
|
|
break;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* ND6 timer routine to handle ND6 entries
|
|
*/
|
|
void
|
|
nd6_llinfo_settimer(struct llentry *ln, time_t xtick)
|
|
{
|
|
|
|
CTASSERT(sizeof(time_t) > sizeof(int));
|
|
LLE_WLOCK_ASSERT(ln);
|
|
|
|
if (xtick < 0) {
|
|
ln->ln_expire = 0;
|
|
ln->ln_ntick = 0;
|
|
callout_halt(&ln->ln_timer_ch, &ln->lle_lock);
|
|
} else {
|
|
ln->ln_expire = time_uptime + xtick / hz;
|
|
LLE_ADDREF(ln);
|
|
if (xtick > INT_MAX) {
|
|
ln->ln_ntick = xtick - INT_MAX;
|
|
callout_reset(&ln->ln_timer_ch, INT_MAX,
|
|
nd6_llinfo_timer, ln);
|
|
} else {
|
|
ln->ln_ntick = 0;
|
|
callout_reset(&ln->ln_timer_ch, xtick,
|
|
nd6_llinfo_timer, ln);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Gets source address of the first packet in hold queue
|
|
* and stores it in @src.
|
|
* Returns pointer to @src (if hold queue is not empty) or NULL.
|
|
*/
|
|
static struct in6_addr *
|
|
nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src)
|
|
{
|
|
struct ip6_hdr *hip6;
|
|
|
|
if (ln == NULL || ln->ln_hold == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* assuming every packet in ln_hold has the same IP header
|
|
*/
|
|
hip6 = mtod(ln->ln_hold, struct ip6_hdr *);
|
|
/* XXX pullup? */
|
|
if (sizeof(*hip6) < ln->ln_hold->m_len)
|
|
*src = hip6->ip6_src;
|
|
else
|
|
src = NULL;
|
|
|
|
return src;
|
|
}
|
|
|
|
static void
|
|
nd6_llinfo_timer(void *arg)
|
|
{
|
|
struct llentry *ln = arg;
|
|
struct ifnet *ifp;
|
|
struct nd_ifinfo *ndi = NULL;
|
|
bool send_ns = false;
|
|
const struct in6_addr *daddr6 = NULL;
|
|
|
|
#ifndef NET_MPSAFE
|
|
mutex_enter(softnet_lock);
|
|
KERNEL_LOCK(1, NULL);
|
|
#endif
|
|
|
|
LLE_WLOCK(ln);
|
|
if (ln->ln_ntick > 0) {
|
|
nd6_llinfo_settimer(ln, ln->ln_ntick);
|
|
goto out;
|
|
}
|
|
|
|
if (callout_pending(&ln->la_timer)) {
|
|
/*
|
|
* Here we are a bit odd here in the treatment of
|
|
* active/pending. If the pending bit is set, it got
|
|
* rescheduled before I ran. The active
|
|
* bit we ignore, since if it was stopped
|
|
* in ll_tablefree() and was currently running
|
|
* it would have return 0 so the code would
|
|
* not have deleted it since the callout could
|
|
* not be stopped so we want to go through
|
|
* with the delete here now. If the callout
|
|
* was restarted, the pending bit will be back on and
|
|
* we just want to bail since the callout_reset would
|
|
* return 1 and our reference would have been removed
|
|
* by nd6_llinfo_settimer above since canceled
|
|
* would have been 1.
|
|
*/
|
|
goto out;
|
|
}
|
|
|
|
ifp = ln->lle_tbl->llt_ifp;
|
|
|
|
KASSERT(ifp != NULL);
|
|
|
|
ndi = ND_IFINFO(ifp);
|
|
|
|
switch (ln->ln_state) {
|
|
case ND6_LLINFO_INCOMPLETE:
|
|
if (ln->ln_asked < nd6_mmaxtries) {
|
|
ln->ln_asked++;
|
|
send_ns = true;
|
|
} else {
|
|
struct mbuf *m = ln->ln_hold;
|
|
if (m) {
|
|
struct mbuf *m0;
|
|
|
|
/*
|
|
* assuming every packet in ln_hold has
|
|
* the same IP header
|
|
*/
|
|
m0 = m->m_nextpkt;
|
|
m->m_nextpkt = NULL;
|
|
ln->ln_hold = m0;
|
|
clear_llinfo_pqueue(ln);
|
|
}
|
|
nd6_free(ln, 0);
|
|
ln = NULL;
|
|
if (m != NULL)
|
|
icmp6_error2(m, ICMP6_DST_UNREACH,
|
|
ICMP6_DST_UNREACH_ADDR, 0, ifp);
|
|
}
|
|
break;
|
|
case ND6_LLINFO_REACHABLE:
|
|
if (!ND6_LLINFO_PERMANENT(ln)) {
|
|
ln->ln_state = ND6_LLINFO_STALE;
|
|
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
|
|
}
|
|
break;
|
|
|
|
case ND6_LLINFO_PURGE:
|
|
case ND6_LLINFO_STALE:
|
|
/* Garbage Collection(RFC 2461 5.3) */
|
|
if (!ND6_LLINFO_PERMANENT(ln)) {
|
|
nd6_free(ln, 1);
|
|
ln = NULL;
|
|
}
|
|
break;
|
|
|
|
case ND6_LLINFO_DELAY:
|
|
if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) {
|
|
/* We need NUD */
|
|
ln->ln_asked = 1;
|
|
ln->ln_state = ND6_LLINFO_PROBE;
|
|
daddr6 = &ln->r_l3addr.addr6;
|
|
send_ns = true;
|
|
} else {
|
|
ln->ln_state = ND6_LLINFO_STALE; /* XXX */
|
|
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
|
|
}
|
|
break;
|
|
case ND6_LLINFO_PROBE:
|
|
if (ln->ln_asked < nd6_umaxtries) {
|
|
ln->ln_asked++;
|
|
daddr6 = &ln->r_l3addr.addr6;
|
|
send_ns = true;
|
|
} else {
|
|
nd6_free(ln, 0);
|
|
ln = NULL;
|
|
}
|
|
break;
|
|
}
|
|
|
|
if (send_ns) {
|
|
struct in6_addr src, *psrc;
|
|
const struct in6_addr *taddr6 = &ln->r_l3addr.addr6;
|
|
|
|
nd6_llinfo_settimer(ln, ndi->retrans * hz / 1000);
|
|
psrc = nd6_llinfo_get_holdsrc(ln, &src);
|
|
LLE_FREE_LOCKED(ln);
|
|
ln = NULL;
|
|
nd6_ns_output(ifp, daddr6, taddr6, psrc, 0);
|
|
}
|
|
|
|
out:
|
|
if (ln != NULL)
|
|
LLE_FREE_LOCKED(ln);
|
|
#ifndef NET_MPSAFE
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
mutex_exit(softnet_lock);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* ND6 timer routine to expire default route list and prefix list
|
|
*/
|
|
static void
|
|
nd6_timer_work(struct work *wk, void *arg)
|
|
{
|
|
struct nd_defrouter *next_dr, *dr;
|
|
struct nd_prefix *next_pr, *pr;
|
|
struct in6_ifaddr *ia6, *nia6;
|
|
int s, bound;
|
|
struct psref psref;
|
|
|
|
callout_reset(&nd6_timer_ch, nd6_prune * hz,
|
|
nd6_timer, NULL);
|
|
|
|
#ifndef NET_MPSAFE
|
|
mutex_enter(softnet_lock);
|
|
KERNEL_LOCK(1, NULL);
|
|
#endif
|
|
|
|
/* expire default router list */
|
|
|
|
ND_DEFROUTER_LIST_FOREACH_SAFE(dr, next_dr) {
|
|
if (dr->expire && dr->expire < time_uptime) {
|
|
nd6_defrtrlist_del(dr, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* expire interface addresses.
|
|
* in the past the loop was inside prefix expiry processing.
|
|
* However, from a stricter speci-confrmance standpoint, we should
|
|
* rather separate address lifetimes and prefix lifetimes.
|
|
*/
|
|
bound = curlwp_bind();
|
|
addrloop:
|
|
s = pserialize_read_enter();
|
|
for (ia6 = IN6_ADDRLIST_READER_FIRST(); ia6; ia6 = nia6) {
|
|
nia6 = IN6_ADDRLIST_READER_NEXT(ia6);
|
|
|
|
ia6_acquire(ia6, &psref);
|
|
pserialize_read_exit(s);
|
|
|
|
/* check address lifetime */
|
|
if (IFA6_IS_INVALID(ia6)) {
|
|
int regen = 0;
|
|
|
|
/*
|
|
* If the expiring address is temporary, try
|
|
* regenerating a new one. This would be useful when
|
|
* we suspended a laptop PC, then turned it on after a
|
|
* period that could invalidate all temporary
|
|
* addresses. Although we may have to restart the
|
|
* loop (see below), it must be after purging the
|
|
* address. Otherwise, we'd see an infinite loop of
|
|
* regeneration.
|
|
*/
|
|
if (ip6_use_tempaddr &&
|
|
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) {
|
|
if (regen_tmpaddr(ia6) == 0)
|
|
regen = 1;
|
|
}
|
|
|
|
ia6_release(ia6, &psref);
|
|
in6_purgeaddr(&ia6->ia_ifa);
|
|
ia6 = NULL;
|
|
|
|
if (regen)
|
|
goto addrloop; /* XXX: see below */
|
|
} else if (IFA6_IS_DEPRECATED(ia6)) {
|
|
int oldflags = ia6->ia6_flags;
|
|
|
|
if ((oldflags & IN6_IFF_DEPRECATED) == 0) {
|
|
ia6->ia6_flags |= IN6_IFF_DEPRECATED;
|
|
rt_newaddrmsg(RTM_NEWADDR,
|
|
(struct ifaddr *)ia6, 0, NULL);
|
|
}
|
|
|
|
/*
|
|
* If a temporary address has just become deprecated,
|
|
* regenerate a new one if possible.
|
|
*/
|
|
if (ip6_use_tempaddr &&
|
|
(ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
|
|
(oldflags & IN6_IFF_DEPRECATED) == 0) {
|
|
|
|
if (regen_tmpaddr(ia6) == 0) {
|
|
/*
|
|
* A new temporary address is
|
|
* generated.
|
|
* XXX: this means the address chain
|
|
* has changed while we are still in
|
|
* the loop. Although the change
|
|
* would not cause disaster (because
|
|
* it's not a deletion, but an
|
|
* addition,) we'd rather restart the
|
|
* loop just for safety. Or does this
|
|
* significantly reduce performance??
|
|
*/
|
|
ia6_release(ia6, &psref);
|
|
goto addrloop;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* A new RA might have made a deprecated address
|
|
* preferred.
|
|
*/
|
|
if (ia6->ia6_flags & IN6_IFF_DEPRECATED) {
|
|
ia6->ia6_flags &= ~IN6_IFF_DEPRECATED;
|
|
rt_newaddrmsg(RTM_NEWADDR,
|
|
(struct ifaddr *)ia6, 0, NULL);
|
|
}
|
|
}
|
|
s = pserialize_read_enter();
|
|
ia6_release(ia6, &psref);
|
|
}
|
|
pserialize_read_exit(s);
|
|
curlwp_bindx(bound);
|
|
|
|
/* expire prefix list */
|
|
LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, next_pr) {
|
|
/*
|
|
* check prefix lifetime.
|
|
* since pltime is just for autoconf, pltime processing for
|
|
* prefix is not necessary.
|
|
*/
|
|
if (pr->ndpr_vltime != ND6_INFINITE_LIFETIME &&
|
|
time_uptime - pr->ndpr_lastupdate > pr->ndpr_vltime) {
|
|
|
|
/*
|
|
* address expiration and prefix expiration are
|
|
* separate. NEVER perform in6_purgeaddr here.
|
|
*/
|
|
|
|
nd6_prelist_remove(pr);
|
|
}
|
|
}
|
|
|
|
#ifndef NET_MPSAFE
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
mutex_exit(softnet_lock);
|
|
#endif
|
|
}
|
|
|
|
static void
|
|
nd6_timer(void *ignored_arg)
|
|
{
|
|
|
|
workqueue_enqueue(nd6_timer_wq, &nd6_timer_wk, NULL);
|
|
}
|
|
|
|
/* ia6: deprecated/invalidated temporary address */
|
|
static int
|
|
regen_tmpaddr(const struct in6_ifaddr *ia6)
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct ifnet *ifp;
|
|
struct in6_ifaddr *public_ifa6 = NULL;
|
|
int s;
|
|
|
|
ifp = ia6->ia_ifa.ifa_ifp;
|
|
s = pserialize_read_enter();
|
|
IFADDR_READER_FOREACH(ifa, ifp) {
|
|
struct in6_ifaddr *it6;
|
|
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
|
|
it6 = (struct in6_ifaddr *)ifa;
|
|
|
|
/* ignore no autoconf addresses. */
|
|
if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0)
|
|
continue;
|
|
|
|
/* ignore autoconf addresses with different prefixes. */
|
|
if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr)
|
|
continue;
|
|
|
|
/*
|
|
* Now we are looking at an autoconf address with the same
|
|
* prefix as ours. If the address is temporary and is still
|
|
* preferred, do not create another one. It would be rare, but
|
|
* could happen, for example, when we resume a laptop PC after
|
|
* a long period.
|
|
*/
|
|
if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 &&
|
|
!IFA6_IS_DEPRECATED(it6)) {
|
|
public_ifa6 = NULL;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* This is a public autoconf address that has the same prefix
|
|
* as ours. If it is preferred, keep it. We can't break the
|
|
* loop here, because there may be a still-preferred temporary
|
|
* address with the prefix.
|
|
*/
|
|
if (!IFA6_IS_DEPRECATED(it6))
|
|
public_ifa6 = it6;
|
|
}
|
|
|
|
if (public_ifa6 != NULL) {
|
|
int e;
|
|
struct psref psref;
|
|
|
|
ia6_acquire(public_ifa6, &psref);
|
|
pserialize_read_exit(s);
|
|
/*
|
|
* Random factor is introduced in the preferred lifetime, so
|
|
* we do not need additional delay (3rd arg to in6_tmpifadd).
|
|
*/
|
|
if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) {
|
|
ia6_release(public_ifa6, &psref);
|
|
log(LOG_NOTICE, "regen_tmpaddr: failed to create a new"
|
|
" tmp addr, errno=%d\n", e);
|
|
return -1;
|
|
}
|
|
ia6_release(public_ifa6, &psref);
|
|
return 0;
|
|
}
|
|
pserialize_read_exit(s);
|
|
|
|
return -1;
|
|
}
|
|
|
|
bool
|
|
nd6_accepts_rtadv(const struct nd_ifinfo *ndi)
|
|
{
|
|
switch (ndi->flags & (ND6_IFF_ACCEPT_RTADV|ND6_IFF_OVERRIDE_RTADV)) {
|
|
case ND6_IFF_OVERRIDE_RTADV|ND6_IFF_ACCEPT_RTADV:
|
|
return true;
|
|
case ND6_IFF_ACCEPT_RTADV:
|
|
return ip6_accept_rtadv != 0;
|
|
case ND6_IFF_OVERRIDE_RTADV:
|
|
case 0:
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Nuke neighbor cache/prefix/default router management table, right before
|
|
* ifp goes away.
|
|
*/
|
|
void
|
|
nd6_purge(struct ifnet *ifp, struct in6_ifextra *ext)
|
|
{
|
|
struct nd_defrouter *dr, *ndr;
|
|
struct nd_prefix *pr, *npr;
|
|
|
|
/*
|
|
* During detach, the ND info might be already removed, but
|
|
* then is explitly passed as argument.
|
|
* Otherwise get it from ifp->if_afdata.
|
|
*/
|
|
if (ext == NULL)
|
|
ext = ifp->if_afdata[AF_INET6];
|
|
if (ext == NULL)
|
|
return;
|
|
|
|
/*
|
|
* Nuke default router list entries toward ifp.
|
|
* We defer removal of default router list entries that is installed
|
|
* in the routing table, in order to keep additional side effects as
|
|
* small as possible.
|
|
*/
|
|
ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
|
|
if (dr->installed)
|
|
continue;
|
|
|
|
if (dr->ifp == ifp) {
|
|
KASSERT(ext != NULL);
|
|
nd6_defrtrlist_del(dr, ext);
|
|
}
|
|
}
|
|
|
|
ND_DEFROUTER_LIST_FOREACH_SAFE(dr, ndr) {
|
|
if (!dr->installed)
|
|
continue;
|
|
|
|
if (dr->ifp == ifp) {
|
|
KASSERT(ext != NULL);
|
|
nd6_defrtrlist_del(dr, ext);
|
|
}
|
|
}
|
|
|
|
/* Nuke prefix list entries toward ifp */
|
|
LIST_FOREACH_SAFE(pr, &nd_prefix, ndpr_entry, npr) {
|
|
if (pr->ndpr_ifp == ifp) {
|
|
/*
|
|
* Because if_detach() does *not* release prefixes
|
|
* while purging addresses the reference count will
|
|
* still be above zero. We therefore reset it to
|
|
* make sure that the prefix really gets purged.
|
|
*/
|
|
pr->ndpr_refcnt = 0;
|
|
/*
|
|
* Previously, pr->ndpr_addr is removed as well,
|
|
* but I strongly believe we don't have to do it.
|
|
* nd6_purge() is only called from in6_ifdetach(),
|
|
* which removes all the associated interface addresses
|
|
* by itself.
|
|
* (jinmei@kame.net 20010129)
|
|
*/
|
|
nd6_prelist_remove(pr);
|
|
}
|
|
}
|
|
|
|
/* cancel default outgoing interface setting */
|
|
if (nd6_defifindex == ifp->if_index)
|
|
nd6_setdefaultiface(0);
|
|
|
|
/* XXX: too restrictive? */
|
|
if (!ip6_forwarding && ifp->if_afdata[AF_INET6]) {
|
|
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
|
|
if (ndi && nd6_accepts_rtadv(ndi)) {
|
|
/* refresh default router list */
|
|
nd6_defrouter_select();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We may not need to nuke the neighbor cache entries here
|
|
* because the neighbor cache is kept in if_afdata[AF_INET6].
|
|
* nd6_purge() is invoked by in6_ifdetach() which is called
|
|
* from if_detach() where everything gets purged. However
|
|
* in6_ifdetach is directly called from vlan(4), so we still
|
|
* need to purge entries here.
|
|
*/
|
|
if (ext->lltable != NULL)
|
|
lltable_purge_entries(ext->lltable);
|
|
}
|
|
|
|
struct llentry *
|
|
nd6_lookup(const struct in6_addr *addr6, const struct ifnet *ifp, bool wlock)
|
|
{
|
|
struct sockaddr_in6 sin6;
|
|
struct llentry *ln;
|
|
|
|
sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
|
|
|
|
IF_AFDATA_RLOCK(ifp);
|
|
ln = lla_lookup(LLTABLE6(ifp), wlock ? LLE_EXCLUSIVE : 0,
|
|
sin6tosa(&sin6));
|
|
IF_AFDATA_RUNLOCK(ifp);
|
|
|
|
return ln;
|
|
}
|
|
|
|
struct llentry *
|
|
nd6_create(const struct in6_addr *addr6, const struct ifnet *ifp)
|
|
{
|
|
struct sockaddr_in6 sin6;
|
|
struct llentry *ln;
|
|
|
|
sockaddr_in6_init(&sin6, addr6, 0, 0, 0);
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
ln = lla_create(LLTABLE6(ifp), LLE_EXCLUSIVE,
|
|
sin6tosa(&sin6));
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
|
|
if (ln != NULL)
|
|
ln->ln_state = ND6_LLINFO_NOSTATE;
|
|
|
|
return ln;
|
|
}
|
|
|
|
/*
|
|
* Test whether a given IPv6 address is a neighbor or not, ignoring
|
|
* the actual neighbor cache. The neighbor cache is ignored in order
|
|
* to not reenter the routing code from within itself.
|
|
*/
|
|
static int
|
|
nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
|
|
{
|
|
struct nd_prefix *pr;
|
|
struct ifaddr *dstaddr;
|
|
int s;
|
|
|
|
/*
|
|
* A link-local address is always a neighbor.
|
|
* XXX: a link does not necessarily specify a single interface.
|
|
*/
|
|
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
|
|
struct sockaddr_in6 sin6_copy;
|
|
u_int32_t zone;
|
|
|
|
/*
|
|
* We need sin6_copy since sa6_recoverscope() may modify the
|
|
* content (XXX).
|
|
*/
|
|
sin6_copy = *addr;
|
|
if (sa6_recoverscope(&sin6_copy))
|
|
return 0; /* XXX: should be impossible */
|
|
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
|
|
return 0;
|
|
if (sin6_copy.sin6_scope_id == zone)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the address matches one of our addresses,
|
|
* it should be a neighbor.
|
|
* If the address matches one of our on-link prefixes, it should be a
|
|
* neighbor.
|
|
*/
|
|
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
|
|
if (pr->ndpr_ifp != ifp)
|
|
continue;
|
|
|
|
if (!(pr->ndpr_stateflags & NDPRF_ONLINK)) {
|
|
struct rtentry *rt;
|
|
|
|
rt = rtalloc1(sin6tosa(&pr->ndpr_prefix), 0);
|
|
if (rt == NULL)
|
|
continue;
|
|
/*
|
|
* This is the case where multiple interfaces
|
|
* have the same prefix, but only one is installed
|
|
* into the routing table and that prefix entry
|
|
* is not the one being examined here. In the case
|
|
* where RADIX_MPATH is enabled, multiple route
|
|
* entries (of the same rt_key value) will be
|
|
* installed because the interface addresses all
|
|
* differ.
|
|
*/
|
|
if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
|
|
&satocsin6(rt_getkey(rt))->sin6_addr)) {
|
|
rtfree(rt);
|
|
continue;
|
|
}
|
|
rtfree(rt);
|
|
}
|
|
|
|
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
|
|
&addr->sin6_addr, &pr->ndpr_mask))
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the address is assigned on the node of the other side of
|
|
* a p2p interface, the address should be a neighbor.
|
|
*/
|
|
s = pserialize_read_enter();
|
|
dstaddr = ifa_ifwithdstaddr(sin6tocsa(addr));
|
|
if (dstaddr != NULL) {
|
|
if (dstaddr->ifa_ifp == ifp) {
|
|
pserialize_read_exit(s);
|
|
return 1;
|
|
}
|
|
}
|
|
pserialize_read_exit(s);
|
|
|
|
/*
|
|
* If the default router list is empty, all addresses are regarded
|
|
* as on-link, and thus, as a neighbor.
|
|
*/
|
|
if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV &&
|
|
ND_DEFROUTER_LIST_EMPTY() &&
|
|
nd6_defifindex == ifp->if_index) {
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Detect if a given IPv6 address identifies a neighbor on a given link.
|
|
* XXX: should take care of the destination of a p2p link?
|
|
*/
|
|
int
|
|
nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp)
|
|
{
|
|
struct nd_prefix *pr;
|
|
struct llentry *ln;
|
|
struct rtentry *rt;
|
|
|
|
/*
|
|
* A link-local address is always a neighbor.
|
|
* XXX: a link does not necessarily specify a single interface.
|
|
*/
|
|
if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) {
|
|
struct sockaddr_in6 sin6_copy;
|
|
u_int32_t zone;
|
|
|
|
/*
|
|
* We need sin6_copy since sa6_recoverscope() may modify the
|
|
* content (XXX).
|
|
*/
|
|
sin6_copy = *addr;
|
|
if (sa6_recoverscope(&sin6_copy))
|
|
return 0; /* XXX: should be impossible */
|
|
if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone))
|
|
return 0;
|
|
if (sin6_copy.sin6_scope_id == zone)
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the address matches one of our on-link prefixes, it should be a
|
|
* neighbor.
|
|
*/
|
|
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
|
|
if (pr->ndpr_ifp != ifp)
|
|
continue;
|
|
|
|
if (!(pr->ndpr_stateflags & NDPRF_ONLINK))
|
|
continue;
|
|
|
|
if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr,
|
|
&addr->sin6_addr, &pr->ndpr_mask))
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* If the default router list is empty, all addresses are regarded
|
|
* as on-link, and thus, as a neighbor.
|
|
* XXX: we restrict the condition to hosts, because routers usually do
|
|
* not have the "default router list".
|
|
*/
|
|
if (!ip6_forwarding && ND_DEFROUTER_LIST_EMPTY() &&
|
|
nd6_defifindex == ifp->if_index) {
|
|
return 1;
|
|
}
|
|
|
|
IF_AFDATA_UNLOCK_ASSERT(ifp);
|
|
if (nd6_is_new_addr_neighbor(addr, ifp))
|
|
return 1;
|
|
|
|
/*
|
|
* Even if the address matches none of our addresses, it might be
|
|
* in the neighbor cache or a connected route.
|
|
*/
|
|
ln = nd6_lookup(&addr->sin6_addr, ifp, false);
|
|
if (ln != NULL) {
|
|
LLE_RUNLOCK(ln);
|
|
return 1;
|
|
}
|
|
|
|
rt = rtalloc1(sin6tocsa(addr), 0);
|
|
if (rt == NULL)
|
|
return 0;
|
|
|
|
if ((rt->rt_flags & RTF_CONNECTED) && (rt->rt_ifp == ifp
|
|
#if NBRIDGE > 0
|
|
|| rt->rt_ifp->if_bridge == ifp->if_bridge
|
|
#endif
|
|
#if NCARP > 0
|
|
|| (ifp->if_type == IFT_CARP && rt->rt_ifp == ifp->if_carpdev) ||
|
|
(rt->rt_ifp->if_type == IFT_CARP && rt->rt_ifp->if_carpdev == ifp)||
|
|
(ifp->if_type == IFT_CARP && rt->rt_ifp->if_type == IFT_CARP &&
|
|
rt->rt_ifp->if_carpdev == ifp->if_carpdev)
|
|
#endif
|
|
)) {
|
|
rtfree(rt);
|
|
return 1;
|
|
}
|
|
rtfree(rt);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Free an nd6 llinfo entry.
|
|
* Since the function would cause significant changes in the kernel, DO NOT
|
|
* make it global, unless you have a strong reason for the change, and are sure
|
|
* that the change is safe.
|
|
*/
|
|
static void
|
|
nd6_free(struct llentry *ln, int gc)
|
|
{
|
|
struct nd_defrouter *dr;
|
|
struct ifnet *ifp;
|
|
struct in6_addr *in6;
|
|
|
|
KASSERT(ln != NULL);
|
|
LLE_WLOCK_ASSERT(ln);
|
|
|
|
ifp = ln->lle_tbl->llt_ifp;
|
|
in6 = &ln->r_l3addr.addr6;
|
|
/*
|
|
* we used to have pfctlinput(PRC_HOSTDEAD) here.
|
|
* even though it is not harmful, it was not really necessary.
|
|
*/
|
|
|
|
/* cancel timer */
|
|
nd6_llinfo_settimer(ln, -1);
|
|
|
|
if (!ip6_forwarding) {
|
|
int s;
|
|
s = splsoftnet();
|
|
dr = nd6_defrouter_lookup(in6, ifp);
|
|
|
|
if (dr != NULL && dr->expire &&
|
|
ln->ln_state == ND6_LLINFO_STALE && gc) {
|
|
/*
|
|
* If the reason for the deletion is just garbage
|
|
* collection, and the neighbor is an active default
|
|
* router, do not delete it. Instead, reset the GC
|
|
* timer using the router's lifetime.
|
|
* Simply deleting the entry would affect default
|
|
* router selection, which is not necessarily a good
|
|
* thing, especially when we're using router preference
|
|
* values.
|
|
* XXX: the check for ln_state would be redundant,
|
|
* but we intentionally keep it just in case.
|
|
*/
|
|
if (dr->expire > time_uptime)
|
|
nd6_llinfo_settimer(ln,
|
|
(dr->expire - time_uptime) * hz);
|
|
else
|
|
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
|
|
splx(s);
|
|
LLE_WUNLOCK(ln);
|
|
return;
|
|
}
|
|
|
|
if (ln->ln_router || dr) {
|
|
/*
|
|
* We need to unlock to avoid a LOR with nd6_rt_flush()
|
|
* with the rnh and for the calls to
|
|
* nd6_pfxlist_onlink_check() and nd6_defrouter_select() in the
|
|
* block further down for calls into nd6_lookup().
|
|
* We still hold a ref.
|
|
*/
|
|
LLE_WUNLOCK(ln);
|
|
|
|
/*
|
|
* nd6_rt_flush must be called whether or not the neighbor
|
|
* is in the Default Router List.
|
|
* See a corresponding comment in nd6_na_input().
|
|
*/
|
|
nd6_rt_flush(in6, ifp);
|
|
}
|
|
|
|
if (dr) {
|
|
/*
|
|
* Unreachablity of a router might affect the default
|
|
* router selection and on-link detection of advertised
|
|
* prefixes.
|
|
*/
|
|
|
|
/*
|
|
* Temporarily fake the state to choose a new default
|
|
* router and to perform on-link determination of
|
|
* prefixes correctly.
|
|
* Below the state will be set correctly,
|
|
* or the entry itself will be deleted.
|
|
*/
|
|
ln->ln_state = ND6_LLINFO_INCOMPLETE;
|
|
|
|
/*
|
|
* Since nd6_defrouter_select() does not affect the
|
|
* on-link determination and MIP6 needs the check
|
|
* before the default router selection, we perform
|
|
* the check now.
|
|
*/
|
|
nd6_pfxlist_onlink_check();
|
|
|
|
/*
|
|
* refresh default router list
|
|
*/
|
|
nd6_defrouter_select();
|
|
}
|
|
|
|
#ifdef __FreeBSD__
|
|
/*
|
|
* If this entry was added by an on-link redirect, remove the
|
|
* corresponding host route.
|
|
*/
|
|
if (ln->la_flags & LLE_REDIRECT)
|
|
nd6_free_redirect(ln);
|
|
#endif
|
|
|
|
if (ln->ln_router || dr)
|
|
LLE_WLOCK(ln);
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Save to unlock. We still hold an extra reference and will not
|
|
* free(9) in llentry_free() if someone else holds one as well.
|
|
*/
|
|
LLE_WUNLOCK(ln);
|
|
IF_AFDATA_LOCK(ifp);
|
|
LLE_WLOCK(ln);
|
|
|
|
/* Guard against race with other llentry_free(). */
|
|
if (ln->la_flags & LLE_LINKED) {
|
|
LLE_REMREF(ln);
|
|
llentry_free(ln);
|
|
} else
|
|
LLE_FREE_LOCKED(ln);
|
|
|
|
IF_AFDATA_UNLOCK(ifp);
|
|
}
|
|
|
|
/*
|
|
* Upper-layer reachability hint for Neighbor Unreachability Detection.
|
|
*
|
|
* XXX cost-effective methods?
|
|
*/
|
|
void
|
|
nd6_nud_hint(struct rtentry *rt)
|
|
{
|
|
struct llentry *ln;
|
|
struct ifnet *ifp;
|
|
|
|
if (rt == NULL)
|
|
return;
|
|
|
|
ifp = rt->rt_ifp;
|
|
ln = nd6_lookup(&(satocsin6(rt_getkey(rt)))->sin6_addr, ifp, true);
|
|
if (ln == NULL)
|
|
return;
|
|
|
|
if (ln->ln_state < ND6_LLINFO_REACHABLE)
|
|
goto done;
|
|
|
|
/*
|
|
* if we get upper-layer reachability confirmation many times,
|
|
* it is possible we have false information.
|
|
*/
|
|
ln->ln_byhint++;
|
|
if (ln->ln_byhint > nd6_maxnudhint)
|
|
goto done;
|
|
|
|
ln->ln_state = ND6_LLINFO_REACHABLE;
|
|
if (!ND6_LLINFO_PERMANENT(ln))
|
|
nd6_llinfo_settimer(ln, ND_IFINFO(rt->rt_ifp)->reachable * hz);
|
|
|
|
done:
|
|
LLE_WUNLOCK(ln);
|
|
|
|
return;
|
|
}
|
|
|
|
struct gc_args {
|
|
int gc_entries;
|
|
const struct in6_addr *skip_in6;
|
|
};
|
|
|
|
static int
|
|
nd6_purge_entry(struct lltable *llt, struct llentry *ln, void *farg)
|
|
{
|
|
struct gc_args *args = farg;
|
|
int *n = &args->gc_entries;
|
|
const struct in6_addr *skip_in6 = args->skip_in6;
|
|
|
|
if (*n <= 0)
|
|
return 0;
|
|
|
|
if (ND6_LLINFO_PERMANENT(ln))
|
|
return 0;
|
|
|
|
if (IN6_ARE_ADDR_EQUAL(&ln->r_l3addr.addr6, skip_in6))
|
|
return 0;
|
|
|
|
LLE_WLOCK(ln);
|
|
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
|
|
ln->ln_state = ND6_LLINFO_STALE;
|
|
else
|
|
ln->ln_state = ND6_LLINFO_PURGE;
|
|
nd6_llinfo_settimer(ln, 0);
|
|
LLE_WUNLOCK(ln);
|
|
|
|
(*n)--;
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
nd6_gc_neighbors(struct lltable *llt, const struct in6_addr *in6)
|
|
{
|
|
|
|
if (ip6_neighborgcthresh >= 0 &&
|
|
lltable_get_entry_count(llt) >= ip6_neighborgcthresh) {
|
|
struct gc_args gc_args = {10, in6};
|
|
/*
|
|
* XXX entries that are "less recently used" should be
|
|
* freed first.
|
|
*/
|
|
lltable_foreach_lle(llt, nd6_purge_entry, &gc_args);
|
|
}
|
|
}
|
|
|
|
void
|
|
nd6_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
|
|
{
|
|
struct sockaddr *gate = rt->rt_gateway;
|
|
struct ifnet *ifp = rt->rt_ifp;
|
|
uint8_t namelen = strlen(ifp->if_xname), addrlen = ifp->if_addrlen;
|
|
struct ifaddr *ifa;
|
|
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
|
|
if (req == RTM_LLINFO_UPD) {
|
|
int rc;
|
|
struct in6_addr *in6;
|
|
struct in6_addr in6_all;
|
|
int anycast;
|
|
|
|
if ((ifa = info->rti_ifa) == NULL)
|
|
return;
|
|
|
|
in6 = &ifatoia6(ifa)->ia_addr.sin6_addr;
|
|
anycast = ifatoia6(ifa)->ia6_flags & IN6_IFF_ANYCAST;
|
|
|
|
in6_all = in6addr_linklocal_allnodes;
|
|
if ((rc = in6_setscope(&in6_all, ifa->ifa_ifp, NULL)) != 0) {
|
|
log(LOG_ERR, "%s: failed to set scope %s "
|
|
"(errno=%d)\n", __func__, if_name(ifp), rc);
|
|
return;
|
|
}
|
|
|
|
/* XXX don't set Override for proxy addresses */
|
|
nd6_na_output(ifa->ifa_ifp, &in6_all, in6,
|
|
(anycast ? 0 : ND_NA_FLAG_OVERRIDE)
|
|
#if 0
|
|
| (ip6_forwarding ? ND_NA_FLAG_ROUTER : 0)
|
|
#endif
|
|
, 1, NULL);
|
|
return;
|
|
}
|
|
|
|
if ((rt->rt_flags & RTF_GATEWAY) != 0)
|
|
return;
|
|
|
|
if (nd6_need_cache(ifp) == 0 && (rt->rt_flags & RTF_HOST) == 0) {
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
/*
|
|
* This is probably an interface direct route for a link
|
|
* which does not need neighbor caches (e.g. fe80::%lo0/64).
|
|
* We do not need special treatment below for such a route.
|
|
* Moreover, the RTF_LLINFO flag which would be set below
|
|
* would annoy the ndp(8) command.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
switch (req) {
|
|
case RTM_ADD: {
|
|
int s;
|
|
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
/*
|
|
* There is no backward compatibility :)
|
|
*
|
|
* if ((rt->rt_flags & RTF_HOST) == 0 &&
|
|
* SIN(rt_mask(rt))->sin_addr.s_addr != 0xffffffff)
|
|
* rt->rt_flags |= RTF_CLONING;
|
|
*/
|
|
/* XXX should move to route.c? */
|
|
if (rt->rt_flags & (RTF_CONNECTED | RTF_LOCAL)) {
|
|
union {
|
|
struct sockaddr sa;
|
|
struct sockaddr_dl sdl;
|
|
struct sockaddr_storage ss;
|
|
} u;
|
|
/*
|
|
* Case 1: This route should come from a route to
|
|
* interface (RTF_CLONING case) or the route should be
|
|
* treated as on-link but is currently not
|
|
* (RTF_LLINFO && ln == NULL case).
|
|
*/
|
|
if (sockaddr_dl_init(&u.sdl, sizeof(u.ss),
|
|
ifp->if_index, ifp->if_type,
|
|
NULL, namelen, NULL, addrlen) == NULL) {
|
|
printf("%s.%d: sockaddr_dl_init(, %zu, ) "
|
|
"failed on %s\n", __func__, __LINE__,
|
|
sizeof(u.ss), if_name(ifp));
|
|
}
|
|
rt_setgate(rt, &u.sa);
|
|
gate = rt->rt_gateway;
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
if (gate == NULL) {
|
|
log(LOG_ERR,
|
|
"%s: rt_setgate failed on %s\n", __func__,
|
|
if_name(ifp));
|
|
break;
|
|
}
|
|
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
if ((rt->rt_flags & RTF_CONNECTED) != 0)
|
|
break;
|
|
}
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
/*
|
|
* In IPv4 code, we try to annonuce new RTF_ANNOUNCE entry here.
|
|
* We don't do that here since llinfo is not ready yet.
|
|
*
|
|
* There are also couple of other things to be discussed:
|
|
* - unsolicited NA code needs improvement beforehand
|
|
* - RFC2461 says we MAY send multicast unsolicited NA
|
|
* (7.2.6 paragraph 4), however, it also says that we
|
|
* SHOULD provide a mechanism to prevent multicast NA storm.
|
|
* we don't have anything like it right now.
|
|
* note that the mechanism needs a mutual agreement
|
|
* between proxies, which means that we need to implement
|
|
* a new protocol, or a new kludge.
|
|
* - from RFC2461 6.2.4, host MUST NOT send an unsolicited NA.
|
|
* we need to check ip6forwarding before sending it.
|
|
* (or should we allow proxy ND configuration only for
|
|
* routers? there's no mention about proxy ND from hosts)
|
|
*/
|
|
#if 0
|
|
/* XXX it does not work */
|
|
if (rt->rt_flags & RTF_ANNOUNCE)
|
|
nd6_na_output(ifp,
|
|
&satocsin6(rt_getkey(rt))->sin6_addr,
|
|
&satocsin6(rt_getkey(rt))->sin6_addr,
|
|
ip6_forwarding ? ND_NA_FLAG_ROUTER : 0,
|
|
1, NULL);
|
|
#endif
|
|
|
|
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) == 0) {
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
/*
|
|
* Address resolution isn't necessary for a point to
|
|
* point link, so we can skip this test for a p2p link.
|
|
*/
|
|
if (gate->sa_family != AF_LINK ||
|
|
gate->sa_len <
|
|
sockaddr_dl_measure(namelen, addrlen)) {
|
|
log(LOG_DEBUG,
|
|
"nd6_rtrequest: bad gateway value: %s\n",
|
|
if_name(ifp));
|
|
break;
|
|
}
|
|
satosdl(gate)->sdl_type = ifp->if_type;
|
|
satosdl(gate)->sdl_index = ifp->if_index;
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
}
|
|
RT_DPRINTF("rt_getkey(rt) = %p\n", rt_getkey(rt));
|
|
|
|
/*
|
|
* When called from rt_ifa_addlocal, we cannot depend on that
|
|
* the address (rt_getkey(rt)) exits in the address list of the
|
|
* interface. So check RTF_LOCAL instead.
|
|
*/
|
|
if (rt->rt_flags & RTF_LOCAL) {
|
|
if (nd6_useloopback)
|
|
rt->rt_ifp = lo0ifp; /* XXX */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* check if rt_getkey(rt) is an address assigned
|
|
* to the interface.
|
|
*/
|
|
s = pserialize_read_enter();
|
|
ifa = (struct ifaddr *)in6ifa_ifpwithaddr(ifp,
|
|
&satocsin6(rt_getkey(rt))->sin6_addr);
|
|
if (ifa != NULL) {
|
|
if (nd6_useloopback) {
|
|
rt->rt_ifp = lo0ifp; /* XXX */
|
|
/*
|
|
* Make sure rt_ifa be equal to the ifaddr
|
|
* corresponding to the address.
|
|
* We need this because when we refer
|
|
* rt_ifa->ia6_flags in ip6_input, we assume
|
|
* that the rt_ifa points to the address instead
|
|
* of the loopback address.
|
|
*/
|
|
if (ifa != rt->rt_ifa)
|
|
rt_replace_ifa(rt, ifa);
|
|
}
|
|
} else if (rt->rt_flags & RTF_ANNOUNCE) {
|
|
/* join solicited node multicast for proxy ND */
|
|
if (ifp->if_flags & IFF_MULTICAST) {
|
|
struct in6_addr llsol;
|
|
int error;
|
|
|
|
llsol = satocsin6(rt_getkey(rt))->sin6_addr;
|
|
llsol.s6_addr32[0] = htonl(0xff020000);
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr8[12] = 0xff;
|
|
if (in6_setscope(&llsol, ifp, NULL))
|
|
goto out;
|
|
if (!in6_addmulti(&llsol, ifp, &error, 0)) {
|
|
nd6log(LOG_ERR, "%s: failed to join "
|
|
"%s (errno=%d)\n", if_name(ifp),
|
|
ip6_sprintf(&llsol), error);
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
pserialize_read_exit(s);
|
|
/*
|
|
* If we have too many cache entries, initiate immediate
|
|
* purging for some entries.
|
|
*/
|
|
if (rt->rt_ifp != NULL)
|
|
nd6_gc_neighbors(LLTABLE6(rt->rt_ifp), NULL);
|
|
break;
|
|
}
|
|
|
|
case RTM_DELETE:
|
|
/* leave from solicited node multicast for proxy ND */
|
|
if ((rt->rt_flags & RTF_ANNOUNCE) != 0 &&
|
|
(ifp->if_flags & IFF_MULTICAST) != 0) {
|
|
struct in6_addr llsol;
|
|
struct in6_multi *in6m;
|
|
|
|
llsol = satocsin6(rt_getkey(rt))->sin6_addr;
|
|
llsol.s6_addr32[0] = htonl(0xff020000);
|
|
llsol.s6_addr32[1] = 0;
|
|
llsol.s6_addr32[2] = htonl(1);
|
|
llsol.s6_addr8[12] = 0xff;
|
|
if (in6_setscope(&llsol, ifp, NULL) == 0) {
|
|
IN6_LOOKUP_MULTI(llsol, ifp, in6m);
|
|
if (in6m)
|
|
in6_delmulti(in6m);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
int
|
|
nd6_ioctl(u_long cmd, void *data, struct ifnet *ifp)
|
|
{
|
|
struct in6_drlist *drl = (struct in6_drlist *)data;
|
|
struct in6_oprlist *oprl = (struct in6_oprlist *)data;
|
|
struct in6_ndireq *ndi = (struct in6_ndireq *)data;
|
|
struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data;
|
|
struct in6_ndifreq *ndif = (struct in6_ndifreq *)data;
|
|
struct nd_defrouter *dr;
|
|
struct nd_prefix *pr;
|
|
int i = 0, error = 0;
|
|
int s;
|
|
|
|
switch (cmd) {
|
|
case SIOCGDRLST_IN6:
|
|
/*
|
|
* obsolete API, use sysctl under net.inet6.icmp6
|
|
*/
|
|
memset(drl, 0, sizeof(*drl));
|
|
s = splsoftnet();
|
|
ND_DEFROUTER_LIST_FOREACH(dr) {
|
|
if (i >= DRLSTSIZ)
|
|
break;
|
|
drl->defrouter[i].rtaddr = dr->rtaddr;
|
|
in6_clearscope(&drl->defrouter[i].rtaddr);
|
|
|
|
drl->defrouter[i].flags = dr->flags;
|
|
drl->defrouter[i].rtlifetime = dr->rtlifetime;
|
|
drl->defrouter[i].expire = dr->expire ?
|
|
time_mono_to_wall(dr->expire) : 0;
|
|
drl->defrouter[i].if_index = dr->ifp->if_index;
|
|
i++;
|
|
}
|
|
splx(s);
|
|
break;
|
|
case SIOCGPRLST_IN6:
|
|
/*
|
|
* obsolete API, use sysctl under net.inet6.icmp6
|
|
*
|
|
* XXX the structure in6_prlist was changed in backward-
|
|
* incompatible manner. in6_oprlist is used for SIOCGPRLST_IN6,
|
|
* in6_prlist is used for nd6_sysctl() - fill_prlist().
|
|
*/
|
|
/*
|
|
* XXX meaning of fields, especialy "raflags", is very
|
|
* differnet between RA prefix list and RR/static prefix list.
|
|
* how about separating ioctls into two?
|
|
*/
|
|
memset(oprl, 0, sizeof(*oprl));
|
|
s = splsoftnet();
|
|
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
|
|
struct nd_pfxrouter *pfr;
|
|
int j;
|
|
|
|
if (i >= PRLSTSIZ)
|
|
break;
|
|
oprl->prefix[i].prefix = pr->ndpr_prefix.sin6_addr;
|
|
oprl->prefix[i].raflags = pr->ndpr_raf;
|
|
oprl->prefix[i].prefixlen = pr->ndpr_plen;
|
|
oprl->prefix[i].vltime = pr->ndpr_vltime;
|
|
oprl->prefix[i].pltime = pr->ndpr_pltime;
|
|
oprl->prefix[i].if_index = pr->ndpr_ifp->if_index;
|
|
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
|
|
oprl->prefix[i].expire = 0;
|
|
else {
|
|
time_t maxexpire;
|
|
|
|
/* XXX: we assume time_t is signed. */
|
|
maxexpire = (-1) &
|
|
~((time_t)1 <<
|
|
((sizeof(maxexpire) * 8) - 1));
|
|
if (pr->ndpr_vltime <
|
|
maxexpire - pr->ndpr_lastupdate) {
|
|
time_t expire;
|
|
expire = pr->ndpr_lastupdate +
|
|
pr->ndpr_vltime;
|
|
oprl->prefix[i].expire = expire ?
|
|
time_mono_to_wall(expire) : 0;
|
|
} else
|
|
oprl->prefix[i].expire = maxexpire;
|
|
}
|
|
|
|
j = 0;
|
|
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
|
|
if (j < DRLSTSIZ) {
|
|
#define RTRADDR oprl->prefix[i].advrtr[j]
|
|
RTRADDR = pfr->router->rtaddr;
|
|
in6_clearscope(&RTRADDR);
|
|
#undef RTRADDR
|
|
}
|
|
j++;
|
|
}
|
|
oprl->prefix[i].advrtrs = j;
|
|
oprl->prefix[i].origin = PR_ORIG_RA;
|
|
|
|
i++;
|
|
}
|
|
splx(s);
|
|
|
|
break;
|
|
case OSIOCGIFINFO_IN6:
|
|
#define ND ndi->ndi
|
|
/* XXX: old ndp(8) assumes a positive value for linkmtu. */
|
|
memset(&ND, 0, sizeof(ND));
|
|
ND.linkmtu = IN6_LINKMTU(ifp);
|
|
ND.maxmtu = ND_IFINFO(ifp)->maxmtu;
|
|
ND.basereachable = ND_IFINFO(ifp)->basereachable;
|
|
ND.reachable = ND_IFINFO(ifp)->reachable;
|
|
ND.retrans = ND_IFINFO(ifp)->retrans;
|
|
ND.flags = ND_IFINFO(ifp)->flags;
|
|
ND.recalctm = ND_IFINFO(ifp)->recalctm;
|
|
ND.chlim = ND_IFINFO(ifp)->chlim;
|
|
break;
|
|
case SIOCGIFINFO_IN6:
|
|
ND = *ND_IFINFO(ifp);
|
|
break;
|
|
case SIOCSIFINFO_IN6:
|
|
/*
|
|
* used to change host variables from userland.
|
|
* intented for a use on router to reflect RA configurations.
|
|
*/
|
|
/* 0 means 'unspecified' */
|
|
if (ND.linkmtu != 0) {
|
|
if (ND.linkmtu < IPV6_MMTU ||
|
|
ND.linkmtu > IN6_LINKMTU(ifp)) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
ND_IFINFO(ifp)->linkmtu = ND.linkmtu;
|
|
}
|
|
|
|
if (ND.basereachable != 0) {
|
|
int obasereachable = ND_IFINFO(ifp)->basereachable;
|
|
|
|
ND_IFINFO(ifp)->basereachable = ND.basereachable;
|
|
if (ND.basereachable != obasereachable)
|
|
ND_IFINFO(ifp)->reachable =
|
|
ND_COMPUTE_RTIME(ND.basereachable);
|
|
}
|
|
if (ND.retrans != 0)
|
|
ND_IFINFO(ifp)->retrans = ND.retrans;
|
|
if (ND.chlim != 0)
|
|
ND_IFINFO(ifp)->chlim = ND.chlim;
|
|
/* FALLTHROUGH */
|
|
case SIOCSIFINFO_FLAGS:
|
|
{
|
|
struct ifaddr *ifa;
|
|
struct in6_ifaddr *ia;
|
|
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
|
|
!(ND.flags & ND6_IFF_IFDISABLED))
|
|
{
|
|
/*
|
|
* If the interface is marked as ND6_IFF_IFDISABLED and
|
|
* has a link-local address with IN6_IFF_DUPLICATED,
|
|
* do not clear ND6_IFF_IFDISABLED.
|
|
* See RFC 4862, section 5.4.5.
|
|
*/
|
|
int duplicated_linklocal = 0;
|
|
|
|
s = pserialize_read_enter();
|
|
IFADDR_READER_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
if ((ia->ia6_flags & IN6_IFF_DUPLICATED) &&
|
|
IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia)))
|
|
{
|
|
duplicated_linklocal = 1;
|
|
break;
|
|
}
|
|
}
|
|
pserialize_read_exit(s);
|
|
|
|
if (duplicated_linklocal) {
|
|
ND.flags |= ND6_IFF_IFDISABLED;
|
|
log(LOG_ERR, "Cannot enable an interface"
|
|
" with a link-local address marked"
|
|
" duplicate.\n");
|
|
} else {
|
|
ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED;
|
|
if (ifp->if_flags & IFF_UP)
|
|
in6_if_up(ifp);
|
|
}
|
|
} else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) &&
|
|
(ND.flags & ND6_IFF_IFDISABLED)) {
|
|
int bound = curlwp_bind();
|
|
/* Mark all IPv6 addresses as tentative. */
|
|
|
|
ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED;
|
|
s = pserialize_read_enter();
|
|
IFADDR_READER_FOREACH(ifa, ifp) {
|
|
struct psref psref;
|
|
if (ifa->ifa_addr->sa_family != AF_INET6)
|
|
continue;
|
|
ifa_acquire(ifa, &psref);
|
|
pserialize_read_exit(s);
|
|
|
|
nd6_dad_stop(ifa);
|
|
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
ia->ia6_flags |= IN6_IFF_TENTATIVE;
|
|
|
|
s = pserialize_read_enter();
|
|
ifa_release(ifa, &psref);
|
|
}
|
|
pserialize_read_exit(s);
|
|
curlwp_bindx(bound);
|
|
}
|
|
|
|
if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) {
|
|
if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) {
|
|
/* auto_linklocal 0->1 transition */
|
|
|
|
ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL;
|
|
in6_ifattach(ifp, NULL);
|
|
} else if (!(ND.flags & ND6_IFF_IFDISABLED) &&
|
|
ifp->if_flags & IFF_UP)
|
|
{
|
|
/*
|
|
* When the IF already has
|
|
* ND6_IFF_AUTO_LINKLOCAL, no link-local
|
|
* address is assigned, and IFF_UP, try to
|
|
* assign one.
|
|
*/
|
|
int haslinklocal = 0;
|
|
|
|
s = pserialize_read_enter();
|
|
IFADDR_READER_FOREACH(ifa, ifp) {
|
|
if (ifa->ifa_addr->sa_family !=AF_INET6)
|
|
continue;
|
|
ia = (struct in6_ifaddr *)ifa;
|
|
if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))){
|
|
haslinklocal = 1;
|
|
break;
|
|
}
|
|
}
|
|
pserialize_read_exit(s);
|
|
if (!haslinklocal)
|
|
in6_ifattach(ifp, NULL);
|
|
}
|
|
}
|
|
}
|
|
ND_IFINFO(ifp)->flags = ND.flags;
|
|
break;
|
|
#undef ND
|
|
case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */
|
|
/* sync kernel routing table with the default router list */
|
|
nd6_defrouter_reset();
|
|
nd6_defrouter_select();
|
|
break;
|
|
case SIOCSPFXFLUSH_IN6:
|
|
{
|
|
/* flush all the prefix advertised by routers */
|
|
struct nd_prefix *pfx, *next;
|
|
|
|
s = splsoftnet();
|
|
LIST_FOREACH_SAFE(pfx, &nd_prefix, ndpr_entry, next) {
|
|
struct in6_ifaddr *ia, *ia_next;
|
|
int _s;
|
|
|
|
if (IN6_IS_ADDR_LINKLOCAL(&pfx->ndpr_prefix.sin6_addr))
|
|
continue; /* XXX */
|
|
|
|
/* do we really have to remove addresses as well? */
|
|
restart:
|
|
_s = pserialize_read_enter();
|
|
for (ia = IN6_ADDRLIST_READER_FIRST(); ia;
|
|
ia = ia_next) {
|
|
/* ia might be removed. keep the next ptr. */
|
|
ia_next = IN6_ADDRLIST_READER_NEXT(ia);
|
|
|
|
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0)
|
|
continue;
|
|
|
|
if (ia->ia6_ndpr == pfx) {
|
|
pserialize_read_exit(_s);
|
|
/* XXX NOMPSAFE? */
|
|
in6_purgeaddr(&ia->ia_ifa);
|
|
goto restart;
|
|
}
|
|
}
|
|
pserialize_read_exit(_s);
|
|
nd6_prelist_remove(pfx);
|
|
}
|
|
splx(s);
|
|
break;
|
|
}
|
|
case SIOCSRTRFLUSH_IN6:
|
|
{
|
|
/* flush all the default routers */
|
|
struct nd_defrouter *drtr, *next;
|
|
|
|
s = splsoftnet();
|
|
nd6_defrouter_reset();
|
|
ND_DEFROUTER_LIST_FOREACH_SAFE(drtr, next) {
|
|
nd6_defrtrlist_del(drtr, NULL);
|
|
}
|
|
nd6_defrouter_select();
|
|
splx(s);
|
|
break;
|
|
}
|
|
case SIOCGNBRINFO_IN6:
|
|
{
|
|
struct llentry *ln;
|
|
struct in6_addr nb_addr = nbi->addr; /* make local for safety */
|
|
|
|
if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0)
|
|
return error;
|
|
|
|
ln = nd6_lookup(&nb_addr, ifp, false);
|
|
if (ln == NULL) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
nbi->state = ln->ln_state;
|
|
nbi->asked = ln->ln_asked;
|
|
nbi->isrouter = ln->ln_router;
|
|
nbi->expire = ln->ln_expire ?
|
|
time_mono_to_wall(ln->ln_expire) : 0;
|
|
LLE_RUNLOCK(ln);
|
|
|
|
break;
|
|
}
|
|
case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
|
|
ndif->ifindex = nd6_defifindex;
|
|
break;
|
|
case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */
|
|
return nd6_setdefaultiface(ndif->ifindex);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
void
|
|
nd6_llinfo_release_pkts(struct llentry *ln, struct ifnet *ifp)
|
|
{
|
|
struct mbuf *m_hold, *m_hold_next;
|
|
struct sockaddr_in6 sin6;
|
|
|
|
LLE_WLOCK_ASSERT(ln);
|
|
|
|
sockaddr_in6_init(&sin6, &ln->r_l3addr.addr6, 0, 0, 0);
|
|
|
|
m_hold = ln->la_hold, ln->la_hold = NULL, ln->la_numheld = 0;
|
|
|
|
LLE_WUNLOCK(ln);
|
|
for (; m_hold != NULL; m_hold = m_hold_next) {
|
|
m_hold_next = m_hold->m_nextpkt;
|
|
m_hold->m_nextpkt = NULL;
|
|
|
|
/*
|
|
* we assume ifp is not a p2p here, so
|
|
* just set the 2nd argument as the
|
|
* 1st one.
|
|
*/
|
|
nd6_output(ifp, ifp, m_hold, &sin6, NULL);
|
|
}
|
|
LLE_WLOCK(ln);
|
|
}
|
|
|
|
/*
|
|
* Create neighbor cache entry and cache link-layer address,
|
|
* on reception of inbound ND6 packets. (RS/RA/NS/redirect)
|
|
*/
|
|
void
|
|
nd6_cache_lladdr(
|
|
struct ifnet *ifp,
|
|
struct in6_addr *from,
|
|
char *lladdr,
|
|
int lladdrlen,
|
|
int type, /* ICMP6 type */
|
|
int code /* type dependent information */
|
|
)
|
|
{
|
|
struct nd_ifinfo *ndi = ND_IFINFO(ifp);
|
|
struct llentry *ln = NULL;
|
|
int is_newentry;
|
|
int do_update;
|
|
int olladdr;
|
|
int llchange;
|
|
int newstate = 0;
|
|
uint16_t router = 0;
|
|
|
|
KASSERT(ifp != NULL);
|
|
KASSERT(from != NULL);
|
|
|
|
/* nothing must be updated for unspecified address */
|
|
if (IN6_IS_ADDR_UNSPECIFIED(from))
|
|
return;
|
|
|
|
/*
|
|
* Validation about ifp->if_addrlen and lladdrlen must be done in
|
|
* the caller.
|
|
*
|
|
* XXX If the link does not have link-layer adderss, what should
|
|
* we do? (ifp->if_addrlen == 0)
|
|
* Spec says nothing in sections for RA, RS and NA. There's small
|
|
* description on it in NS section (RFC 2461 7.2.3).
|
|
*/
|
|
|
|
ln = nd6_lookup(from, ifp, true);
|
|
if (ln == NULL) {
|
|
#if 0
|
|
/* nothing must be done if there's no lladdr */
|
|
if (!lladdr || !lladdrlen)
|
|
return NULL;
|
|
#endif
|
|
|
|
ln = nd6_create(from, ifp);
|
|
is_newentry = 1;
|
|
} else {
|
|
/* do nothing if static ndp is set */
|
|
if (ln->la_flags & LLE_STATIC) {
|
|
LLE_WUNLOCK(ln);
|
|
return;
|
|
}
|
|
is_newentry = 0;
|
|
}
|
|
|
|
if (ln == NULL)
|
|
return;
|
|
|
|
olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0;
|
|
if (olladdr && lladdr) {
|
|
llchange = memcmp(lladdr, &ln->ll_addr, ifp->if_addrlen);
|
|
} else
|
|
llchange = 0;
|
|
|
|
/*
|
|
* newentry olladdr lladdr llchange (*=record)
|
|
* 0 n n -- (1)
|
|
* 0 y n -- (2)
|
|
* 0 n y -- (3) * STALE
|
|
* 0 y y n (4) *
|
|
* 0 y y y (5) * STALE
|
|
* 1 -- n -- (6) NOSTATE(= PASSIVE)
|
|
* 1 -- y -- (7) * STALE
|
|
*/
|
|
|
|
if (lladdr) { /* (3-5) and (7) */
|
|
/*
|
|
* Record source link-layer address
|
|
* XXX is it dependent to ifp->if_type?
|
|
*/
|
|
memcpy(&ln->ll_addr, lladdr, ifp->if_addrlen);
|
|
ln->la_flags |= LLE_VALID;
|
|
}
|
|
|
|
if (!is_newentry) {
|
|
if ((!olladdr && lladdr) || /* (3) */
|
|
(olladdr && lladdr && llchange)) { /* (5) */
|
|
do_update = 1;
|
|
newstate = ND6_LLINFO_STALE;
|
|
} else /* (1-2,4) */
|
|
do_update = 0;
|
|
} else {
|
|
do_update = 1;
|
|
if (lladdr == NULL) /* (6) */
|
|
newstate = ND6_LLINFO_NOSTATE;
|
|
else /* (7) */
|
|
newstate = ND6_LLINFO_STALE;
|
|
}
|
|
|
|
if (do_update) {
|
|
/*
|
|
* Update the state of the neighbor cache.
|
|
*/
|
|
ln->ln_state = newstate;
|
|
|
|
if (ln->ln_state == ND6_LLINFO_STALE) {
|
|
/*
|
|
* XXX: since nd6_output() below will cause
|
|
* state tansition to DELAY and reset the timer,
|
|
* we must set the timer now, although it is actually
|
|
* meaningless.
|
|
*/
|
|
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
|
|
|
|
nd6_llinfo_release_pkts(ln, ifp);
|
|
} else if (ln->ln_state == ND6_LLINFO_INCOMPLETE) {
|
|
/* probe right away */
|
|
nd6_llinfo_settimer((void *)ln, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* ICMP6 type dependent behavior.
|
|
*
|
|
* NS: clear IsRouter if new entry
|
|
* RS: clear IsRouter
|
|
* RA: set IsRouter if there's lladdr
|
|
* redir: clear IsRouter if new entry
|
|
*
|
|
* RA case, (1):
|
|
* The spec says that we must set IsRouter in the following cases:
|
|
* - If lladdr exist, set IsRouter. This means (1-5).
|
|
* - If it is old entry (!newentry), set IsRouter. This means (7).
|
|
* So, based on the spec, in (1-5) and (7) cases we must set IsRouter.
|
|
* A quetion arises for (1) case. (1) case has no lladdr in the
|
|
* neighbor cache, this is similar to (6).
|
|
* This case is rare but we figured that we MUST NOT set IsRouter.
|
|
*
|
|
* newentry olladdr lladdr llchange NS RS RA redir
|
|
* D R
|
|
* 0 n n -- (1) c ? s
|
|
* 0 y n -- (2) c s s
|
|
* 0 n y -- (3) c s s
|
|
* 0 y y n (4) c s s
|
|
* 0 y y y (5) c s s
|
|
* 1 -- n -- (6) c c c s
|
|
* 1 -- y -- (7) c c s c s
|
|
*
|
|
* (c=clear s=set)
|
|
*/
|
|
switch (type & 0xff) {
|
|
case ND_NEIGHBOR_SOLICIT:
|
|
/*
|
|
* New entry must have is_router flag cleared.
|
|
*/
|
|
if (is_newentry) /* (6-7) */
|
|
ln->ln_router = 0;
|
|
break;
|
|
case ND_REDIRECT:
|
|
/*
|
|
* If the icmp is a redirect to a better router, always set the
|
|
* is_router flag. Otherwise, if the entry is newly created,
|
|
* clear the flag. [RFC 2461, sec 8.3]
|
|
*/
|
|
if (code == ND_REDIRECT_ROUTER)
|
|
ln->ln_router = 1;
|
|
else if (is_newentry) /* (6-7) */
|
|
ln->ln_router = 0;
|
|
break;
|
|
case ND_ROUTER_SOLICIT:
|
|
/*
|
|
* is_router flag must always be cleared.
|
|
*/
|
|
ln->ln_router = 0;
|
|
break;
|
|
case ND_ROUTER_ADVERT:
|
|
/*
|
|
* Mark an entry with lladdr as a router.
|
|
*/
|
|
if ((!is_newentry && (olladdr || lladdr)) || /* (2-5) */
|
|
(is_newentry && lladdr)) { /* (7) */
|
|
ln->ln_router = 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
#if 0
|
|
/* XXX should we send rtmsg as it used to be? */
|
|
if (do_update)
|
|
rt_newmsg(RTM_CHANGE, rt); /* tell user process */
|
|
#endif
|
|
|
|
if (ln != NULL) {
|
|
router = ln->ln_router;
|
|
LLE_WUNLOCK(ln);
|
|
}
|
|
|
|
/*
|
|
* If we have too many cache entries, initiate immediate
|
|
* purging for some entries.
|
|
*/
|
|
if (is_newentry)
|
|
nd6_gc_neighbors(LLTABLE6(ifp), &ln->r_l3addr.addr6);
|
|
|
|
/*
|
|
* When the link-layer address of a router changes, select the
|
|
* best router again. In particular, when the neighbor entry is newly
|
|
* created, it might affect the selection policy.
|
|
* Question: can we restrict the first condition to the "is_newentry"
|
|
* case?
|
|
* XXX: when we hear an RA from a new router with the link-layer
|
|
* address option, nd6_defrouter_select() is called twice, since
|
|
* defrtrlist_update called the function as well. However, I believe
|
|
* we can compromise the overhead, since it only happens the first
|
|
* time.
|
|
* XXX: although nd6_defrouter_select() should not have a bad effect
|
|
* for those are not autoconfigured hosts, we explicitly avoid such
|
|
* cases for safety.
|
|
*/
|
|
if (do_update && router && !ip6_forwarding &&
|
|
nd6_accepts_rtadv(ndi))
|
|
nd6_defrouter_select();
|
|
}
|
|
|
|
static void
|
|
nd6_slowtimo(void *ignored_arg)
|
|
{
|
|
struct nd_ifinfo *nd6if;
|
|
struct ifnet *ifp;
|
|
int s;
|
|
|
|
#ifndef NET_MPSAFE
|
|
mutex_enter(softnet_lock);
|
|
KERNEL_LOCK(1, NULL);
|
|
#endif
|
|
callout_reset(&nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz,
|
|
nd6_slowtimo, NULL);
|
|
|
|
s = pserialize_read_enter();
|
|
IFNET_READER_FOREACH(ifp) {
|
|
nd6if = ND_IFINFO(ifp);
|
|
if (nd6if->basereachable && /* already initialized */
|
|
(nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) {
|
|
/*
|
|
* Since reachable time rarely changes by router
|
|
* advertisements, we SHOULD insure that a new random
|
|
* value gets recomputed at least once every few hours.
|
|
* (RFC 2461, 6.3.4)
|
|
*/
|
|
nd6if->recalctm = nd6_recalc_reachtm_interval;
|
|
nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable);
|
|
}
|
|
}
|
|
pserialize_read_exit(s);
|
|
|
|
#ifndef NET_MPSAFE
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
mutex_exit(softnet_lock);
|
|
#endif
|
|
}
|
|
|
|
int
|
|
nd6_output(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m,
|
|
const struct sockaddr_in6 *dst, struct rtentry *rt)
|
|
{
|
|
#define senderr(e) { error = (e); goto bad;}
|
|
struct llentry *ln = NULL;
|
|
int error = 0;
|
|
bool created = false;
|
|
|
|
if (rt != NULL) {
|
|
error = rt_check_reject_route(rt, ifp);
|
|
if (error != 0) {
|
|
m_freem(m);
|
|
return error;
|
|
}
|
|
}
|
|
|
|
if (IN6_IS_ADDR_MULTICAST(&dst->sin6_addr))
|
|
goto sendpkt;
|
|
|
|
if (nd6_need_cache(ifp) == 0)
|
|
goto sendpkt;
|
|
|
|
if (rt != NULL && (rt->rt_flags & RTF_GATEWAY) != 0) {
|
|
struct sockaddr_in6 *gw6 = satosin6(rt->rt_gateway);
|
|
int s;
|
|
|
|
/* XXX remain the check to keep the original behavior. */
|
|
/*
|
|
* We skip link-layer address resolution and NUD
|
|
* if the gateway is not a neighbor from ND point
|
|
* of view, regardless of the value of nd_ifinfo.flags.
|
|
* The second condition is a bit tricky; we skip
|
|
* if the gateway is our own address, which is
|
|
* sometimes used to install a route to a p2p link.
|
|
*/
|
|
s = pserialize_read_enter();
|
|
if (!nd6_is_addr_neighbor(gw6, ifp) ||
|
|
in6ifa_ifpwithaddr(ifp, &gw6->sin6_addr)) {
|
|
/*
|
|
* We allow this kind of tricky route only
|
|
* when the outgoing interface is p2p.
|
|
* XXX: we may need a more generic rule here.
|
|
*/
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0) {
|
|
pserialize_read_exit(s);
|
|
senderr(EHOSTUNREACH);
|
|
}
|
|
|
|
pserialize_read_exit(s);
|
|
goto sendpkt;
|
|
}
|
|
pserialize_read_exit(s);
|
|
}
|
|
|
|
/*
|
|
* Address resolution or Neighbor Unreachability Detection
|
|
* for the next hop.
|
|
* At this point, the destination of the packet must be a unicast
|
|
* or an anycast address(i.e. not a multicast).
|
|
*/
|
|
|
|
/* Look up the neighbor cache for the nexthop */
|
|
ln = nd6_lookup(&dst->sin6_addr, ifp, true);
|
|
if ((ln == NULL) && nd6_is_addr_neighbor(dst, ifp)) {
|
|
/*
|
|
* Since nd6_is_addr_neighbor() internally calls nd6_lookup(),
|
|
* the condition below is not very efficient. But we believe
|
|
* it is tolerable, because this should be a rare case.
|
|
*/
|
|
ln = nd6_create(&dst->sin6_addr, ifp);
|
|
if (ln != NULL)
|
|
created = true;
|
|
}
|
|
|
|
if (ln == NULL) {
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) == 0 &&
|
|
!(ND_IFINFO(ifp)->flags & ND6_IFF_PERFORMNUD)) {
|
|
log(LOG_DEBUG,
|
|
"nd6_output: can't allocate llinfo for %s "
|
|
"(ln=%p, rt=%p)\n",
|
|
ip6_sprintf(&dst->sin6_addr), ln, rt);
|
|
senderr(EIO); /* XXX: good error? */
|
|
}
|
|
goto sendpkt; /* send anyway */
|
|
}
|
|
|
|
LLE_WLOCK_ASSERT(ln);
|
|
|
|
/* We don't have to do link-layer address resolution on a p2p link. */
|
|
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
|
|
ln->ln_state < ND6_LLINFO_REACHABLE) {
|
|
ln->ln_state = ND6_LLINFO_STALE;
|
|
nd6_llinfo_settimer(ln, nd6_gctimer * hz);
|
|
}
|
|
|
|
/*
|
|
* The first time we send a packet to a neighbor whose entry is
|
|
* STALE, we have to change the state to DELAY and a sets a timer to
|
|
* expire in DELAY_FIRST_PROBE_TIME seconds to ensure do
|
|
* neighbor unreachability detection on expiration.
|
|
* (RFC 2461 7.3.3)
|
|
*/
|
|
if (ln->ln_state == ND6_LLINFO_STALE) {
|
|
ln->ln_asked = 0;
|
|
ln->ln_state = ND6_LLINFO_DELAY;
|
|
nd6_llinfo_settimer(ln, nd6_delay * hz);
|
|
}
|
|
|
|
/*
|
|
* If the neighbor cache entry has a state other than INCOMPLETE
|
|
* (i.e. its link-layer address is already resolved), just
|
|
* send the packet.
|
|
*/
|
|
if (ln->ln_state > ND6_LLINFO_INCOMPLETE)
|
|
goto sendpkt;
|
|
|
|
/*
|
|
* There is a neighbor cache entry, but no ethernet address
|
|
* response yet. Append this latest packet to the end of the
|
|
* packet queue in the mbuf, unless the number of the packet
|
|
* does not exceed nd6_maxqueuelen. When it exceeds nd6_maxqueuelen,
|
|
* the oldest packet in the queue will be removed.
|
|
*/
|
|
if (ln->ln_state == ND6_LLINFO_NOSTATE)
|
|
ln->ln_state = ND6_LLINFO_INCOMPLETE;
|
|
if (ln->ln_hold) {
|
|
struct mbuf *m_hold;
|
|
int i;
|
|
|
|
i = 0;
|
|
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold->m_nextpkt) {
|
|
i++;
|
|
if (m_hold->m_nextpkt == NULL) {
|
|
m_hold->m_nextpkt = m;
|
|
break;
|
|
}
|
|
}
|
|
while (i >= nd6_maxqueuelen) {
|
|
m_hold = ln->ln_hold;
|
|
ln->ln_hold = ln->ln_hold->m_nextpkt;
|
|
m_freem(m_hold);
|
|
i--;
|
|
}
|
|
} else {
|
|
ln->ln_hold = m;
|
|
}
|
|
|
|
/*
|
|
* If there has been no NS for the neighbor after entering the
|
|
* INCOMPLETE state, send the first solicitation.
|
|
*/
|
|
if (!ND6_LLINFO_PERMANENT(ln) && ln->ln_asked == 0) {
|
|
struct in6_addr src, *psrc;
|
|
|
|
ln->ln_asked++;
|
|
nd6_llinfo_settimer(ln, ND_IFINFO(ifp)->retrans * hz / 1000);
|
|
psrc = nd6_llinfo_get_holdsrc(ln, &src);
|
|
LLE_WUNLOCK(ln);
|
|
ln = NULL;
|
|
nd6_ns_output(ifp, NULL, &dst->sin6_addr, psrc, 0);
|
|
} else {
|
|
/* We did the lookup so we need to do the unlock here. */
|
|
LLE_WUNLOCK(ln);
|
|
}
|
|
|
|
error = 0;
|
|
goto exit;
|
|
|
|
sendpkt:
|
|
/* discard the packet if IPv6 operation is disabled on the interface */
|
|
if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) {
|
|
error = ENETDOWN; /* better error? */
|
|
goto bad;
|
|
}
|
|
|
|
if (ln != NULL)
|
|
LLE_WUNLOCK(ln);
|
|
|
|
if ((ifp->if_flags & IFF_LOOPBACK) != 0)
|
|
error = if_output_lock(ifp, origifp, m, sin6tocsa(dst), rt);
|
|
else
|
|
error = if_output_lock(ifp, ifp, m, sin6tocsa(dst), rt);
|
|
goto exit;
|
|
|
|
bad:
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
exit:
|
|
if (created)
|
|
nd6_gc_neighbors(LLTABLE6(ifp), &dst->sin6_addr);
|
|
|
|
return error;
|
|
#undef senderr
|
|
}
|
|
|
|
int
|
|
nd6_need_cache(struct ifnet *ifp)
|
|
{
|
|
/*
|
|
* XXX: we currently do not make neighbor cache on any interface
|
|
* other than ARCnet, Ethernet, FDDI and GIF.
|
|
*
|
|
* RFC2893 says:
|
|
* - unidirectional tunnels needs no ND
|
|
*/
|
|
switch (ifp->if_type) {
|
|
case IFT_ARCNET:
|
|
case IFT_ETHER:
|
|
case IFT_FDDI:
|
|
case IFT_IEEE1394:
|
|
case IFT_CARP:
|
|
case IFT_GIF: /* XXX need more cases? */
|
|
case IFT_PPP:
|
|
case IFT_TUNNEL:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add pernament ND6 link-layer record for given
|
|
* interface address.
|
|
*
|
|
* Very similar to IPv4 arp_ifinit(), but:
|
|
* 1) IPv6 DAD is performed in different place
|
|
* 2) It is called by IPv6 protocol stack in contrast to
|
|
* arp_ifinit() which is typically called in SIOCSIFADDR
|
|
* driver ioctl handler.
|
|
*
|
|
*/
|
|
int
|
|
nd6_add_ifa_lle(struct in6_ifaddr *ia)
|
|
{
|
|
struct ifnet *ifp;
|
|
struct llentry *ln;
|
|
|
|
ifp = ia->ia_ifa.ifa_ifp;
|
|
if (nd6_need_cache(ifp) == 0)
|
|
return 0;
|
|
ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
|
|
ia->ia_ifa.ifa_flags |= RTF_CONNECTED;
|
|
|
|
IF_AFDATA_WLOCK(ifp);
|
|
ln = lla_create(LLTABLE6(ifp), LLE_IFADDR | LLE_EXCLUSIVE,
|
|
sin6tosa(&ia->ia_addr));
|
|
IF_AFDATA_WUNLOCK(ifp);
|
|
if (ln == NULL)
|
|
return ENOBUFS;
|
|
|
|
ln->la_expire = 0; /* for IPv6 this means permanent */
|
|
ln->ln_state = ND6_LLINFO_REACHABLE;
|
|
|
|
LLE_WUNLOCK(ln);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Removes ALL lle records for interface address prefix.
|
|
* XXXME: That's probably not we really want to do, we need
|
|
* to remove address record only and keep other records
|
|
* until we determine if given prefix is really going
|
|
* to be removed.
|
|
*/
|
|
void
|
|
nd6_rem_ifa_lle(struct in6_ifaddr *ia)
|
|
{
|
|
struct sockaddr_in6 mask, addr;
|
|
|
|
memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr));
|
|
memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask));
|
|
lltable_prefix_free(AF_INET6, sin6tosa(&addr), sin6tosa(&mask),
|
|
LLE_STATIC);
|
|
}
|
|
|
|
int
|
|
nd6_storelladdr(const struct ifnet *ifp, const struct rtentry *rt,
|
|
struct mbuf *m, const struct sockaddr *dst, uint8_t *lldst,
|
|
size_t dstsize)
|
|
{
|
|
struct llentry *ln;
|
|
|
|
if (m->m_flags & M_MCAST) {
|
|
switch (ifp->if_type) {
|
|
case IFT_ETHER:
|
|
case IFT_FDDI:
|
|
ETHER_MAP_IPV6_MULTICAST(&satocsin6(dst)->sin6_addr,
|
|
lldst);
|
|
return 1;
|
|
case IFT_IEEE1394:
|
|
memcpy(lldst, ifp->if_broadcastaddr,
|
|
MIN(dstsize, ifp->if_addrlen));
|
|
return 1;
|
|
case IFT_ARCNET:
|
|
*lldst = 0;
|
|
return 1;
|
|
default:
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* the entry should have been created in nd6_store_lladdr
|
|
*/
|
|
ln = nd6_lookup(&satocsin6(dst)->sin6_addr, ifp, false);
|
|
if ((ln == NULL) || !(ln->la_flags & LLE_VALID)) {
|
|
if (ln != NULL)
|
|
LLE_RUNLOCK(ln);
|
|
/* this could happen, if we could not allocate memory */
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
|
|
/* XXX llentry should have addrlen? */
|
|
#if 0
|
|
sdl = satocsdl(rt->rt_gateway);
|
|
if (sdl->sdl_alen == 0 || sdl->sdl_alen > dstsize) {
|
|
char sbuf[INET6_ADDRSTRLEN];
|
|
char dbuf[LINK_ADDRSTRLEN];
|
|
/* this should be impossible, but we bark here for debugging */
|
|
printf("%s: sdl_alen == %" PRIu8 ", if=%s, dst=%s, sdl=%s\n",
|
|
__func__, sdl->sdl_alen, if_name(ifp),
|
|
IN6_PRINT(sbuf, &satocsin6(dst)->sin6_addr),
|
|
DL_PRINT(dbuf, &sdl->sdl_addr));
|
|
m_freem(m);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
memcpy(lldst, &ln->ll_addr, MIN(dstsize, ifp->if_addrlen));
|
|
|
|
LLE_RUNLOCK(ln);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
clear_llinfo_pqueue(struct llentry *ln)
|
|
{
|
|
struct mbuf *m_hold, *m_hold_next;
|
|
|
|
for (m_hold = ln->ln_hold; m_hold; m_hold = m_hold_next) {
|
|
m_hold_next = m_hold->m_nextpkt;
|
|
m_hold->m_nextpkt = NULL;
|
|
m_freem(m_hold);
|
|
}
|
|
|
|
ln->ln_hold = NULL;
|
|
return;
|
|
}
|
|
|
|
int
|
|
nd6_sysctl(
|
|
int name,
|
|
void *oldp, /* syscall arg, need copyout */
|
|
size_t *oldlenp,
|
|
void *newp, /* syscall arg, need copyin */
|
|
size_t newlen
|
|
)
|
|
{
|
|
void *p;
|
|
size_t ol;
|
|
int error;
|
|
|
|
error = 0;
|
|
|
|
if (newp)
|
|
return EPERM;
|
|
if (oldp && !oldlenp)
|
|
return EINVAL;
|
|
ol = oldlenp ? *oldlenp : 0;
|
|
|
|
if (oldp) {
|
|
p = malloc(*oldlenp, M_TEMP, M_WAITOK);
|
|
if (p == NULL)
|
|
return ENOMEM;
|
|
} else
|
|
p = NULL;
|
|
switch (name) {
|
|
case ICMPV6CTL_ND6_DRLIST:
|
|
error = fill_drlist(p, oldlenp, ol);
|
|
if (!error && p != NULL && oldp != NULL)
|
|
error = copyout(p, oldp, *oldlenp);
|
|
break;
|
|
|
|
case ICMPV6CTL_ND6_PRLIST:
|
|
error = fill_prlist(p, oldlenp, ol);
|
|
if (!error && p != NULL && oldp != NULL)
|
|
error = copyout(p, oldp, *oldlenp);
|
|
break;
|
|
|
|
case ICMPV6CTL_ND6_MAXQLEN:
|
|
break;
|
|
|
|
default:
|
|
error = ENOPROTOOPT;
|
|
break;
|
|
}
|
|
if (p)
|
|
free(p, M_TEMP);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
fill_drlist(void *oldp, size_t *oldlenp, size_t ol)
|
|
{
|
|
int error = 0, s;
|
|
struct in6_defrouter *d = NULL, *de = NULL;
|
|
struct nd_defrouter *dr;
|
|
size_t l;
|
|
|
|
s = splsoftnet();
|
|
|
|
if (oldp) {
|
|
d = (struct in6_defrouter *)oldp;
|
|
de = (struct in6_defrouter *)((char *)oldp + *oldlenp);
|
|
}
|
|
l = 0;
|
|
|
|
ND_DEFROUTER_LIST_FOREACH(dr) {
|
|
|
|
if (oldp && d + 1 <= de) {
|
|
memset(d, 0, sizeof(*d));
|
|
sockaddr_in6_init(&d->rtaddr, &dr->rtaddr, 0, 0, 0);
|
|
if (sa6_recoverscope(&d->rtaddr)) {
|
|
log(LOG_ERR,
|
|
"scope error in router list (%s)\n",
|
|
ip6_sprintf(&d->rtaddr.sin6_addr));
|
|
/* XXX: press on... */
|
|
}
|
|
d->flags = dr->flags;
|
|
d->rtlifetime = dr->rtlifetime;
|
|
d->expire = dr->expire ?
|
|
time_mono_to_wall(dr->expire) : 0;
|
|
d->if_index = dr->ifp->if_index;
|
|
}
|
|
|
|
l += sizeof(*d);
|
|
if (d)
|
|
d++;
|
|
}
|
|
|
|
if (oldp) {
|
|
if (l > ol)
|
|
error = ENOMEM;
|
|
}
|
|
if (oldlenp)
|
|
*oldlenp = l; /* (void *)d - (void *)oldp */
|
|
|
|
splx(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
fill_prlist(void *oldp, size_t *oldlenp, size_t ol)
|
|
{
|
|
int error = 0, s;
|
|
struct nd_prefix *pr;
|
|
uint8_t *p = NULL, *ps = NULL;
|
|
uint8_t *pe = NULL;
|
|
size_t l;
|
|
|
|
s = splsoftnet();
|
|
|
|
if (oldp) {
|
|
ps = p = (uint8_t*)oldp;
|
|
pe = (uint8_t*)oldp + *oldlenp;
|
|
}
|
|
l = 0;
|
|
|
|
LIST_FOREACH(pr, &nd_prefix, ndpr_entry) {
|
|
u_short advrtrs;
|
|
struct sockaddr_in6 sin6;
|
|
struct nd_pfxrouter *pfr;
|
|
struct in6_prefix pfx;
|
|
|
|
if (oldp && p + sizeof(struct in6_prefix) <= pe)
|
|
{
|
|
memset(&pfx, 0, sizeof(pfx));
|
|
ps = p;
|
|
pfx.prefix = pr->ndpr_prefix;
|
|
|
|
if (sa6_recoverscope(&pfx.prefix)) {
|
|
log(LOG_ERR,
|
|
"scope error in prefix list (%s)\n",
|
|
ip6_sprintf(&pfx.prefix.sin6_addr));
|
|
/* XXX: press on... */
|
|
}
|
|
pfx.raflags = pr->ndpr_raf;
|
|
pfx.prefixlen = pr->ndpr_plen;
|
|
pfx.vltime = pr->ndpr_vltime;
|
|
pfx.pltime = pr->ndpr_pltime;
|
|
pfx.if_index = pr->ndpr_ifp->if_index;
|
|
if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME)
|
|
pfx.expire = 0;
|
|
else {
|
|
time_t maxexpire;
|
|
|
|
/* XXX: we assume time_t is signed. */
|
|
maxexpire = (-1) &
|
|
~((time_t)1 <<
|
|
((sizeof(maxexpire) * 8) - 1));
|
|
if (pr->ndpr_vltime <
|
|
maxexpire - pr->ndpr_lastupdate) {
|
|
pfx.expire = pr->ndpr_lastupdate +
|
|
pr->ndpr_vltime;
|
|
} else
|
|
pfx.expire = maxexpire;
|
|
}
|
|
pfx.refcnt = pr->ndpr_refcnt;
|
|
pfx.flags = pr->ndpr_stateflags;
|
|
pfx.origin = PR_ORIG_RA;
|
|
|
|
p += sizeof(pfx); l += sizeof(pfx);
|
|
|
|
advrtrs = 0;
|
|
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
|
|
if (p + sizeof(sin6) > pe) {
|
|
advrtrs++;
|
|
continue;
|
|
}
|
|
|
|
sockaddr_in6_init(&sin6, &pfr->router->rtaddr,
|
|
0, 0, 0);
|
|
if (sa6_recoverscope(&sin6)) {
|
|
log(LOG_ERR,
|
|
"scope error in "
|
|
"prefix list (%s)\n",
|
|
ip6_sprintf(&pfr->router->rtaddr));
|
|
}
|
|
advrtrs++;
|
|
memcpy(p, &sin6, sizeof(sin6));
|
|
p += sizeof(sin6);
|
|
l += sizeof(sin6);
|
|
}
|
|
pfx.advrtrs = advrtrs;
|
|
memcpy(ps, &pfx, sizeof(pfx));
|
|
}
|
|
else {
|
|
l += sizeof(pfx);
|
|
advrtrs = 0;
|
|
LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) {
|
|
advrtrs++;
|
|
l += sizeof(sin6);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (oldp) {
|
|
*oldlenp = l; /* (void *)d - (void *)oldp */
|
|
if (l > ol)
|
|
error = ENOMEM;
|
|
} else
|
|
*oldlenp = l;
|
|
|
|
splx(s);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
nd6_setdefaultiface(int ifindex)
|
|
{
|
|
ifnet_t *ifp;
|
|
int error = 0;
|
|
int s;
|
|
|
|
s = pserialize_read_enter();
|
|
ifp = if_byindex(ifindex);
|
|
if (ifp == NULL) {
|
|
pserialize_read_exit(s);
|
|
return EINVAL;
|
|
}
|
|
if (nd6_defifindex != ifindex) {
|
|
nd6_defifindex = ifindex;
|
|
nd6_defifp = nd6_defifindex > 0 ? ifp : NULL;
|
|
|
|
/*
|
|
* Our current implementation assumes one-to-one maping between
|
|
* interfaces and links, so it would be natural to use the
|
|
* default interface as the default link.
|
|
*/
|
|
scope6_setdefault(nd6_defifp);
|
|
}
|
|
pserialize_read_exit(s);
|
|
|
|
return (error);
|
|
}
|