NetBSD/sys/netinet6/in6_pcb.c
ozaki-r 4c25fb2f83 Add rtcache_unref to release points of rtentry stemming from rtcache
In the MP-safe world, a rtentry stemming from a rtcache can be freed at any
points. So we need to protect rtentries somehow say by reference couting or
passive references. Regardless of the method, we need to call some release
function of a rtentry after using it.

The change adds a new function rtcache_unref to release a rtentry. At this
point, this function does nothing because for now we don't add a reference
to a rtentry when we get one from a rtcache. We will add something useful
in a further commit.

This change is a part of changes for MP-safe routing table. It is separated
to avoid one big change that makes difficult to debug by bisecting.
2016-12-08 05:16:33 +00:00

1331 lines
36 KiB
C

/* $NetBSD: in6_pcb.c,v 1.153 2016/12/08 05:16:34 ozaki-r Exp $ */
/* $KAME: in6_pcb.c,v 1.84 2001/02/08 18:02:08 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: in6_pcb.c,v 1.153 2016/12/08 05:16:34 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_ipsec.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/domain.h>
#include <sys/once.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip6.h>
#include <netinet/portalgo.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/scope6_var.h>
#include <netinet6/nd6.h>
#include "faith.h"
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/ipsec6.h>
#include <netipsec/key.h>
#endif /* IPSEC */
#include <netinet/tcp_vtw.h>
const struct in6_addr zeroin6_addr;
#define IN6PCBHASH_PORT(table, lport) \
&(table)->inpt_porthashtbl[ntohs(lport) & (table)->inpt_porthash]
#define IN6PCBHASH_BIND(table, laddr, lport) \
&(table)->inpt_bindhashtbl[ \
(((laddr)->s6_addr32[0] ^ (laddr)->s6_addr32[1] ^ \
(laddr)->s6_addr32[2] ^ (laddr)->s6_addr32[3]) + ntohs(lport)) & \
(table)->inpt_bindhash]
#define IN6PCBHASH_CONNECT(table, faddr, fport, laddr, lport) \
&(table)->inpt_bindhashtbl[ \
((((faddr)->s6_addr32[0] ^ (faddr)->s6_addr32[1] ^ \
(faddr)->s6_addr32[2] ^ (faddr)->s6_addr32[3]) + ntohs(fport)) + \
(((laddr)->s6_addr32[0] ^ (laddr)->s6_addr32[1] ^ \
(laddr)->s6_addr32[2] ^ (laddr)->s6_addr32[3]) + \
ntohs(lport))) & (table)->inpt_bindhash]
int ip6_anonportmin = IPV6PORT_ANONMIN;
int ip6_anonportmax = IPV6PORT_ANONMAX;
int ip6_lowportmin = IPV6PORT_RESERVEDMIN;
int ip6_lowportmax = IPV6PORT_RESERVEDMAX;
static struct pool in6pcb_pool;
static int
in6pcb_poolinit(void)
{
pool_init(&in6pcb_pool, sizeof(struct in6pcb), 0, 0, 0, "in6pcbpl",
NULL, IPL_SOFTNET);
return 0;
}
void
in6_pcbinit(struct inpcbtable *table, int bindhashsize, int connecthashsize)
{
static ONCE_DECL(control);
in_pcbinit(table, bindhashsize, connecthashsize);
table->inpt_lastport = (u_int16_t)ip6_anonportmax;
RUN_ONCE(&control, in6pcb_poolinit);
}
int
in6_pcballoc(struct socket *so, void *v)
{
struct inpcbtable *table = v;
struct in6pcb *in6p;
int s;
s = splnet();
in6p = pool_get(&in6pcb_pool, PR_NOWAIT);
splx(s);
if (in6p == NULL)
return (ENOBUFS);
memset((void *)in6p, 0, sizeof(*in6p));
in6p->in6p_af = AF_INET6;
in6p->in6p_table = table;
in6p->in6p_socket = so;
in6p->in6p_hops = -1; /* use kernel default */
in6p->in6p_icmp6filt = NULL;
in6p->in6p_portalgo = PORTALGO_DEFAULT;
in6p->in6p_bindportonsend = false;
#if defined(IPSEC)
if (ipsec_enabled) {
int error = ipsec_init_pcbpolicy(so, &in6p->in6p_sp);
if (error != 0) {
s = splnet();
pool_put(&in6pcb_pool, in6p);
splx(s);
return error;
}
}
#endif /* IPSEC */
s = splnet();
TAILQ_INSERT_HEAD(&table->inpt_queue, (struct inpcb_hdr*)in6p,
inph_queue);
LIST_INSERT_HEAD(IN6PCBHASH_PORT(table, in6p->in6p_lport),
&in6p->in6p_head, inph_lhash);
in6_pcbstate(in6p, IN6P_ATTACHED);
splx(s);
if (ip6_v6only)
in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
so->so_pcb = (void *)in6p;
return (0);
}
/*
* Bind address from sin6 to in6p.
*/
static int
in6_pcbbind_addr(struct in6pcb *in6p, struct sockaddr_in6 *sin6, struct lwp *l)
{
int error;
int s;
/*
* We should check the family, but old programs
* incorrectly fail to intialize it.
*/
if (sin6->sin6_family != AF_INET6)
return (EAFNOSUPPORT);
#ifndef INET
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr))
return (EADDRNOTAVAIL);
#endif
if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
return (error);
s = pserialize_read_enter();
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0) {
error = EINVAL;
goto out;
}
if (sin6->sin6_addr.s6_addr32[3]) {
struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_len = sizeof(sin);
sin.sin_family = AF_INET;
bcopy(&sin6->sin6_addr.s6_addr32[3],
&sin.sin_addr, sizeof(sin.sin_addr));
if (!IN_MULTICAST(sin.sin_addr.s_addr)) {
struct ifaddr *ifa;
ifa = ifa_ifwithaddr((struct sockaddr *)&sin);
if (ifa == NULL) {
error = EADDRNOTAVAIL;
goto out;
}
}
}
} else if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
// succeed
} else if (!IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr)) {
struct ifaddr *ifa = NULL;
if ((in6p->in6p_flags & IN6P_FAITH) == 0) {
ifa = ifa_ifwithaddr(sin6tosa(sin6));
if (ifa == NULL) {
error = EADDRNOTAVAIL;
goto out;
}
}
/*
* bind to an anycast address might accidentally
* cause sending a packet with an anycast source
* address, so we forbid it.
*
* We should allow to bind to a deprecated address,
* since the application dare to use it.
* But, can we assume that they are careful enough
* to check if the address is deprecated or not?
* Maybe, as a safeguard, we should have a setsockopt
* flag to control the bind(2) behavior against
* deprecated addresses (default: forbid bind(2)).
*/
if (ifa &&
ifatoia6(ifa)->ia6_flags &
(IN6_IFF_ANYCAST | IN6_IFF_DUPLICATED)) {
error = EADDRNOTAVAIL;
goto out;
}
}
in6p->in6p_laddr = sin6->sin6_addr;
error = 0;
out:
pserialize_read_exit(s);
return error;
}
/*
* Bind port from sin6 to in6p.
*/
static int
in6_pcbbind_port(struct in6pcb *in6p, struct sockaddr_in6 *sin6, struct lwp *l)
{
struct inpcbtable *table = in6p->in6p_table;
struct socket *so = in6p->in6p_socket;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
int error;
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
(so->so_options & SO_ACCEPTCONN) == 0))
wild = 1;
if (sin6->sin6_port != 0) {
enum kauth_network_req req;
#ifndef IPNOPRIVPORTS
if (ntohs(sin6->sin6_port) < IPV6PORT_RESERVED)
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
else
#endif /* IPNOPRIVPORTS */
req = KAUTH_REQ_NETWORK_BIND_PORT;
error = kauth_authorize_network(l->l_cred, KAUTH_NETWORK_BIND,
req, so, sin6, NULL);
if (error)
return (EACCES);
}
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr)) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow compepte duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & (SO_REUSEADDR | SO_REUSEPORT))
reuseport = SO_REUSEADDR|SO_REUSEPORT;
}
if (sin6->sin6_port != 0) {
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
#ifdef INET
struct inpcb *t;
struct vestigial_inpcb vestige;
t = in_pcblookup_port(table,
*(struct in_addr *)&sin6->sin6_addr.s6_addr32[3],
sin6->sin6_port, wild, &vestige);
if (t && (reuseport & t->inp_socket->so_options) == 0)
return (EADDRINUSE);
if (!t
&& vestige.valid
&& !(reuseport && vestige.reuse_port))
return EADDRINUSE;
#else
return (EADDRNOTAVAIL);
#endif
}
{
struct in6pcb *t;
struct vestigial_inpcb vestige;
t = in6_pcblookup_port(table, &sin6->sin6_addr,
sin6->sin6_port, wild, &vestige);
if (t && (reuseport & t->in6p_socket->so_options) == 0)
return (EADDRINUSE);
if (!t
&& vestige.valid
&& !(reuseport && vestige.reuse_port))
return EADDRINUSE;
}
}
if (sin6->sin6_port == 0) {
int e;
e = in6_pcbsetport(sin6, in6p, l);
if (e != 0)
return (e);
} else {
in6p->in6p_lport = sin6->sin6_port;
in6_pcbstate(in6p, IN6P_BOUND);
}
LIST_REMOVE(&in6p->in6p_head, inph_lhash);
LIST_INSERT_HEAD(IN6PCBHASH_PORT(table, in6p->in6p_lport),
&in6p->in6p_head, inph_lhash);
return (0);
}
int
in6_pcbbind(void *v, struct sockaddr_in6 *sin6, struct lwp *l)
{
struct in6pcb *in6p = v;
struct sockaddr_in6 lsin6;
int error;
if (in6p->in6p_af != AF_INET6)
return (EINVAL);
/*
* If we already have a local port or a local address it means we're
* bounded.
*/
if (in6p->in6p_lport || !(IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) ||
(IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr) &&
in6p->in6p_laddr.s6_addr32[3] == 0)))
return (EINVAL);
if (NULL != sin6) {
/* We were provided a sockaddr_in6 to use. */
if (sin6->sin6_len != sizeof(*sin6))
return (EINVAL);
} else {
/* We always bind to *something*, even if it's "anything". */
lsin6 = *((const struct sockaddr_in6 *)
in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
sin6 = &lsin6;
}
/* Bind address. */
error = in6_pcbbind_addr(in6p, sin6, l);
if (error)
return (error);
/* Bind port. */
error = in6_pcbbind_port(in6p, sin6, l);
if (error) {
/*
* Reset the address here to "any" so we don't "leak" the
* in6pcb.
*/
in6p->in6p_laddr = in6addr_any;
return (error);
}
#if 0
in6p->in6p_flowinfo = 0; /* XXX */
#endif
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin6.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in6_pcbconnect(void *v, struct sockaddr_in6 *sin6, struct lwp *l)
{
struct in6pcb *in6p = v;
struct in6_addr *in6a = NULL;
struct in6_addr ia6;
struct ifnet *ifp = NULL; /* outgoing interface */
int error = 0;
int scope_ambiguous = 0;
#ifdef INET
struct in6_addr mapped;
#endif
struct sockaddr_in6 tmp;
struct vestigial_inpcb vestige;
struct psref psref;
int bound;
(void)&in6a; /* XXX fool gcc */
if (in6p->in6p_af != AF_INET6)
return (EINVAL);
if (sin6->sin6_len != sizeof(*sin6))
return (EINVAL);
if (sin6->sin6_family != AF_INET6)
return (EAFNOSUPPORT);
if (sin6->sin6_port == 0)
return (EADDRNOTAVAIL);
if (IN6_IS_ADDR_MULTICAST(&sin6->sin6_addr) &&
in6p->in6p_socket->so_type == SOCK_STREAM)
return EADDRNOTAVAIL;
if (sin6->sin6_scope_id == 0 && !ip6_use_defzone)
scope_ambiguous = 1;
if ((error = sa6_embedscope(sin6, ip6_use_defzone)) != 0)
return(error);
/* sanity check for mapped address case */
if (IN6_IS_ADDR_V4MAPPED(&sin6->sin6_addr)) {
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
return EINVAL;
if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
if (!IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr))
return EINVAL;
} else
{
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr))
return EINVAL;
}
/* protect *sin6 from overwrites */
tmp = *sin6;
sin6 = &tmp;
bound = curlwp_bind();
/* Source address selection. */
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr) &&
in6p->in6p_laddr.s6_addr32[3] == 0) {
#ifdef INET
struct sockaddr_in sin;
struct in_ifaddr *ia4;
struct psref _psref;
memset(&sin, 0, sizeof(sin));
sin.sin_len = sizeof(sin);
sin.sin_family = AF_INET;
memcpy(&sin.sin_addr, &sin6->sin6_addr.s6_addr32[3],
sizeof(sin.sin_addr));
ia4 = in_selectsrc(&sin, &in6p->in6p_route,
in6p->in6p_socket->so_options, NULL, &error, &_psref);
if (ia4 == NULL) {
if (error == 0)
error = EADDRNOTAVAIL;
return (error);
}
memset(&mapped, 0, sizeof(mapped));
mapped.s6_addr16[5] = htons(0xffff);
memcpy(&mapped.s6_addr32[3], &IA_SIN(ia4)->sin_addr,
sizeof(IA_SIN(ia4)->sin_addr));
ia4_release(ia4, &_psref);
in6a = &mapped;
#else
return EADDRNOTAVAIL;
#endif
} else {
/*
* XXX: in6_selectsrc might replace the bound local address
* with the address specified by setsockopt(IPV6_PKTINFO).
* Is it the intended behavior?
*/
error = in6_selectsrc(sin6, in6p->in6p_outputopts,
in6p->in6p_moptions, &in6p->in6p_route, &in6p->in6p_laddr,
&ifp, &psref, &ia6);
if (error == 0)
in6a = &ia6;
if (ifp && scope_ambiguous &&
(error = in6_setscope(&sin6->sin6_addr, ifp, NULL)) != 0) {
if_put(ifp, &psref);
curlwp_bindx(bound);
return error;
}
if (in6a == NULL) {
if_put(ifp, &psref);
curlwp_bindx(bound);
if (error == 0)
error = EADDRNOTAVAIL;
return error;
}
}
if (ifp != NULL) {
in6p->in6p_ip6.ip6_hlim = (u_int8_t)in6_selecthlim(in6p, ifp);
if_put(ifp, &psref);
} else
in6p->in6p_ip6.ip6_hlim = (u_int8_t)in6_selecthlim_rt(in6p);
curlwp_bindx(bound);
if (in6_pcblookup_connect(in6p->in6p_table, &sin6->sin6_addr,
sin6->sin6_port,
IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) ? in6a : &in6p->in6p_laddr,
in6p->in6p_lport, 0, &vestige)
|| vestige.valid)
return (EADDRINUSE);
if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) ||
(IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr) &&
in6p->in6p_laddr.s6_addr32[3] == 0))
{
if (in6p->in6p_lport == 0) {
error = in6_pcbbind(in6p, NULL, l);
if (error != 0)
return error;
}
in6p->in6p_laddr = *in6a;
}
in6p->in6p_faddr = sin6->sin6_addr;
in6p->in6p_fport = sin6->sin6_port;
/* Late bind, if needed */
if (in6p->in6p_bindportonsend) {
struct sockaddr_in6 lsin = *((const struct sockaddr_in6 *)
in6p->in6p_socket->so_proto->pr_domain->dom_sa_any);
lsin.sin6_addr = in6p->in6p_laddr;
lsin.sin6_port = 0;
if ((error = in6_pcbbind_port(in6p, &lsin, l)) != 0)
return error;
}
in6_pcbstate(in6p, IN6P_CONNECTED);
in6p->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
if (ip6_auto_flowlabel)
in6p->in6p_flowinfo |=
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
#if defined(IPSEC)
if (ipsec_enabled && in6p->in6p_socket->so_type == SOCK_STREAM)
ipsec_pcbconn(in6p->in6p_sp);
#endif
return (0);
}
void
in6_pcbdisconnect(struct in6pcb *in6p)
{
memset((void *)&in6p->in6p_faddr, 0, sizeof(in6p->in6p_faddr));
in6p->in6p_fport = 0;
in6_pcbstate(in6p, IN6P_BOUND);
in6p->in6p_flowinfo &= ~IPV6_FLOWLABEL_MASK;
#if defined(IPSEC)
if (ipsec_enabled)
ipsec_pcbdisconn(in6p->in6p_sp);
#endif
if (in6p->in6p_socket->so_state & SS_NOFDREF)
in6_pcbdetach(in6p);
}
void
in6_pcbdetach(struct in6pcb *in6p)
{
struct socket *so = in6p->in6p_socket;
int s;
if (in6p->in6p_af != AF_INET6)
return;
#if defined(IPSEC)
if (ipsec_enabled)
ipsec6_delete_pcbpolicy(in6p);
#endif
so->so_pcb = NULL;
s = splnet();
in6_pcbstate(in6p, IN6P_ATTACHED);
LIST_REMOVE(&in6p->in6p_head, inph_lhash);
TAILQ_REMOVE(&in6p->in6p_table->inpt_queue, &in6p->in6p_head,
inph_queue);
splx(s);
if (in6p->in6p_options) {
m_freem(in6p->in6p_options);
}
if (in6p->in6p_outputopts != NULL) {
ip6_clearpktopts(in6p->in6p_outputopts, -1);
free(in6p->in6p_outputopts, M_IP6OPT);
}
rtcache_free(&in6p->in6p_route);
ip6_freemoptions(in6p->in6p_moptions);
ip_freemoptions(in6p->in6p_v4moptions);
sofree(so); /* drops the socket's lock */
pool_put(&in6pcb_pool, in6p);
mutex_enter(softnet_lock); /* reacquire it */
}
void
in6_setsockaddr(struct in6pcb *in6p, struct sockaddr_in6 *sin6)
{
if (in6p->in6p_af != AF_INET6)
return;
sockaddr_in6_init(sin6, &in6p->in6p_laddr, in6p->in6p_lport, 0, 0);
(void)sa6_recoverscope(sin6); /* XXX: should catch errors */
}
void
in6_setpeeraddr(struct in6pcb *in6p, struct sockaddr_in6 *sin6)
{
if (in6p->in6p_af != AF_INET6)
return;
sockaddr_in6_init(sin6, &in6p->in6p_faddr, in6p->in6p_fport, 0, 0);
(void)sa6_recoverscope(sin6); /* XXX: should catch errors */
}
/*
* Pass some notification to all connections of a protocol
* associated with address dst. The local address and/or port numbers
* may be specified to limit the search. The "usual action" will be
* taken, depending on the ctlinput cmd. The caller must filter any
* cmds that are uninteresting (e.g., no error in the map).
* Call the protocol specific routine (if any) to report
* any errors for each matching socket.
*
* Must be called at splsoftnet.
*
* Note: src (4th arg) carries the flowlabel value on the original IPv6
* header, in sin6_flowinfo member.
*/
int
in6_pcbnotify(struct inpcbtable *table, const struct sockaddr *dst,
u_int fport_arg, const struct sockaddr *src, u_int lport_arg, int cmd,
void *cmdarg, void (*notify)(struct in6pcb *, int))
{
struct inpcb_hdr *inph, *ninph;
struct sockaddr_in6 sa6_src;
const struct sockaddr_in6 *sa6_dst;
u_int16_t fport = fport_arg, lport = lport_arg;
int errno;
int nmatch = 0;
u_int32_t flowinfo;
if ((unsigned)cmd >= PRC_NCMDS || dst->sa_family != AF_INET6)
return 0;
sa6_dst = (const struct sockaddr_in6 *)dst;
if (IN6_IS_ADDR_UNSPECIFIED(&sa6_dst->sin6_addr))
return 0;
/*
* note that src can be NULL when we get notify by local fragmentation.
*/
sa6_src = (src == NULL) ? sa6_any : *(const struct sockaddr_in6 *)src;
flowinfo = sa6_src.sin6_flowinfo;
/*
* Redirects go to all references to the destination,
* and use in6_rtchange to invalidate the route cache.
* Dead host indications: also use in6_rtchange to invalidate
* the cache, and deliver the error to all the sockets.
* Otherwise, if we have knowledge of the local port and address,
* deliver only to that socket.
*/
if (PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) {
fport = 0;
lport = 0;
memset((void *)&sa6_src.sin6_addr, 0, sizeof(sa6_src.sin6_addr));
if (cmd != PRC_HOSTDEAD)
notify = in6_rtchange;
}
errno = inet6ctlerrmap[cmd];
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
struct in6pcb *in6p = (struct in6pcb *)inph;
struct rtentry *rt = NULL;
if (in6p->in6p_af != AF_INET6)
continue;
/*
* Under the following condition, notify of redirects
* to the pcb, without making address matches against inpcb.
* - redirect notification is arrived.
* - the inpcb is unconnected.
* - the inpcb is caching !RTF_HOST routing entry.
* - the ICMPv6 notification is from the gateway cached in the
* inpcb. i.e. ICMPv6 notification is from nexthop gateway
* the inpcb used very recently.
*
* This is to improve interaction between netbsd/openbsd
* redirect handling code, and inpcb route cache code.
* without the clause, !RTF_HOST routing entry (which carries
* gateway used by inpcb right before the ICMPv6 redirect)
* will be cached forever in unconnected inpcb.
*
* There still is a question regarding to what is TRT:
* - On bsdi/freebsd, RTF_HOST (cloned) routing entry will be
* generated on packet output. inpcb will always cache
* RTF_HOST routing entry so there's no need for the clause
* (ICMPv6 redirect will update RTF_HOST routing entry,
* and inpcb is caching it already).
* However, bsdi/freebsd are vulnerable to local DoS attacks
* due to the cloned routing entries.
* - Specwise, "destination cache" is mentioned in RFC2461.
* Jinmei says that it implies bsdi/freebsd behavior, itojun
* is not really convinced.
* - Having hiwat/lowat on # of cloned host route (redirect/
* pmtud) may be a good idea. netbsd/openbsd has it. see
* icmp6_mtudisc_update().
*/
if ((PRC_IS_REDIRECT(cmd) || cmd == PRC_HOSTDEAD) &&
IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr) &&
(rt = rtcache_validate(&in6p->in6p_route)) != NULL &&
!(rt->rt_flags & RTF_HOST)) {
const struct sockaddr_in6 *dst6;
dst6 = (const struct sockaddr_in6 *)
rtcache_getdst(&in6p->in6p_route);
if (dst6 == NULL)
;
else if (IN6_ARE_ADDR_EQUAL(&dst6->sin6_addr,
&sa6_dst->sin6_addr)) {
rtcache_unref(rt, &in6p->in6p_route);
goto do_notify;
}
}
rtcache_unref(rt, &in6p->in6p_route);
/*
* If the error designates a new path MTU for a destination
* and the application (associated with this socket) wanted to
* know the value, notify. Note that we notify for all
* disconnected sockets if the corresponding application
* wanted. This is because some UDP applications keep sending
* sockets disconnected.
* XXX: should we avoid to notify the value to TCP sockets?
*/
if (cmd == PRC_MSGSIZE && (in6p->in6p_flags & IN6P_MTU) != 0 &&
(IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr) ||
IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, &sa6_dst->sin6_addr))) {
ip6_notify_pmtu(in6p, (const struct sockaddr_in6 *)dst,
(u_int32_t *)cmdarg);
}
/*
* Detect if we should notify the error. If no source and
* destination ports are specified, but non-zero flowinfo and
* local address match, notify the error. This is the case
* when the error is delivered with an encrypted buffer
* by ESP. Otherwise, just compare addresses and ports
* as usual.
*/
if (lport == 0 && fport == 0 && flowinfo &&
in6p->in6p_socket != NULL &&
flowinfo == (in6p->in6p_flowinfo & IPV6_FLOWLABEL_MASK) &&
IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, &sa6_src.sin6_addr))
goto do_notify;
else if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
&sa6_dst->sin6_addr) ||
in6p->in6p_socket == NULL ||
(lport && in6p->in6p_lport != lport) ||
(!IN6_IS_ADDR_UNSPECIFIED(&sa6_src.sin6_addr) &&
!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
&sa6_src.sin6_addr)) ||
(fport && in6p->in6p_fport != fport))
continue;
do_notify:
if (notify)
(*notify)(in6p, errno);
nmatch++;
}
return nmatch;
}
void
in6_pcbpurgeif0(struct inpcbtable *table, struct ifnet *ifp)
{
struct inpcb_hdr *inph, *ninph;
struct ip6_moptions *im6o;
struct in6_multi_mship *imm, *nimm;
KASSERT(ifp != NULL);
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
struct in6pcb *in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
im6o = in6p->in6p_moptions;
if (im6o) {
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (im6o->im6o_multicast_if_index == ifp->if_index)
im6o->im6o_multicast_if_index = 0;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
* XXX controversial - is it really legal for kernel
* to force this?
*/
for (imm = im6o->im6o_memberships.lh_first;
imm != NULL; imm = nimm) {
nimm = imm->i6mm_chain.le_next;
if (imm->i6mm_maddr->in6m_ifp == ifp) {
LIST_REMOVE(imm, i6mm_chain);
in6_leavegroup(imm);
}
}
}
in_purgeifmcast(in6p->in6p_v4moptions, ifp);
}
}
void
in6_pcbpurgeif(struct inpcbtable *table, struct ifnet *ifp)
{
struct rtentry *rt;
struct inpcb_hdr *inph, *ninph;
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
struct in6pcb *in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
if ((rt = rtcache_validate(&in6p->in6p_route)) != NULL &&
rt->rt_ifp == ifp) {
rtcache_unref(rt, &in6p->in6p_route);
in6_rtchange(in6p, 0);
} else
rtcache_unref(rt, &in6p->in6p_route);
}
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in6_losing(struct in6pcb *in6p)
{
struct rtentry *rt;
struct rt_addrinfo info;
if (in6p->in6p_af != AF_INET6)
return;
if ((rt = rtcache_validate(&in6p->in6p_route)) == NULL)
return;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rtcache_getdst(&in6p->in6p_route);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
if (rt->rt_flags & RTF_DYNAMIC) {
int error;
struct rtentry *nrt;
error = rtrequest(RTM_DELETE, rt_getkey(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags, &nrt);
rtcache_unref(rt, &in6p->in6p_route);
if (error == 0)
rtfree(nrt);
} else
rtcache_unref(rt, &in6p->in6p_route);
/*
* A new route can be allocated
* the next time output is attempted.
*/
rtcache_free(&in6p->in6p_route);
}
/*
* After a routing change, flush old routing. A new route can be
* allocated the next time output is attempted.
*/
void
in6_rtchange(struct in6pcb *in6p, int errno)
{
if (in6p->in6p_af != AF_INET6)
return;
rtcache_free(&in6p->in6p_route);
/*
* A new route can be allocated the next time
* output is attempted.
*/
}
struct in6pcb *
in6_pcblookup_port(struct inpcbtable *table, struct in6_addr *laddr6,
u_int lport_arg, int lookup_wildcard, struct vestigial_inpcb *vp)
{
struct inpcbhead *head;
struct inpcb_hdr *inph;
struct in6pcb *in6p, *match = NULL;
int matchwild = 3, wildcard;
u_int16_t lport = lport_arg;
if (vp)
vp->valid = 0;
head = IN6PCBHASH_PORT(table, lport);
LIST_FOREACH(inph, head, inph_lhash) {
in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
if (in6p->in6p_lport != lport)
continue;
wildcard = 0;
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
wildcard++;
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)) {
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
if (!IN6_IS_ADDR_V4MAPPED(laddr6))
continue;
/* duplicate of IPv4 logic */
wildcard = 0;
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr) &&
in6p->in6p_faddr.s6_addr32[3])
wildcard++;
if (!in6p->in6p_laddr.s6_addr32[3]) {
if (laddr6->s6_addr32[3])
wildcard++;
} else {
if (!laddr6->s6_addr32[3])
wildcard++;
else {
if (in6p->in6p_laddr.s6_addr32[3] !=
laddr6->s6_addr32[3])
continue;
}
}
} else if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
if (IN6_IS_ADDR_V4MAPPED(laddr6)) {
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
}
if (!IN6_IS_ADDR_UNSPECIFIED(laddr6))
wildcard++;
} else {
if (IN6_IS_ADDR_V4MAPPED(laddr6)) {
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
}
if (IN6_IS_ADDR_UNSPECIFIED(laddr6))
wildcard++;
else {
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr,
laddr6))
continue;
}
}
if (wildcard && !lookup_wildcard)
continue;
if (wildcard < matchwild) {
match = in6p;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
if (match && matchwild == 0)
return match;
if (vp && table->vestige && table->vestige->init_ports6) {
struct vestigial_inpcb better;
void *state;
state = (*table->vestige->init_ports6)(laddr6,
lport_arg,
lookup_wildcard);
while (table->vestige
&& (*table->vestige->next_port6)(state, vp)) {
if (vp->lport != lport)
continue;
wildcard = 0;
if (!IN6_IS_ADDR_UNSPECIFIED(&vp->faddr.v6))
wildcard++;
if (IN6_IS_ADDR_UNSPECIFIED(&vp->laddr.v6)) {
if (!IN6_IS_ADDR_UNSPECIFIED(laddr6))
wildcard++;
} else {
if (IN6_IS_ADDR_V4MAPPED(laddr6)) {
if (vp->v6only)
continue;
}
if (IN6_IS_ADDR_UNSPECIFIED(laddr6))
wildcard++;
else {
if (!IN6_ARE_ADDR_EQUAL(&vp->laddr.v6, laddr6))
continue;
}
}
if (wildcard && !lookup_wildcard)
continue;
if (wildcard < matchwild) {
better = *vp;
match = (void*)&better;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
if (match) {
if (match != (void*)&better)
return match;
else {
*vp = better;
return 0;
}
}
}
return (match);
}
/*
* WARNING: return value (rtentry) could be IPv4 one if in6pcb is connected to
* IPv4 mapped address.
*/
struct rtentry *
in6_pcbrtentry(struct in6pcb *in6p)
{
struct rtentry *rt;
struct route *ro;
union {
const struct sockaddr *sa;
const struct sockaddr_in6 *sa6;
#ifdef INET
const struct sockaddr_in *sa4;
#endif
} cdst;
ro = &in6p->in6p_route;
if (in6p->in6p_af != AF_INET6)
return (NULL);
cdst.sa = rtcache_getdst(ro);
if (cdst.sa == NULL)
;
#ifdef INET
else if (cdst.sa->sa_family == AF_INET) {
KASSERT(IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr));
if (cdst.sa4->sin_addr.s_addr != in6p->in6p_faddr.s6_addr32[3])
rtcache_free(ro);
}
#endif
else {
if (!IN6_ARE_ADDR_EQUAL(&cdst.sa6->sin6_addr,
&in6p->in6p_faddr))
rtcache_free(ro);
}
if ((rt = rtcache_validate(ro)) == NULL)
rt = rtcache_update(ro, 1);
#ifdef INET
if (rt == NULL && IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr)) {
union {
struct sockaddr dst;
struct sockaddr_in dst4;
} u;
struct in_addr addr;
addr.s_addr = in6p->in6p_faddr.s6_addr32[3];
sockaddr_in_init(&u.dst4, &addr, 0);
if (rtcache_setdst(ro, &u.dst) != 0)
return NULL;
rt = rtcache_init(ro);
} else
#endif
if (rt == NULL && !IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
union {
struct sockaddr dst;
struct sockaddr_in6 dst6;
} u;
sockaddr_in6_init(&u.dst6, &in6p->in6p_faddr, 0, 0, 0);
if (rtcache_setdst(ro, &u.dst) != 0)
return NULL;
rt = rtcache_init(ro);
}
return rt;
}
void
in6_pcbrtentry_unref(struct rtentry *rt, struct in6pcb *in6p)
{
rtcache_unref(rt, &in6p->in6p_route);
}
struct in6pcb *
in6_pcblookup_connect(struct inpcbtable *table, const struct in6_addr *faddr6,
u_int fport_arg, const struct in6_addr *laddr6, u_int lport_arg,
int faith,
struct vestigial_inpcb *vp)
{
struct inpcbhead *head;
struct inpcb_hdr *inph;
struct in6pcb *in6p;
u_int16_t fport = fport_arg, lport = lport_arg;
if (vp)
vp->valid = 0;
head = IN6PCBHASH_CONNECT(table, faddr6, fport, laddr6, lport);
LIST_FOREACH(inph, head, inph_hash) {
in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
/* find exact match on both source and dest */
if (in6p->in6p_fport != fport)
continue;
if (in6p->in6p_lport != lport)
continue;
if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr))
continue;
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr, faddr6))
continue;
if (IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr))
continue;
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, laddr6))
continue;
if ((IN6_IS_ADDR_V4MAPPED(laddr6) ||
IN6_IS_ADDR_V4MAPPED(faddr6)) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY))
continue;
return in6p;
}
if (vp && table->vestige) {
if ((*table->vestige->lookup6)(faddr6, fport_arg,
laddr6, lport_arg, vp))
return NULL;
}
return NULL;
}
struct in6pcb *
in6_pcblookup_bind(struct inpcbtable *table, const struct in6_addr *laddr6,
u_int lport_arg, int faith)
{
struct inpcbhead *head;
struct inpcb_hdr *inph;
struct in6pcb *in6p;
u_int16_t lport = lport_arg;
#ifdef INET
struct in6_addr zero_mapped;
#endif
head = IN6PCBHASH_BIND(table, laddr6, lport);
LIST_FOREACH(inph, head, inph_hash) {
in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
if (faith && (in6p->in6p_flags & IN6P_FAITH) == 0)
continue;
if (in6p->in6p_fport != 0)
continue;
if (in6p->in6p_lport != lport)
continue;
if (IN6_IS_ADDR_V4MAPPED(laddr6) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
if (IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, laddr6))
goto out;
}
#ifdef INET
if (IN6_IS_ADDR_V4MAPPED(laddr6)) {
memset(&zero_mapped, 0, sizeof(zero_mapped));
zero_mapped.s6_addr16[5] = 0xffff;
head = IN6PCBHASH_BIND(table, &zero_mapped, lport);
LIST_FOREACH(inph, head, inph_hash) {
in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
if (faith && (in6p->in6p_flags & IN6P_FAITH) == 0)
continue;
if (in6p->in6p_fport != 0)
continue;
if (in6p->in6p_lport != lport)
continue;
if ((in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
if (IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, &zero_mapped))
goto out;
}
}
#endif
head = IN6PCBHASH_BIND(table, &zeroin6_addr, lport);
LIST_FOREACH(inph, head, inph_hash) {
in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
if (faith && (in6p->in6p_flags & IN6P_FAITH) == 0)
continue;
if (in6p->in6p_fport != 0)
continue;
if (in6p->in6p_lport != lport)
continue;
if (IN6_IS_ADDR_V4MAPPED(laddr6) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY) != 0)
continue;
if (IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, &zeroin6_addr))
goto out;
}
return (NULL);
out:
inph = &in6p->in6p_head;
if (inph != LIST_FIRST(head)) {
LIST_REMOVE(inph, inph_hash);
LIST_INSERT_HEAD(head, inph, inph_hash);
}
return in6p;
}
void
in6_pcbstate(struct in6pcb *in6p, int state)
{
if (in6p->in6p_af != AF_INET6)
return;
if (in6p->in6p_state > IN6P_ATTACHED)
LIST_REMOVE(&in6p->in6p_head, inph_hash);
switch (state) {
case IN6P_BOUND:
LIST_INSERT_HEAD(IN6PCBHASH_BIND(in6p->in6p_table,
&in6p->in6p_laddr, in6p->in6p_lport), &in6p->in6p_head,
inph_hash);
break;
case IN6P_CONNECTED:
LIST_INSERT_HEAD(IN6PCBHASH_CONNECT(in6p->in6p_table,
&in6p->in6p_faddr, in6p->in6p_fport,
&in6p->in6p_laddr, in6p->in6p_lport), &in6p->in6p_head,
inph_hash);
break;
}
in6p->in6p_state = state;
}