NetBSD/sys/dev/pci/pci_subr.c
2014-05-15 06:58:19 +00:00

2009 lines
59 KiB
C

/* $NetBSD: pci_subr.c,v 1.112 2014/05/15 06:58:19 msaitoh Exp $ */
/*
* Copyright (c) 1997 Zubin D. Dittia. All rights reserved.
* Copyright (c) 1995, 1996, 1998, 2000
* Christopher G. Demetriou. All rights reserved.
* Copyright (c) 1994 Charles M. Hannum. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Charles M. Hannum.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* PCI autoconfiguration support functions.
*
* Note: This file is also built into a userland library (libpci).
* Pay attention to this when you make modifications.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pci_subr.c,v 1.112 2014/05/15 06:58:19 msaitoh Exp $");
#ifdef _KERNEL_OPT
#include "opt_pci.h"
#endif
#include <sys/param.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/intr.h>
#include <sys/module.h>
#else
#include <pci.h>
#include <stdbool.h>
#include <stdio.h>
#endif
#include <dev/pci/pcireg.h>
#ifdef _KERNEL
#include <dev/pci/pcivar.h>
#endif
/*
* Descriptions of known PCI classes and subclasses.
*
* Subclasses are described in the same way as classes, but have a
* NULL subclass pointer.
*/
struct pci_class {
const char *name;
u_int val; /* as wide as pci_{,sub}class_t */
const struct pci_class *subclasses;
};
static const struct pci_class pci_subclass_prehistoric[] = {
{ "miscellaneous", PCI_SUBCLASS_PREHISTORIC_MISC, NULL, },
{ "VGA", PCI_SUBCLASS_PREHISTORIC_VGA, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_mass_storage[] = {
{ "SCSI", PCI_SUBCLASS_MASS_STORAGE_SCSI, NULL, },
{ "IDE", PCI_SUBCLASS_MASS_STORAGE_IDE, NULL, },
{ "floppy", PCI_SUBCLASS_MASS_STORAGE_FLOPPY, NULL, },
{ "IPI", PCI_SUBCLASS_MASS_STORAGE_IPI, NULL, },
{ "RAID", PCI_SUBCLASS_MASS_STORAGE_RAID, NULL, },
{ "ATA", PCI_SUBCLASS_MASS_STORAGE_ATA, NULL, },
{ "SATA", PCI_SUBCLASS_MASS_STORAGE_SATA, NULL, },
{ "SAS", PCI_SUBCLASS_MASS_STORAGE_SAS, NULL, },
{ "NVM", PCI_SUBCLASS_MASS_STORAGE_NVM, NULL, },
{ "miscellaneous", PCI_SUBCLASS_MASS_STORAGE_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_network[] = {
{ "ethernet", PCI_SUBCLASS_NETWORK_ETHERNET, NULL, },
{ "token ring", PCI_SUBCLASS_NETWORK_TOKENRING, NULL, },
{ "FDDI", PCI_SUBCLASS_NETWORK_FDDI, NULL, },
{ "ATM", PCI_SUBCLASS_NETWORK_ATM, NULL, },
{ "ISDN", PCI_SUBCLASS_NETWORK_ISDN, NULL, },
{ "WorldFip", PCI_SUBCLASS_NETWORK_WORLDFIP, NULL, },
{ "PCMIG Multi Computing", PCI_SUBCLASS_NETWORK_PCIMGMULTICOMP, NULL, },
{ "miscellaneous", PCI_SUBCLASS_NETWORK_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_display[] = {
{ "VGA", PCI_SUBCLASS_DISPLAY_VGA, NULL, },
{ "XGA", PCI_SUBCLASS_DISPLAY_XGA, NULL, },
{ "3D", PCI_SUBCLASS_DISPLAY_3D, NULL, },
{ "miscellaneous", PCI_SUBCLASS_DISPLAY_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_multimedia[] = {
{ "video", PCI_SUBCLASS_MULTIMEDIA_VIDEO, NULL, },
{ "audio", PCI_SUBCLASS_MULTIMEDIA_AUDIO, NULL, },
{ "telephony", PCI_SUBCLASS_MULTIMEDIA_TELEPHONY, NULL,},
{ "HD audio", PCI_SUBCLASS_MULTIMEDIA_HDAUDIO, NULL, },
{ "miscellaneous", PCI_SUBCLASS_MULTIMEDIA_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_memory[] = {
{ "RAM", PCI_SUBCLASS_MEMORY_RAM, NULL, },
{ "flash", PCI_SUBCLASS_MEMORY_FLASH, NULL, },
{ "miscellaneous", PCI_SUBCLASS_MEMORY_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_bridge[] = {
{ "host", PCI_SUBCLASS_BRIDGE_HOST, NULL, },
{ "ISA", PCI_SUBCLASS_BRIDGE_ISA, NULL, },
{ "EISA", PCI_SUBCLASS_BRIDGE_EISA, NULL, },
{ "MicroChannel", PCI_SUBCLASS_BRIDGE_MC, NULL, },
{ "PCI", PCI_SUBCLASS_BRIDGE_PCI, NULL, },
{ "PCMCIA", PCI_SUBCLASS_BRIDGE_PCMCIA, NULL, },
{ "NuBus", PCI_SUBCLASS_BRIDGE_NUBUS, NULL, },
{ "CardBus", PCI_SUBCLASS_BRIDGE_CARDBUS, NULL, },
{ "RACEway", PCI_SUBCLASS_BRIDGE_RACEWAY, NULL, },
{ "Semi-transparent PCI", PCI_SUBCLASS_BRIDGE_STPCI, NULL, },
{ "InfiniBand", PCI_SUBCLASS_BRIDGE_INFINIBAND, NULL, },
{ "miscellaneous", PCI_SUBCLASS_BRIDGE_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_communications[] = {
{ "serial", PCI_SUBCLASS_COMMUNICATIONS_SERIAL, NULL, },
{ "parallel", PCI_SUBCLASS_COMMUNICATIONS_PARALLEL, NULL, },
{ "multi-port serial", PCI_SUBCLASS_COMMUNICATIONS_MPSERIAL, NULL, },
{ "modem", PCI_SUBCLASS_COMMUNICATIONS_MODEM, NULL, },
{ "GPIB", PCI_SUBCLASS_COMMUNICATIONS_GPIB, NULL, },
{ "smartcard", PCI_SUBCLASS_COMMUNICATIONS_SMARTCARD, NULL, },
{ "miscellaneous", PCI_SUBCLASS_COMMUNICATIONS_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_system[] = {
{ "interrupt", PCI_SUBCLASS_SYSTEM_PIC, NULL, },
{ "8237 DMA", PCI_SUBCLASS_SYSTEM_DMA, NULL, },
{ "8254 timer", PCI_SUBCLASS_SYSTEM_TIMER, NULL, },
{ "RTC", PCI_SUBCLASS_SYSTEM_RTC, NULL, },
{ "PCI Hot-Plug", PCI_SUBCLASS_SYSTEM_PCIHOTPLUG, NULL, },
{ "SD Host Controller", PCI_SUBCLASS_SYSTEM_SDHC, NULL, },
{ "miscellaneous", PCI_SUBCLASS_SYSTEM_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_input[] = {
{ "keyboard", PCI_SUBCLASS_INPUT_KEYBOARD, NULL, },
{ "digitizer", PCI_SUBCLASS_INPUT_DIGITIZER, NULL, },
{ "mouse", PCI_SUBCLASS_INPUT_MOUSE, NULL, },
{ "scanner", PCI_SUBCLASS_INPUT_SCANNER, NULL, },
{ "game port", PCI_SUBCLASS_INPUT_GAMEPORT, NULL, },
{ "miscellaneous", PCI_SUBCLASS_INPUT_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_dock[] = {
{ "generic", PCI_SUBCLASS_DOCK_GENERIC, NULL, },
{ "miscellaneous", PCI_SUBCLASS_DOCK_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_processor[] = {
{ "386", PCI_SUBCLASS_PROCESSOR_386, NULL, },
{ "486", PCI_SUBCLASS_PROCESSOR_486, NULL, },
{ "Pentium", PCI_SUBCLASS_PROCESSOR_PENTIUM, NULL, },
{ "Alpha", PCI_SUBCLASS_PROCESSOR_ALPHA, NULL, },
{ "PowerPC", PCI_SUBCLASS_PROCESSOR_POWERPC, NULL, },
{ "MIPS", PCI_SUBCLASS_PROCESSOR_MIPS, NULL, },
{ "Co-processor", PCI_SUBCLASS_PROCESSOR_COPROC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_serialbus[] = {
{ "Firewire", PCI_SUBCLASS_SERIALBUS_FIREWIRE, NULL, },
{ "ACCESS.bus", PCI_SUBCLASS_SERIALBUS_ACCESS, NULL, },
{ "SSA", PCI_SUBCLASS_SERIALBUS_SSA, NULL, },
{ "USB", PCI_SUBCLASS_SERIALBUS_USB, NULL, },
/* XXX Fiber Channel/_FIBRECHANNEL */
{ "Fiber Channel", PCI_SUBCLASS_SERIALBUS_FIBER, NULL, },
{ "SMBus", PCI_SUBCLASS_SERIALBUS_SMBUS, NULL, },
{ "InfiniBand", PCI_SUBCLASS_SERIALBUS_INFINIBAND, NULL,},
{ "IPMI", PCI_SUBCLASS_SERIALBUS_IPMI, NULL, },
{ "SERCOS", PCI_SUBCLASS_SERIALBUS_SERCOS, NULL, },
{ "CANbus", PCI_SUBCLASS_SERIALBUS_CANBUS, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_wireless[] = {
{ "IrDA", PCI_SUBCLASS_WIRELESS_IRDA, NULL, },
{ "Consumer IR", PCI_SUBCLASS_WIRELESS_CONSUMERIR, NULL, },
{ "RF", PCI_SUBCLASS_WIRELESS_RF, NULL, },
{ "bluetooth", PCI_SUBCLASS_WIRELESS_BLUETOOTH, NULL, },
{ "broadband", PCI_SUBCLASS_WIRELESS_BROADBAND, NULL, },
{ "802.11a (5 GHz)", PCI_SUBCLASS_WIRELESS_802_11A, NULL, },
{ "802.11b (2.4 GHz)", PCI_SUBCLASS_WIRELESS_802_11B, NULL, },
{ "miscellaneous", PCI_SUBCLASS_WIRELESS_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_i2o[] = {
{ "standard", PCI_SUBCLASS_I2O_STANDARD, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_satcom[] = {
{ "TV", PCI_SUBCLASS_SATCOM_TV, NULL, },
{ "audio", PCI_SUBCLASS_SATCOM_AUDIO, NULL, },
{ "voice", PCI_SUBCLASS_SATCOM_VOICE, NULL, },
{ "data", PCI_SUBCLASS_SATCOM_DATA, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_crypto[] = {
{ "network/computing", PCI_SUBCLASS_CRYPTO_NETCOMP, NULL, },
{ "entertainment", PCI_SUBCLASS_CRYPTO_ENTERTAINMENT, NULL,},
{ "miscellaneous", PCI_SUBCLASS_CRYPTO_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_subclass_dasp[] = {
{ "DPIO", PCI_SUBCLASS_DASP_DPIO, NULL, },
{ "Time and Frequency", PCI_SUBCLASS_DASP_TIMEFREQ, NULL, },
{ "synchronization", PCI_SUBCLASS_DASP_SYNC, NULL, },
{ "management", PCI_SUBCLASS_DASP_MGMT, NULL, },
{ "miscellaneous", PCI_SUBCLASS_DASP_MISC, NULL, },
{ NULL, 0, NULL, },
};
static const struct pci_class pci_class[] = {
{ "prehistoric", PCI_CLASS_PREHISTORIC,
pci_subclass_prehistoric, },
{ "mass storage", PCI_CLASS_MASS_STORAGE,
pci_subclass_mass_storage, },
{ "network", PCI_CLASS_NETWORK,
pci_subclass_network, },
{ "display", PCI_CLASS_DISPLAY,
pci_subclass_display, },
{ "multimedia", PCI_CLASS_MULTIMEDIA,
pci_subclass_multimedia, },
{ "memory", PCI_CLASS_MEMORY,
pci_subclass_memory, },
{ "bridge", PCI_CLASS_BRIDGE,
pci_subclass_bridge, },
{ "communications", PCI_CLASS_COMMUNICATIONS,
pci_subclass_communications, },
{ "system", PCI_CLASS_SYSTEM,
pci_subclass_system, },
{ "input", PCI_CLASS_INPUT,
pci_subclass_input, },
{ "dock", PCI_CLASS_DOCK,
pci_subclass_dock, },
{ "processor", PCI_CLASS_PROCESSOR,
pci_subclass_processor, },
{ "serial bus", PCI_CLASS_SERIALBUS,
pci_subclass_serialbus, },
{ "wireless", PCI_CLASS_WIRELESS,
pci_subclass_wireless, },
{ "I2O", PCI_CLASS_I2O,
pci_subclass_i2o, },
{ "satellite comm", PCI_CLASS_SATCOM,
pci_subclass_satcom, },
{ "crypto", PCI_CLASS_CRYPTO,
pci_subclass_crypto, },
{ "DASP", PCI_CLASS_DASP,
pci_subclass_dasp, },
{ "undefined", PCI_CLASS_UNDEFINED,
NULL, },
{ NULL, 0,
NULL, },
};
void pci_load_verbose(void);
#if defined(_KERNEL)
/*
* In kernel, these routines are provided and linked via the
* pciverbose module.
*/
const char *pci_findvendor_stub(pcireg_t);
const char *pci_findproduct_stub(pcireg_t);
const char *(*pci_findvendor)(pcireg_t) = pci_findvendor_stub;
const char *(*pci_findproduct)(pcireg_t) = pci_findproduct_stub;
const char *pci_unmatched = "";
#else
/*
* For userland we just set the vectors here.
*/
const char *(*pci_findvendor)(pcireg_t id_reg) = pci_findvendor_real;
const char *(*pci_findproduct)(pcireg_t id_reg) = pci_findproduct_real;
const char *pci_unmatched = "unmatched ";
#endif
int pciverbose_loaded = 0;
#if defined(_KERNEL)
/*
* Routine to load the pciverbose kernel module as needed
*/
void pci_load_verbose(void)
{
if (pciverbose_loaded == 0)
module_autoload("pciverbose", MODULE_CLASS_MISC);
}
const char *pci_findvendor_stub(pcireg_t id_reg)
{
pci_load_verbose();
if (pciverbose_loaded)
return pci_findvendor(id_reg);
else
return NULL;
}
const char *pci_findproduct_stub(pcireg_t id_reg)
{
pci_load_verbose();
if (pciverbose_loaded)
return pci_findproduct(id_reg);
else
return NULL;
}
#endif
void
pci_devinfo(pcireg_t id_reg, pcireg_t class_reg, int showclass, char *cp,
size_t l)
{
pci_vendor_id_t vendor;
pci_product_id_t product;
pci_class_t class;
pci_subclass_t subclass;
pci_interface_t interface;
pci_revision_t revision;
const char *unmatched = pci_unmatched;
const char *vendor_namep, *product_namep;
const struct pci_class *classp, *subclassp;
char *ep;
ep = cp + l;
vendor = PCI_VENDOR(id_reg);
product = PCI_PRODUCT(id_reg);
class = PCI_CLASS(class_reg);
subclass = PCI_SUBCLASS(class_reg);
interface = PCI_INTERFACE(class_reg);
revision = PCI_REVISION(class_reg);
vendor_namep = pci_findvendor(id_reg);
product_namep = pci_findproduct(id_reg);
classp = pci_class;
while (classp->name != NULL) {
if (class == classp->val)
break;
classp++;
}
subclassp = (classp->name != NULL) ? classp->subclasses : NULL;
while (subclassp && subclassp->name != NULL) {
if (subclass == subclassp->val)
break;
subclassp++;
}
if (vendor_namep == NULL)
cp += snprintf(cp, ep - cp, "%svendor 0x%04x product 0x%04x",
unmatched, vendor, product);
else if (product_namep != NULL)
cp += snprintf(cp, ep - cp, "%s %s", vendor_namep,
product_namep);
else
cp += snprintf(cp, ep - cp, "%s product 0x%04x",
vendor_namep, product);
if (showclass) {
cp += snprintf(cp, ep - cp, " (");
if (classp->name == NULL)
cp += snprintf(cp, ep - cp,
"class 0x%02x, subclass 0x%02x", class, subclass);
else {
if (subclassp == NULL || subclassp->name == NULL)
cp += snprintf(cp, ep - cp,
"%s, subclass 0x%02x",
classp->name, subclass);
else
cp += snprintf(cp, ep - cp, "%s %s",
subclassp->name, classp->name);
}
if (interface != 0)
cp += snprintf(cp, ep - cp, ", interface 0x%02x",
interface);
if (revision != 0)
cp += snprintf(cp, ep - cp, ", revision 0x%02x",
revision);
cp += snprintf(cp, ep - cp, ")");
}
}
#ifdef _KERNEL
void
pci_aprint_devinfo_fancy(const struct pci_attach_args *pa, const char *naive,
const char *known, int addrev)
{
char devinfo[256];
if (known) {
aprint_normal(": %s", known);
if (addrev)
aprint_normal(" (rev. 0x%02x)",
PCI_REVISION(pa->pa_class));
aprint_normal("\n");
} else {
pci_devinfo(pa->pa_id, pa->pa_class, 0,
devinfo, sizeof(devinfo));
aprint_normal(": %s (rev. 0x%02x)\n", devinfo,
PCI_REVISION(pa->pa_class));
}
if (naive)
aprint_naive(": %s\n", naive);
else
aprint_naive("\n");
}
#endif
/*
* Print out most of the PCI configuration registers. Typically used
* in a device attach routine like this:
*
* #ifdef MYDEV_DEBUG
* printf("%s: ", device_xname(sc->sc_dev));
* pci_conf_print(pa->pa_pc, pa->pa_tag, NULL);
* #endif
*/
#define i2o(i) ((i) * 4)
#define o2i(o) ((o) / 4)
#define onoff2(str, rval, bit, onstr, offstr) \
printf(" %s: %s\n", (str), ((rval) & (bit)) ? onstr : offstr);
#define onoff(str, rval, bit) onoff2(str, rval, bit, "on", "off")
static void
pci_conf_print_common(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs)
{
const char *name;
const struct pci_class *classp, *subclassp;
pcireg_t rval;
rval = regs[o2i(PCI_ID_REG)];
name = pci_findvendor(rval);
if (name)
printf(" Vendor Name: %s (0x%04x)\n", name,
PCI_VENDOR(rval));
else
printf(" Vendor ID: 0x%04x\n", PCI_VENDOR(rval));
name = pci_findproduct(rval);
if (name)
printf(" Device Name: %s (0x%04x)\n", name,
PCI_PRODUCT(rval));
else
printf(" Device ID: 0x%04x\n", PCI_PRODUCT(rval));
rval = regs[o2i(PCI_COMMAND_STATUS_REG)];
printf(" Command register: 0x%04x\n", rval & 0xffff);
onoff("I/O space accesses", rval, PCI_COMMAND_IO_ENABLE);
onoff("Memory space accesses", rval, PCI_COMMAND_MEM_ENABLE);
onoff("Bus mastering", rval, PCI_COMMAND_MASTER_ENABLE);
onoff("Special cycles", rval, PCI_COMMAND_SPECIAL_ENABLE);
onoff("MWI transactions", rval, PCI_COMMAND_INVALIDATE_ENABLE);
onoff("Palette snooping", rval, PCI_COMMAND_PALETTE_ENABLE);
onoff("Parity error checking", rval, PCI_COMMAND_PARITY_ENABLE);
onoff("Address/data stepping", rval, PCI_COMMAND_STEPPING_ENABLE);
onoff("System error (SERR)", rval, PCI_COMMAND_SERR_ENABLE);
onoff("Fast back-to-back transactions", rval, PCI_COMMAND_BACKTOBACK_ENABLE);
onoff("Interrupt disable", rval, PCI_COMMAND_INTERRUPT_DISABLE);
printf(" Status register: 0x%04x\n", (rval >> 16) & 0xffff);
onoff2("Interrupt status", rval, PCI_STATUS_INT_STATUS, "active", "inactive");
onoff("Capability List support", rval, PCI_STATUS_CAPLIST_SUPPORT);
onoff("66 MHz capable", rval, PCI_STATUS_66MHZ_SUPPORT);
onoff("User Definable Features (UDF) support", rval, PCI_STATUS_UDF_SUPPORT);
onoff("Fast back-to-back capable", rval, PCI_STATUS_BACKTOBACK_SUPPORT);
onoff("Data parity error detected", rval, PCI_STATUS_PARITY_ERROR);
printf(" DEVSEL timing: ");
switch (rval & PCI_STATUS_DEVSEL_MASK) {
case PCI_STATUS_DEVSEL_FAST:
printf("fast");
break;
case PCI_STATUS_DEVSEL_MEDIUM:
printf("medium");
break;
case PCI_STATUS_DEVSEL_SLOW:
printf("slow");
break;
default:
printf("unknown/reserved"); /* XXX */
break;
}
printf(" (0x%x)\n", (rval & PCI_STATUS_DEVSEL_MASK) >> 25);
onoff("Slave signaled Target Abort", rval, PCI_STATUS_TARGET_TARGET_ABORT);
onoff("Master received Target Abort", rval, PCI_STATUS_MASTER_TARGET_ABORT);
onoff("Master received Master Abort", rval, PCI_STATUS_MASTER_ABORT);
onoff("Asserted System Error (SERR)", rval, PCI_STATUS_SPECIAL_ERROR);
onoff("Parity error detected", rval, PCI_STATUS_PARITY_DETECT);
rval = regs[o2i(PCI_CLASS_REG)];
for (classp = pci_class; classp->name != NULL; classp++) {
if (PCI_CLASS(rval) == classp->val)
break;
}
subclassp = (classp->name != NULL) ? classp->subclasses : NULL;
while (subclassp && subclassp->name != NULL) {
if (PCI_SUBCLASS(rval) == subclassp->val)
break;
subclassp++;
}
if (classp->name != NULL) {
printf(" Class Name: %s (0x%02x)\n", classp->name,
PCI_CLASS(rval));
if (subclassp != NULL && subclassp->name != NULL)
printf(" Subclass Name: %s (0x%02x)\n",
subclassp->name, PCI_SUBCLASS(rval));
else
printf(" Subclass ID: 0x%02x\n", PCI_SUBCLASS(rval));
} else {
printf(" Class ID: 0x%02x\n", PCI_CLASS(rval));
printf(" Subclass ID: 0x%02x\n", PCI_SUBCLASS(rval));
}
printf(" Interface: 0x%02x\n", PCI_INTERFACE(rval));
printf(" Revision ID: 0x%02x\n", PCI_REVISION(rval));
rval = regs[o2i(PCI_BHLC_REG)];
printf(" BIST: 0x%02x\n", PCI_BIST(rval));
printf(" Header Type: 0x%02x%s (0x%02x)\n", PCI_HDRTYPE_TYPE(rval),
PCI_HDRTYPE_MULTIFN(rval) ? "+multifunction" : "",
PCI_HDRTYPE(rval));
printf(" Latency Timer: 0x%02x\n", PCI_LATTIMER(rval));
printf(" Cache Line Size: 0x%02x\n", PCI_CACHELINE(rval));
}
static int
pci_conf_print_bar(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs, int reg, const char *name
#ifdef _KERNEL
, int sizebar
#endif
)
{
int width;
pcireg_t rval, rval64h;
#ifdef _KERNEL
int s;
pcireg_t mask, mask64h;
#endif
width = 4;
/*
* Section 6.2.5.1, `Address Maps', tells us that:
*
* 1) The builtin software should have already mapped the
* device in a reasonable way.
*
* 2) A device which wants 2^n bytes of memory will hardwire
* the bottom n bits of the address to 0. As recommended,
* we write all 1s and see what we get back.
*/
rval = regs[o2i(reg)];
if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM &&
PCI_MAPREG_MEM_TYPE(rval) == PCI_MAPREG_MEM_TYPE_64BIT) {
rval64h = regs[o2i(reg + 4)];
width = 8;
} else
rval64h = 0;
#ifdef _KERNEL
/* XXX don't size unknown memory type? */
if (rval != 0 && sizebar) {
/*
* The following sequence seems to make some devices
* (e.g. host bus bridges, which don't normally
* have their space mapped) very unhappy, to
* the point of crashing the system.
*
* Therefore, if the mapping register is zero to
* start out with, don't bother trying.
*/
s = splhigh();
pci_conf_write(pc, tag, reg, 0xffffffff);
mask = pci_conf_read(pc, tag, reg);
pci_conf_write(pc, tag, reg, rval);
if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM &&
PCI_MAPREG_MEM_TYPE(rval) == PCI_MAPREG_MEM_TYPE_64BIT) {
pci_conf_write(pc, tag, reg + 4, 0xffffffff);
mask64h = pci_conf_read(pc, tag, reg + 4);
pci_conf_write(pc, tag, reg + 4, rval64h);
} else
mask64h = 0;
splx(s);
} else
mask = mask64h = 0;
#endif /* _KERNEL */
printf(" Base address register at 0x%02x", reg);
if (name)
printf(" (%s)", name);
printf("\n ");
if (rval == 0) {
printf("not implemented(?)\n");
return width;
}
printf("type: ");
if (PCI_MAPREG_TYPE(rval) == PCI_MAPREG_TYPE_MEM) {
const char *type, *prefetch;
switch (PCI_MAPREG_MEM_TYPE(rval)) {
case PCI_MAPREG_MEM_TYPE_32BIT:
type = "32-bit";
break;
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
type = "32-bit-1M";
break;
case PCI_MAPREG_MEM_TYPE_64BIT:
type = "64-bit";
break;
default:
type = "unknown (XXX)";
break;
}
if (PCI_MAPREG_MEM_PREFETCHABLE(rval))
prefetch = "";
else
prefetch = "non";
printf("%s %sprefetchable memory\n", type, prefetch);
switch (PCI_MAPREG_MEM_TYPE(rval)) {
case PCI_MAPREG_MEM_TYPE_64BIT:
printf(" base: 0x%016llx, ",
PCI_MAPREG_MEM64_ADDR(
((((long long) rval64h) << 32) | rval)));
#ifdef _KERNEL
if (sizebar)
printf("size: 0x%016llx",
PCI_MAPREG_MEM64_SIZE(
((((long long) mask64h) << 32) | mask)));
else
#endif /* _KERNEL */
printf("not sized");
printf("\n");
break;
case PCI_MAPREG_MEM_TYPE_32BIT:
case PCI_MAPREG_MEM_TYPE_32BIT_1M:
default:
printf(" base: 0x%08x, ",
PCI_MAPREG_MEM_ADDR(rval));
#ifdef _KERNEL
if (sizebar)
printf("size: 0x%08x",
PCI_MAPREG_MEM_SIZE(mask));
else
#endif /* _KERNEL */
printf("not sized");
printf("\n");
break;
}
} else {
#ifdef _KERNEL
if (sizebar)
printf("%d-bit ", mask & ~0x0000ffff ? 32 : 16);
#endif /* _KERNEL */
printf("i/o\n");
printf(" base: 0x%08x, ", PCI_MAPREG_IO_ADDR(rval));
#ifdef _KERNEL
if (sizebar)
printf("size: 0x%08x", PCI_MAPREG_IO_SIZE(mask));
else
#endif /* _KERNEL */
printf("not sized");
printf("\n");
}
return width;
}
static void
pci_conf_print_regs(const pcireg_t *regs, int first, int pastlast)
{
int off, needaddr, neednl;
needaddr = 1;
neednl = 0;
for (off = first; off < pastlast; off += 4) {
if ((off % 16) == 0 || needaddr) {
printf(" 0x%02x:", off);
needaddr = 0;
}
printf(" 0x%08x", regs[o2i(off)]);
neednl = 1;
if ((off % 16) == 12) {
printf("\n");
neednl = 0;
}
}
if (neednl)
printf("\n");
}
static void
pci_conf_print_type0(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs
#ifdef _KERNEL
, int sizebars
#endif
)
{
int off, width;
pcireg_t rval;
for (off = PCI_MAPREG_START; off < PCI_MAPREG_END; off += width) {
#ifdef _KERNEL
width = pci_conf_print_bar(pc, tag, regs, off, NULL, sizebars);
#else
width = pci_conf_print_bar(regs, off, NULL);
#endif
}
printf(" Cardbus CIS Pointer: 0x%08x\n", regs[o2i(0x28)]);
rval = regs[o2i(PCI_SUBSYS_ID_REG)];
printf(" Subsystem vendor ID: 0x%04x\n", PCI_VENDOR(rval));
printf(" Subsystem ID: 0x%04x\n", PCI_PRODUCT(rval));
/* XXX */
printf(" Expansion ROM Base Address: 0x%08x\n", regs[o2i(0x30)]);
if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
printf(" Capability list pointer: 0x%02x\n",
PCI_CAPLIST_PTR(regs[o2i(PCI_CAPLISTPTR_REG)]));
else
printf(" Reserved @ 0x34: 0x%08x\n", regs[o2i(0x34)]);
printf(" Reserved @ 0x38: 0x%08x\n", regs[o2i(0x38)]);
rval = regs[o2i(PCI_INTERRUPT_REG)];
printf(" Maximum Latency: 0x%02x\n", (rval >> 24) & 0xff);
printf(" Minimum Grant: 0x%02x\n", (rval >> 16) & 0xff);
printf(" Interrupt pin: 0x%02x ", PCI_INTERRUPT_PIN(rval));
switch (PCI_INTERRUPT_PIN(rval)) {
case PCI_INTERRUPT_PIN_NONE:
printf("(none)");
break;
case PCI_INTERRUPT_PIN_A:
printf("(pin A)");
break;
case PCI_INTERRUPT_PIN_B:
printf("(pin B)");
break;
case PCI_INTERRUPT_PIN_C:
printf("(pin C)");
break;
case PCI_INTERRUPT_PIN_D:
printf("(pin D)");
break;
default:
printf("(? ? ?)");
break;
}
printf("\n");
printf(" Interrupt line: 0x%02x\n", PCI_INTERRUPT_LINE(rval));
}
static void
pci_print_pcie_L0s_latency(uint32_t val)
{
switch (val) {
case 0x0:
printf("Less than 64ns\n");
break;
case 0x1:
case 0x2:
case 0x3:
printf("%dns to less than %dns\n", 32 << val, 32 << (val + 1));
break;
case 0x4:
printf("512ns to less than 1us\n");
break;
case 0x5:
printf("1us to less than 2us\n");
break;
case 0x6:
printf("2us - 4us\n");
break;
case 0x7:
printf("More than 4us\n");
break;
}
}
static void
pci_print_pcie_L1_latency(uint32_t val)
{
switch (val) {
case 0x0:
printf("Less than 1us\n");
break;
case 0x6:
printf("32us - 64us\n");
break;
case 0x7:
printf("More than 64us\n");
break;
default:
printf("%dus to less than %dus\n", 1 << (val - 1), 1 << val);
break;
}
}
static void
pci_print_pcie_compl_timeout(uint32_t val)
{
switch (val) {
case 0x0:
printf("50us to 50ms\n");
break;
case 0x5:
printf("16ms to 55ms\n");
break;
case 0x6:
printf("65ms to 210ms\n");
break;
case 0x9:
printf("260ms to 900ms\n");
break;
case 0xa:
printf("1s to 3.5s\n");
break;
default:
printf("unknown %u value\n", val);
break;
}
}
static void
pci_conf_print_pcie_cap(const pcireg_t *regs, int capoff)
{
pcireg_t reg; /* for each register */
pcireg_t val; /* for each bitfield */
bool check_link = false;
bool check_slot = false;
bool check_rootport = false;
unsigned int pciever;
static const char * const linkspeeds[] = {"2.5", "5.0", "8.0"};
int i;
printf("\n PCI Express Capabilities Register\n");
/* Capability Register */
reg = regs[o2i(capoff)];
printf(" Capability register: %04x\n", reg >> 16);
pciever = (unsigned int)((reg & 0x000f0000) >> 16);
printf(" Capability version: %u\n", pciever);
printf(" Device type: ");
switch ((reg & 0x00f00000) >> 20) {
case 0x0:
printf("PCI Express Endpoint device\n");
check_link = true;
break;
case 0x1:
printf("Legacy PCI Express Endpoint device\n");
check_link = true;
break;
case 0x4:
printf("Root Port of PCI Express Root Complex\n");
check_link = true;
check_slot = true;
check_rootport = true;
break;
case 0x5:
printf("Upstream Port of PCI Express Switch\n");
break;
case 0x6:
printf("Downstream Port of PCI Express Switch\n");
check_slot = true;
check_rootport = true;
break;
case 0x7:
printf("PCI Express to PCI/PCI-X Bridge\n");
break;
case 0x8:
printf("PCI/PCI-X to PCI Express Bridge\n");
break;
case 0x9:
printf("Root Complex Integrated Endpoint\n");
break;
case 0xa:
check_rootport = true;
printf("Root Complex Event Collector\n");
break;
default:
printf("unknown\n");
break;
}
if (check_slot && (reg & PCIE_XCAP_SI) != 0)
printf(" Slot implemented\n");
printf(" Interrupt Message Number: %x\n",
(unsigned int)((reg & PCIE_XCAP_IRQ) >> 27));
/* Device Capability Register */
reg = regs[o2i(capoff + PCIE_DCAP)];
printf(" Device Capabilities Register: 0x%08x\n", reg);
printf(" Max Payload Size Supported: %u bytes max\n",
(unsigned int)(reg & PCIE_DCAP_MAX_PAYLOAD) * 256);
printf(" Phantom Functions Supported: ");
switch ((reg & PCIE_DCAP_PHANTOM_FUNCS) >> 3) {
case 0x0:
printf("not available\n");
break;
case 0x1:
printf("MSB\n");
break;
case 0x2:
printf("two MSB\n");
break;
case 0x3:
printf("All three bits\n");
break;
}
printf(" Extended Tag Field Supported: %dbit\n",
(reg & PCIE_DCAP_EXT_TAG_FIELD) == 0 ? 5 : 8);
printf(" Endpoint L0 Acceptable Latency: ");
pci_print_pcie_L0s_latency((reg & PCIE_DCAP_L0S_LATENCY) >> 6);
printf(" Endpoint L1 Acceptable Latency: ");
pci_print_pcie_L1_latency((reg & PCIE_DCAP_L1_LATENCY) >> 9);
onoff("Attention Button Present:", reg, PCIE_DCAP_ATTN_BUTTON);
onoff("Attention Indicator Present:", reg, PCIE_DCAP_ATTN_IND);
onoff("Power Indicator Present", reg, PCIE_DCAP_PWR_IND);
onoff("Role-Based Error Report", reg, PCIE_DCAP_ROLE_ERR_RPT);
printf(" Captured Slot Power Limit Value: %d\n",
(unsigned int)(reg & PCIE_DCAP_SLOT_PWR_LIM_VAL) >> 18);
printf(" Captured Slot Power Limit Scale: %d\n",
(unsigned int)(reg & PCIE_DCAP_SLOT_PWR_LIM_SCALE) >> 26);
onoff("Function-Level Reset Capability", reg, PCIE_DCAP_FLR);
/* Device Control Register */
reg = regs[o2i(capoff + PCIE_DCSR)];
printf(" Device Control Register: 0x%04x\n", reg & 0xffff);
onoff("Correctable Error Reporting Enable", reg,
PCIE_DCSR_ENA_COR_ERR);
onoff("Non Fatal Error Reporting Enable", reg, PCIE_DCSR_ENA_NFER);
onoff("Fatal Error Reporting Enable", reg, PCIE_DCSR_ENA_FER);
onoff("Unsupported Request Reporting Enable", reg, PCIE_DCSR_ENA_URR);
onoff("Enable Relaxed Ordering", reg, PCIE_DCSR_ENA_RELAX_ORD);
printf(" Max Payload Size: %d byte\n",
128 << (((unsigned int)(reg & PCIE_DCSR_MAX_PAYLOAD) >> 5)));
onoff("Extended Tag Field Enable", reg, PCIE_DCSR_EXT_TAG_FIELD);
onoff("Phantom Functions Enable", reg, PCIE_DCSR_PHANTOM_FUNCS);
onoff("Aux Power PM Enable", reg, PCIE_DCSR_AUX_POWER_PM);
onoff("Enable No Snoop", reg, PCIE_DCSR_ENA_NO_SNOOP);
printf(" Max Read Request Size: %d byte\n",
128 << ((unsigned int)(reg & PCIE_DCSR_MAX_READ_REQ) >> 12));
/* Device Status Register */
reg = regs[o2i(capoff + PCIE_DCSR)];
printf(" Device Status Register: 0x%04x\n", reg >> 16);
onoff("Correctable Error Detected", reg, PCIE_DCSR_CED);
onoff("Non Fatal Error Detected", reg, PCIE_DCSR_NFED);
onoff("Fatal Error Detected", reg, PCIE_DCSR_FED);
onoff("Unsupported Request Detected", reg, PCIE_DCSR_URD);
onoff("Aux Power Detected", reg, PCIE_DCSR_AUX_PWR);
onoff("Transaction Pending", reg, PCIE_DCSR_TRANSACTION_PND);
if (check_link) {
/* Link Capability Register */
reg = regs[o2i(capoff + PCIE_LCAP)];
printf(" Link Capabilities Register: 0x%08x\n", reg);
printf(" Maximum Link Speed: ");
val = reg & PCIE_LCAP_MAX_SPEED;
if (val < 1 || val > 3) {
printf("unknown %u value\n", val);
} else {
printf("%sGT/s\n", linkspeeds[val - 1]);
}
printf(" Maximum Link Width: x%u lanes\n",
(unsigned int)(reg & PCIE_LCAP_MAX_WIDTH) >> 4);
printf(" Active State PM Support: ");
val = (reg & PCIE_LCAP_ASPM) >> 10;
switch (val) {
case 0x1:
printf("L0s Entry supported\n");
break;
case 0x3:
printf("L0s and L1 supported\n");
break;
default:
printf("Reserved value\n");
break;
}
printf(" L0 Exit Latency: ");
pci_print_pcie_L0s_latency((reg & PCIE_LCAP_L0S_EXIT) >> 12);
printf(" L1 Exit Latency: ");
pci_print_pcie_L1_latency((reg & PCIE_LCAP_L1_EXIT) >> 15);
printf(" Port Number: %u\n", reg >> 24);
/* Link Control Register */
reg = regs[o2i(capoff + PCIE_LCSR)];
printf(" Link Control Register: 0x%04x\n", reg & 0xffff);
printf(" Active State PM Control: ");
val = reg & (PCIE_LCSR_ASPM_L1 | PCIE_LCSR_ASPM_L0S);
switch (val) {
case 0:
printf("disabled\n");
break;
case 1:
printf("L0s Entry Enabled\n");
break;
case 2:
printf("L1 Entry Enabled\n");
break;
case 3:
printf("L0s and L1 Entry Enabled\n");
break;
}
onoff2("Read Completion Boundary Control", reg, PCIE_LCSR_RCB,
"128bytes", "64bytes");
onoff("Link Disable", reg, PCIE_LCSR_LINK_DIS);
onoff("Retrain Link", reg, PCIE_LCSR_RETRAIN);
onoff("Common Clock Configuration", reg, PCIE_LCSR_COMCLKCFG);
onoff("Extended Synch", reg, PCIE_LCSR_EXTNDSYNC);
onoff("Enable Clock Power Management", reg, PCIE_LCSR_ENCLKPM);
onoff("Hardware Autonomous Width Disable", reg,
PCIE_LCSR_HAWD);
onoff("Link Bandwidth Management Interrupt Enable", reg,
PCIE_LCSR_LBMIE);
onoff("Link Autonomous Bandwidth Interrupt Enable", reg,
PCIE_LCSR_LABIE);
/* Link Status Register */
reg = regs[o2i(capoff + PCIE_LCSR)];
printf(" Link Status Register: 0x%04x\n", reg >> 16);
printf(" Negotiated Link Speed: ");
if (((reg >> 16) & 0x000f) < 1 ||
((reg >> 16) & 0x000f) > 3) {
printf("unknown %u value\n",
(unsigned int)(reg & PCIE_LCSR_LINKSPEED) >> 16);
} else {
printf("%sGT/s\n",
linkspeeds[((reg & PCIE_LCSR_LINKSPEED) >> 16) - 1]);
}
printf(" Negotiated Link Width: x%u lanes\n",
(reg >> 20) & 0x003f);
onoff("Training Error", reg, PCIE_LCSR_LINKTRAIN_ERR);
onoff("Link Training", reg, PCIE_LCSR_LINKTRAIN);
onoff("Slot Clock Configuration", reg, PCIE_LCSR_SLOTCLKCFG);
onoff("Data Link Layer Link Active", reg, PCIE_LCSR_DLACTIVE);
onoff("Link Bandwidth Management Status", reg,
PCIE_LCSR_LINK_BW_MGMT);
onoff("Link Autonomous Bandwidth Status", reg,
PCIE_LCSR_LINK_AUTO_BW);
}
if (check_slot == true) {
/* Slot Capability Register */
reg = regs[o2i(capoff + PCIE_SLCAP)];
printf(" Slot Capability Register: %08x\n", reg);
if ((reg & PCIE_SLCAP_ABP) != 0)
printf(" Attention Button Present\n");
if ((reg & PCIE_SLCAP_PCP) != 0)
printf(" Power Controller Present\n");
if ((reg & PCIE_SLCAP_MSP) != 0)
printf(" MRL Sensor Present\n");
if ((reg & PCIE_SLCAP_AIP) != 0)
printf(" Attention Indicator Present\n");
if ((reg & PCIE_SLCAP_PIP) != 0)
printf(" Power Indicator Present\n");
if ((reg & PCIE_SLCAP_HPS) != 0)
printf(" Hot-Plug Surprise\n");
if ((reg & PCIE_SLCAP_HPC) != 0)
printf(" Hot-Plug Capable\n");
printf(" Slot Power Limit Value: %d\n",
(unsigned int)(reg & PCIE_SLCAP_SPLV) >> 7);
printf(" Slot Power Limit Scale: %d\n",
(unsigned int)(reg & PCIE_SLCAP_SPLS) >> 15);
if ((reg & PCIE_SLCAP_EIP) != 0)
printf(" Electromechanical Interlock Present\n");
if ((reg & PCIE_SLCAP_NCCS) != 0)
printf(" No Command Completed Support\n");
printf(" Physical Slot Number: %d\n",
(unsigned int)(reg & PCIE_SLCAP_PSN) >> 19);
/* Slot Control Register */
reg = regs[o2i(capoff + PCIE_SLCSR)];
printf(" Slot Control Register: %04x\n", reg & 0xffff);
if ((reg & PCIE_SLCSR_ABE) != 0)
printf(" Attention Button Pressed Enabled\n");
if ((reg & PCIE_SLCSR_PFE) != 0)
printf(" Power Fault Detected Enabled\n");
if ((reg & PCIE_SLCSR_MSE) != 0)
printf(" MRL Sensor Changed Enabled\n");
if ((reg & PCIE_SLCSR_PDE) != 0)
printf(" Presense Detect Changed Enabled\n");
if ((reg & PCIE_SLCSR_CCE) != 0)
printf(" Command Completed Interrupt Enabled\n");
if ((reg & PCIE_SLCSR_HPE) != 0)
printf(" Hot-Plug Interrupt Enabled\n");
printf(" Attention Indicator Control: ");
switch ((reg & PCIE_SLCSR_AIC) >> 6) {
case 0x0:
printf("reserved\n");
break;
case 0x1:
printf("on\n");
break;
case 0x2:
printf("blink\n");
break;
case 0x3:
printf("off\n");
break;
}
printf(" Power Indicator Control: ");
switch ((reg & PCIE_SLCSR_PIC) >> 8) {
case 0x0:
printf("reserved\n");
break;
case 0x1:
printf("on\n");
break;
case 0x2:
printf("blink\n");
break;
case 0x3:
printf("off\n");
break;
}
printf(" Power Controller Control: ");
if ((reg & PCIE_SLCSR_PCC) != 0)
printf("off\n");
else
printf("on\n");
if ((reg & PCIE_SLCSR_EIC) != 0)
printf(" Electromechanical Interlock Control\n");
if ((reg & PCIE_SLCSR_LACS) != 0)
printf(" Data Link Layer State Changed Enable\n");
/* Slot Status Register */
printf(" Slot Status Register: %04x\n", reg >> 16);
if ((reg & PCIE_SLCSR_ABP) != 0)
printf(" Attention Button Pressed\n");
if ((reg & PCIE_SLCSR_PFD) != 0)
printf(" Power Fault Detected\n");
if ((reg & PCIE_SLCSR_MSC) != 0)
printf(" MRL Sensor Changed\n");
if ((reg & PCIE_SLCSR_PDC) != 0)
printf(" Presense Detect Changed\n");
if ((reg & PCIE_SLCSR_CC) != 0)
printf(" Command Completed\n");
if ((reg & PCIE_SLCSR_MS) != 0)
printf(" MRL Open\n");
if ((reg & PCIE_SLCSR_PDS) != 0)
printf(" Card Present in slot\n");
if ((reg & PCIE_SLCSR_EIS) != 0)
printf(" Electromechanical Interlock engaged\n");
if ((reg & PCIE_SLCSR_LACS) != 0)
printf(" Data Link Layer State Changed\n");
}
if (check_rootport == true) {
/* Root Control Register */
reg = regs[o2i(capoff + PCIE_RCR)];
printf(" Root Control Register: %04x\n", reg & 0xffff);
if ((reg & PCIE_RCR_SERR_CER) != 0)
printf(" SERR on Correctable Error Enable\n");
if ((reg & PCIE_RCR_SERR_NFER) != 0)
printf(" SERR on Non-Fatal Error Enable\n");
if ((reg & PCIE_RCR_SERR_FER) != 0)
printf(" SERR on Fatal Error Enable\n");
if ((reg & PCIE_RCR_PME_IE) != 0)
printf(" PME Interrupt Enable\n");
if ((reg & PCIE_RCR_CRS_SVE) != 0)
printf(" CRS Software Visibility Enable\n");
/* Root Capability Register */
printf(" Root Capability Register: %04x\n",
reg >> 16);
/* Root Status Register */
reg = regs[o2i(capoff + PCIE_RSR)];
printf(" Root Status Register: %08x\n", reg);
printf(" PME Requester ID: %04x\n",
(unsigned int)(reg & PCIE_RSR_PME_REQESTER));
if ((reg & PCIE_RSR_PME_STAT) != 0)
printf(" PME was asserted\n");
if ((reg & PCIE_RSR_PME_PEND) != 0)
printf(" another PME is pending\n");
}
/* PCIe DW9 to DW14 is for PCIe 2.0 and newer */
if (pciever < 2)
return;
/* Device Capabilities 2 */
reg = regs[o2i(capoff + PCIE_DCAP2)];
printf(" Device Capabilities 2: 0x%08x\n", reg);
printf(" Completion Timeout Ranges Supported: %u \n",
(unsigned int)(reg & PCIE_DCAP2_COMPT_RANGE));
onoff("Completion Timeout Disable Supported", reg,
PCIE_DCAP2_COMPT_DIS);
onoff("ARI Forwarding Supported", reg, PCIE_DCAP2_ARI_FWD);
onoff("AtomicOp Routing Supported", reg, PCIE_DCAP2_ATOM_ROUT);
onoff("32bit AtomicOp Completer Supported", reg, PCIE_DCAP2_32ATOM);
onoff("64bit AtomicOp Completer Supported", reg, PCIE_DCAP2_64ATOM);
onoff("128-bit CAS Completer Supported", reg, PCIE_DCAP2_128CAS);
onoff("No RO-enabled PR-PR passing", reg, PCIE_DCAP2_NO_ROPR_PASS);
onoff("LTR Mechanism Supported", reg, PCIE_DCAP2_LTR_MEC);
printf(" TPH Completer Supported: %u\n",
(unsigned int)(reg & PCIE_DCAP2_TPH_COMP) >> 12);
printf(" OBFF Supported: ");
switch ((reg & PCIE_DCAP2_OBFF) >> 18) {
case 0x0:
printf("Not supported\n");
break;
case 0x1:
printf("Message only\n");
break;
case 0x2:
printf("WAKE# only\n");
break;
case 0x3:
printf("Both\n");
break;
}
onoff("Extended Fmt Field Supported", reg, PCIE_DCAP2_EXTFMT_FLD);
onoff("End-End TLP Prefix Supported", reg, PCIE_DCAP2_EETLP_PREF);
printf(" Max End-End TLP Prefixes: %u\n",
(unsigned int)(reg & PCIE_DCAP2_MAX_EETLP) >> 22);
/* Device Control 2 */
reg = regs[o2i(capoff + PCIE_DCSR2)];
printf(" Device Control 2: 0x%04x\n", reg & 0xffff);
printf(" Completion Timeout Value: ");
pci_print_pcie_compl_timeout(reg & PCIE_DCSR2_COMPT_VAL);
if ((reg & PCIE_DCSR2_COMPT_DIS) != 0)
printf(" Completion Timeout Disabled\n");
if ((reg & PCIE_DCSR2_ARI_FWD) != 0)
printf(" ARI Forwarding Enabled\n");
if ((reg & PCIE_DCSR2_ATOM_REQ) != 0)
printf(" AtomicOp Rquester Enabled\n");
if ((reg & PCIE_DCSR2_ATOM_EBLK) != 0)
printf(" AtomicOp Egress Blocking on\n");
if ((reg & PCIE_DCSR2_IDO_REQ) != 0)
printf(" IDO Request Enabled\n");
if ((reg & PCIE_DCSR2_IDO_COMP) != 0)
printf(" IDO Completion Enabled\n");
if ((reg & PCIE_DCSR2_LTR_MEC) != 0)
printf(" LTR Mechanism Enabled\n");
printf(" OBFF: ");
switch ((reg & PCIE_DCSR2_OBFF_EN) >> 13) {
case 0x0:
printf("Disabled\n");
break;
case 0x1:
printf("Enabled with Message Signaling Variation A\n");
break;
case 0x2:
printf("Enabled with Message Signaling Variation B\n");
break;
case 0x3:
printf("Enabled using WAKE# signaling\n");
break;
}
if ((reg & PCIE_DCSR2_EETLP) != 0)
printf(" End-End TLP Prefix Blocking on\n");
if (check_link) {
/* Link Capability 2 */
reg = regs[o2i(capoff + PCIE_LCAP2)];
printf(" Link Capabilities 2: 0x%08x\n", reg);
val = (reg & PCIE_LCAP2_SUP_LNKSV) >> 1;
printf(" Supported Link Speed Vector:");
for (i = 0; i <= 2; i++) {
if (((val >> i) & 0x01) != 0)
printf(" %sGT/s", linkspeeds[i]);
}
printf("\n");
onoff("Crosslink Supported", reg, PCIE_LCAP2_CROSSLNK);
/* Link Control 2 */
reg = regs[o2i(capoff + PCIE_LCSR2)];
printf(" Link Control 2: 0x%04x\n", reg & 0xffff);
printf(" Target Link Speed: ");
val = reg & PCIE_LCSR2_TGT_LSPEED;
if (val < 1 || val > 3) {
printf("unknown %u value\n", val);
} else {
printf("%sGT/s\n", linkspeeds[val - 1]);
}
if ((reg & PCIE_LCSR2_ENT_COMPL) != 0)
printf(" Enter Compliance Enabled\n");
if ((reg & PCIE_LCSR2_HW_AS_DIS) != 0)
printf(" HW Autonomous Speed Disabled\n");
if ((reg & PCIE_LCSR2_SEL_DEEMP) != 0)
printf(" Selectable De-emphasis\n");
printf(" Transmit Margin: %u\n",
(unsigned int)(reg & PCIE_LCSR2_TX_MARGIN) >> 7);
if ((reg & PCIE_LCSR2_EN_MCOMP) != 0)
printf(" Enter Modified Compliance\n");
if ((reg & PCIE_LCSR2_COMP_SOS) != 0)
printf(" Compliance SOS\n");
printf(" Compliance Present/De-emphasis: %u\n",
(unsigned int)(reg & PCIE_LCSR2_COMP_DEEMP) >> 12);
/* Link Status 2 */
if ((reg & PCIE_LCSR2_DEEMP_LVL) != 0)
printf(" Current De-emphasis Level\n");
if ((reg & PCIE_LCSR2_EQ_COMPL) != 0)
printf(" Equalization Complete\n");
if ((reg & PCIE_LCSR2_EQP1_SUC) != 0)
printf(" Equalization Phase 1 Successful\n");
if ((reg & PCIE_LCSR2_EQP2_SUC) != 0)
printf(" Equalization Phase 2 Successful\n");
if ((reg & PCIE_LCSR2_EQP3_SUC) != 0)
printf(" Equalization Phase 3 Successful\n");
if ((reg & PCIE_LCSR2_LNKEQ_REQ) != 0)
printf(" Link Equalization Request\n");
}
/* Slot Capability 2 */
/* Slot Control 2 */
/* Slot Status 2 */
}
static const char *
pci_conf_print_pcipm_cap_aux(uint16_t caps)
{
switch ((caps >> 6) & 7) {
case 0: return "self-powered";
case 1: return "55 mA";
case 2: return "100 mA";
case 3: return "160 mA";
case 4: return "220 mA";
case 5: return "270 mA";
case 6: return "320 mA";
case 7:
default: return "375 mA";
}
}
static const char *
pci_conf_print_pcipm_cap_pmrev(uint8_t val)
{
static const char unk[] = "unknown";
static const char *pmrev[8] = {
unk, "1.0", "1.1", "1.2", unk, unk, unk, unk
};
if (val > 7)
return unk;
return pmrev[val];
}
static void
pci_conf_print_pcipm_cap(const pcireg_t *regs, int capoff)
{
uint16_t caps, pmcsr;
caps = regs[o2i(capoff)] >> 16;
pmcsr = regs[o2i(capoff + 0x04)] & 0xffff;
printf("\n PCI Power Management Capabilities Register\n");
printf(" Capabilities register: 0x%04x\n", caps);
printf(" Version: %s\n",
pci_conf_print_pcipm_cap_pmrev(caps & 0x3));
onoff("PME# clock", caps, 0x4);
onoff("Device specific initialization", caps, 0x20);
printf(" 3.3V auxiliary current: %s\n",
pci_conf_print_pcipm_cap_aux(caps));
onoff("D1 power management state support", (caps >> 9), 1);
onoff("D2 power management state support", (caps >> 10), 1);
printf(" PME# support: 0x%02x\n", caps >> 11);
printf(" Control/status register: 0x%04x\n", pmcsr);
printf(" Power state: D%d\n", pmcsr & 3);
onoff("PCI Express reserved", (pmcsr >> 2), 1);
onoff("No soft reset", (pmcsr >> 3), 1);
printf(" PME# assertion %sabled\n",
(pmcsr >> 8) & 1 ? "en" : "dis");
printf(" PME# status: %s\n", (pmcsr >> 15) ? "on" : "off");
}
static void
pci_conf_print_msi_cap(const pcireg_t *regs, int capoff)
{
uint32_t ctl, mmc, mme;
regs += o2i(capoff);
ctl = *regs++;
mmc = __SHIFTOUT(ctl, PCI_MSI_CTL_MMC_MASK);
mme = __SHIFTOUT(ctl, PCI_MSI_CTL_MME_MASK);
printf("\n PCI Message Signaled Interrupt\n");
printf(" Message Control register: 0x%04x\n", ctl >> 16);
onoff("MSI Enabled", ctl, PCI_MSI_CTL_MSI_ENABLE);
printf(" Multiple Message Capable: %s (%d vector%s)\n",
mmc > 0 ? "yes" : "no", 1 << mmc, mmc > 0 ? "s" : "");
printf(" Multiple Message Enabled: %s (%d vector%s)\n",
mme > 0 ? "on" : "off", 1 << mme, mme > 0 ? "s" : "");
onoff("64 Bit Address Capable", ctl, PCI_MSI_CTL_64BIT_ADDR);
onoff("Per-Vector Masking Capable", ctl, PCI_MSI_CTL_PERVEC_MASK);
printf(" Message Address %sregister: 0x%08x\n",
ctl & PCI_MSI_CTL_64BIT_ADDR ? "(lower) " : "", *regs++);
if (ctl & PCI_MSI_CTL_64BIT_ADDR) {
printf(" Message Address %sregister: 0x%08x\n",
"(upper) ", *regs++);
}
printf(" Message Data register: 0x%08x\n", *regs++);
if (ctl & PCI_MSI_CTL_PERVEC_MASK) {
printf(" Vector Mask register: 0x%08x\n", *regs++);
printf(" Vector Pending register: 0x%08x\n", *regs++);
}
}
static void
pci_conf_print_caplist(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs, int capoff)
{
int off;
pcireg_t rval;
int pcie_off = -1, pcipm_off = -1, msi_off = -1;
for (off = PCI_CAPLIST_PTR(regs[o2i(capoff)]);
off != 0;
off = PCI_CAPLIST_NEXT(regs[o2i(off)])) {
rval = regs[o2i(off)];
printf(" Capability register at 0x%02x\n", off);
printf(" type: 0x%02x (", PCI_CAPLIST_CAP(rval));
switch (PCI_CAPLIST_CAP(rval)) {
case PCI_CAP_RESERVED0:
printf("reserved");
break;
case PCI_CAP_PWRMGMT:
printf("Power Management, rev. %s",
pci_conf_print_pcipm_cap_pmrev((rval >> 0) & 0x07));
pcipm_off = off;
break;
case PCI_CAP_AGP:
printf("AGP, rev. %d.%d",
PCI_CAP_AGP_MAJOR(rval),
PCI_CAP_AGP_MINOR(rval));
break;
case PCI_CAP_VPD:
printf("VPD");
break;
case PCI_CAP_SLOTID:
printf("SlotID");
break;
case PCI_CAP_MSI:
printf("MSI");
msi_off = off;
break;
case PCI_CAP_CPCI_HOTSWAP:
printf("CompactPCI Hot-swapping");
break;
case PCI_CAP_PCIX:
printf("PCI-X");
break;
case PCI_CAP_LDT:
printf("LDT");
break;
case PCI_CAP_VENDSPEC:
printf("Vendor-specific");
break;
case PCI_CAP_DEBUGPORT:
printf("Debug Port");
break;
case PCI_CAP_CPCI_RSRCCTL:
printf("CompactPCI Resource Control");
break;
case PCI_CAP_HOTPLUG:
printf("Hot-Plug");
break;
case PCI_CAP_SUBVENDOR:
printf("Sub Vendor ID");
break;
case PCI_CAP_AGP8:
printf("AGP 8x");
break;
case PCI_CAP_SECURE:
printf("Secure Device");
break;
case PCI_CAP_PCIEXPRESS:
printf("PCI Express");
pcie_off = off;
break;
case PCI_CAP_MSIX:
printf("MSI-X");
break;
case PCI_CAP_SATA:
printf("SATA");
break;
case PCI_CAP_PCIAF:
printf("Advanced Features");
break;
default:
printf("unknown");
}
printf(")\n");
}
if (msi_off != -1)
pci_conf_print_msi_cap(regs, msi_off);
if (pcipm_off != -1)
pci_conf_print_pcipm_cap(regs, pcipm_off);
if (pcie_off != -1)
pci_conf_print_pcie_cap(regs, pcie_off);
}
/* Print the Secondary Status Register. */
static void
pci_conf_print_ssr(pcireg_t rval)
{
pcireg_t devsel;
printf(" Secondary status register: 0x%04x\n", rval); /* XXX bits */
onoff("66 MHz capable", rval, __BIT(5));
onoff("User Definable Features (UDF) support", rval, __BIT(6));
onoff("Fast back-to-back capable", rval, __BIT(7));
onoff("Data parity error detected", rval, __BIT(8));
printf(" DEVSEL timing: ");
devsel = __SHIFTOUT(rval, __BITS(10, 9));
switch (devsel) {
case 0:
printf("fast");
break;
case 1:
printf("medium");
break;
case 2:
printf("slow");
break;
default:
printf("unknown/reserved"); /* XXX */
break;
}
printf(" (0x%x)\n", devsel);
onoff("Signalled target abort", rval, __BIT(11));
onoff("Received target abort", rval, __BIT(12));
onoff("Received master abort", rval, __BIT(13));
onoff("Received system error", rval, __BIT(14));
onoff("Detected parity error", rval, __BIT(15));
}
static void
pci_conf_print_type1(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs
#ifdef _KERNEL
, int sizebars
#endif
)
{
int off, width;
pcireg_t rval;
uint32_t base, limit;
uint32_t base_h, limit_h;
uint64_t pbase, plimit;
int use_upper;
/*
* XXX these need to be printed in more detail, need to be
* XXX checked against specs/docs, etc.
*
* This layout was cribbed from the TI PCI2030 PCI-to-PCI
* Bridge chip documentation, and may not be correct with
* respect to various standards. (XXX)
*/
for (off = 0x10; off < 0x18; off += width) {
#ifdef _KERNEL
width = pci_conf_print_bar(pc, tag, regs, off, NULL, sizebars);
#else
width = pci_conf_print_bar(regs, off, NULL);
#endif
}
rval = regs[o2i(PCI_BRIDGE_BUS_REG)];
printf(" Primary bus number: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" Secondary bus number: 0x%02x\n",
(rval >> 8) & 0xff);
printf(" Subordinate bus number: 0x%02x\n",
(rval >> 16) & 0xff);
printf(" Secondary bus latency timer: 0x%02x\n",
(rval >> 24) & 0xff);
rval = regs[o2i(PCI_BRIDGE_STATIO_REG)];
pci_conf_print_ssr(__SHIFTOUT(rval, __BITS(31, 16)));
/* I/O region */
printf(" I/O region:\n");
printf(" base register: 0x%02x\n", (rval >> 0) & 0xff);
printf(" limit register: 0x%02x\n", (rval >> 8) & 0xff);
if (PCI_BRIDGE_IO_32BITS(rval))
use_upper = 1;
else
use_upper = 0;
onoff("32bit I/O", rval, use_upper);
base = (rval & PCI_BRIDGE_STATIO_IOBASE_MASK) << 8;
limit = ((rval >> PCI_BRIDGE_STATIO_IOLIMIT_SHIFT)
& PCI_BRIDGE_STATIO_IOLIMIT_MASK) << 8;
limit |= 0x00000fff;
rval = regs[o2i(PCI_BRIDGE_IOHIGH_REG)];
base_h = (rval >> 0) & 0xffff;
limit_h = (rval >> 16) & 0xffff;
printf(" base upper 16 bits register: 0x%04x\n", base_h);
printf(" limit upper 16 bits register: 0x%04x\n", limit_h);
if (use_upper == 1) {
base |= base_h << 16;
limit |= limit_h << 16;
}
if (base < limit) {
if (use_upper == 1)
printf(" range: 0x%08x-0x%08x\n", base, limit);
else
printf(" range: 0x%04x-0x%04x\n", base, limit);
}
/* Non-prefetchable memory region */
rval = regs[o2i(PCI_BRIDGE_MEMORY_REG)];
printf(" Memory region:\n");
printf(" base register: 0x%04x\n",
(rval >> 0) & 0xffff);
printf(" limit register: 0x%04x\n",
(rval >> 16) & 0xffff);
base = ((rval >> PCI_BRIDGE_MEMORY_BASE_SHIFT)
& PCI_BRIDGE_MEMORY_BASE_MASK) << 20;
limit = (((rval >> PCI_BRIDGE_MEMORY_LIMIT_SHIFT)
& PCI_BRIDGE_MEMORY_LIMIT_MASK) << 20) | 0x000fffff;
if (base < limit)
printf(" range: 0x%08x-0x%08x\n", base, limit);
/* Prefetchable memory region */
rval = regs[o2i(PCI_BRIDGE_PREFETCHMEM_REG)];
printf(" Prefetchable memory region:\n");
printf(" base register: 0x%04x\n",
(rval >> 0) & 0xffff);
printf(" limit register: 0x%04x\n",
(rval >> 16) & 0xffff);
base_h = regs[o2i(PCI_BRIDGE_PREFETCHBASE32_REG)];
limit_h = regs[o2i(PCI_BRIDGE_PREFETCHLIMIT32_REG)];
printf(" base upper 32 bits register: 0x%08x\n",
base_h);
printf(" limit upper 32 bits register: 0x%08x\n",
limit_h);
if (PCI_BRIDGE_PREFETCHMEM_64BITS(rval))
use_upper = 1;
else
use_upper = 0;
onoff("64bit memory address", rval, use_upper);
pbase = ((rval >> PCI_BRIDGE_PREFETCHMEM_BASE_SHIFT)
& PCI_BRIDGE_PREFETCHMEM_BASE_MASK) << 20;
plimit = (((rval >> PCI_BRIDGE_PREFETCHMEM_LIMIT_SHIFT)
& PCI_BRIDGE_PREFETCHMEM_LIMIT_MASK) << 20) | 0x000fffff;
if (use_upper == 1) {
pbase |= (uint64_t)base_h << 32;
plimit |= (uint64_t)limit_h << 32;
}
if (pbase < plimit) {
if (use_upper == 1)
printf(" range: 0x%016" PRIx64 "-0x%016" PRIx64 "\n",
pbase, plimit);
else
printf(" range: 0x%08x-0x%08x\n",
(uint32_t)pbase, (uint32_t)plimit);
}
if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
printf(" Capability list pointer: 0x%02x\n",
PCI_CAPLIST_PTR(regs[o2i(PCI_CAPLISTPTR_REG)]));
else
printf(" Reserved @ 0x34: 0x%08x\n", regs[o2i(0x34)]);
/* XXX */
printf(" Expansion ROM Base Address: 0x%08x\n", regs[o2i(0x38)]);
rval = regs[o2i(PCI_INTERRUPT_REG)];
printf(" Interrupt line: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" Interrupt pin: 0x%02x ",
(rval >> 8) & 0xff);
switch ((rval >> 8) & 0xff) {
case PCI_INTERRUPT_PIN_NONE:
printf("(none)");
break;
case PCI_INTERRUPT_PIN_A:
printf("(pin A)");
break;
case PCI_INTERRUPT_PIN_B:
printf("(pin B)");
break;
case PCI_INTERRUPT_PIN_C:
printf("(pin C)");
break;
case PCI_INTERRUPT_PIN_D:
printf("(pin D)");
break;
default:
printf("(? ? ?)");
break;
}
printf("\n");
rval = (regs[o2i(PCI_BRIDGE_CONTROL_REG)] >> PCI_BRIDGE_CONTROL_SHIFT)
& PCI_BRIDGE_CONTROL_MASK;
printf(" Bridge control register: 0x%04x\n", rval); /* XXX bits */
onoff("Parity error response", rval, 0x0001);
onoff("Secondary SERR forwarding", rval, 0x0002);
onoff("ISA enable", rval, 0x0004);
onoff("VGA enable", rval, 0x0008);
onoff("Master abort reporting", rval, 0x0020);
onoff("Secondary bus reset", rval, 0x0040);
onoff("Fast back-to-back capable", rval, 0x0080);
}
static void
pci_conf_print_type2(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
#endif
const pcireg_t *regs
#ifdef _KERNEL
, int sizebars
#endif
)
{
pcireg_t rval;
/*
* XXX these need to be printed in more detail, need to be
* XXX checked against specs/docs, etc.
*
* This layout was cribbed from the TI PCI1420 PCI-to-CardBus
* controller chip documentation, and may not be correct with
* respect to various standards. (XXX)
*/
#ifdef _KERNEL
pci_conf_print_bar(pc, tag, regs, 0x10,
"CardBus socket/ExCA registers", sizebars);
#else
pci_conf_print_bar(regs, 0x10, "CardBus socket/ExCA registers");
#endif
/* Capability list pointer and secondary status register */
rval = regs[o2i(PCI_CARDBUS_CAPLISTPTR_REG)];
if (regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
printf(" Capability list pointer: 0x%02x\n",
PCI_CAPLIST_PTR(rval));
else
printf(" Reserved @ 0x14: 0x%04" PRIxMAX "\n",
__SHIFTOUT(rval, __BITS(15, 0)));
pci_conf_print_ssr(__SHIFTOUT(rval, __BITS(31, 16)));
rval = regs[o2i(PCI_BRIDGE_BUS_REG)];
printf(" PCI bus number: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" CardBus bus number: 0x%02x\n",
(rval >> 8) & 0xff);
printf(" Subordinate bus number: 0x%02x\n",
(rval >> 16) & 0xff);
printf(" CardBus latency timer: 0x%02x\n",
(rval >> 24) & 0xff);
/* XXX Print more prettily */
printf(" CardBus memory region 0:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x1c)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x20)]);
printf(" CardBus memory region 1:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x24)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x28)]);
printf(" CardBus I/O region 0:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x2c)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x30)]);
printf(" CardBus I/O region 1:\n");
printf(" base register: 0x%08x\n", regs[o2i(0x34)]);
printf(" limit register: 0x%08x\n", regs[o2i(0x38)]);
rval = regs[o2i(PCI_INTERRUPT_REG)];
printf(" Interrupt line: 0x%02x\n",
(rval >> 0) & 0xff);
printf(" Interrupt pin: 0x%02x ",
(rval >> 8) & 0xff);
switch ((rval >> 8) & 0xff) {
case PCI_INTERRUPT_PIN_NONE:
printf("(none)");
break;
case PCI_INTERRUPT_PIN_A:
printf("(pin A)");
break;
case PCI_INTERRUPT_PIN_B:
printf("(pin B)");
break;
case PCI_INTERRUPT_PIN_C:
printf("(pin C)");
break;
case PCI_INTERRUPT_PIN_D:
printf("(pin D)");
break;
default:
printf("(? ? ?)");
break;
}
printf("\n");
rval = (regs[o2i(0x3c)] >> 16) & 0xffff;
printf(" Bridge control register: 0x%04x\n", rval);
onoff("Parity error response", rval, __BIT(0));
onoff("SERR# enable", rval, __BIT(1));
onoff("ISA enable", rval, __BIT(2));
onoff("VGA enable", rval, __BIT(3));
onoff("Master abort mode", rval, __BIT(5));
onoff("Secondary (CardBus) bus reset", rval, __BIT(6));
onoff("Functional interrupts routed by ExCA registers", rval, __BIT(7));
onoff("Memory window 0 prefetchable", rval, __BIT(8));
onoff("Memory window 1 prefetchable", rval, __BIT(9));
onoff("Write posting enable", rval, __BIT(10));
rval = regs[o2i(0x40)];
printf(" Subsystem vendor ID: 0x%04x\n", PCI_VENDOR(rval));
printf(" Subsystem ID: 0x%04x\n", PCI_PRODUCT(rval));
#ifdef _KERNEL
pci_conf_print_bar(pc, tag, regs, 0x44, "legacy-mode registers",
sizebars);
#else
pci_conf_print_bar(regs, 0x44, "legacy-mode registers");
#endif
}
void
pci_conf_print(
#ifdef _KERNEL
pci_chipset_tag_t pc, pcitag_t tag,
void (*printfn)(pci_chipset_tag_t, pcitag_t, const pcireg_t *)
#else
int pcifd, u_int bus, u_int dev, u_int func
#endif
)
{
pcireg_t regs[o2i(256)];
int off, capoff, endoff, hdrtype;
const char *typename;
#ifdef _KERNEL
void (*typeprintfn)(pci_chipset_tag_t, pcitag_t, const pcireg_t *, int);
int sizebars;
#else
void (*typeprintfn)(const pcireg_t *);
#endif
printf("PCI configuration registers:\n");
for (off = 0; off < 256; off += 4) {
#ifdef _KERNEL
regs[o2i(off)] = pci_conf_read(pc, tag, off);
#else
if (pcibus_conf_read(pcifd, bus, dev, func, off,
&regs[o2i(off)]) == -1)
regs[o2i(off)] = 0;
#endif
}
#ifdef _KERNEL
sizebars = 1;
if (PCI_CLASS(regs[o2i(PCI_CLASS_REG)]) == PCI_CLASS_BRIDGE &&
PCI_SUBCLASS(regs[o2i(PCI_CLASS_REG)]) == PCI_SUBCLASS_BRIDGE_HOST)
sizebars = 0;
#endif
/* common header */
printf(" Common header:\n");
pci_conf_print_regs(regs, 0, 16);
printf("\n");
#ifdef _KERNEL
pci_conf_print_common(pc, tag, regs);
#else
pci_conf_print_common(regs);
#endif
printf("\n");
/* type-dependent header */
hdrtype = PCI_HDRTYPE_TYPE(regs[o2i(PCI_BHLC_REG)]);
switch (hdrtype) { /* XXX make a table, eventually */
case 0:
/* Standard device header */
typename = "\"normal\" device";
typeprintfn = &pci_conf_print_type0;
capoff = PCI_CAPLISTPTR_REG;
endoff = 64;
break;
case 1:
/* PCI-PCI bridge header */
typename = "PCI-PCI bridge";
typeprintfn = &pci_conf_print_type1;
capoff = PCI_CAPLISTPTR_REG;
endoff = 64;
break;
case 2:
/* PCI-CardBus bridge header */
typename = "PCI-CardBus bridge";
typeprintfn = &pci_conf_print_type2;
capoff = PCI_CARDBUS_CAPLISTPTR_REG;
endoff = 72;
break;
default:
typename = NULL;
typeprintfn = 0;
capoff = -1;
endoff = 64;
break;
}
printf(" Type %d ", hdrtype);
if (typename != NULL)
printf("(%s) ", typename);
printf("header:\n");
pci_conf_print_regs(regs, 16, endoff);
printf("\n");
if (typeprintfn) {
#ifdef _KERNEL
(*typeprintfn)(pc, tag, regs, sizebars);
#else
(*typeprintfn)(regs);
#endif
} else
printf(" Don't know how to pretty-print type %d header.\n",
hdrtype);
printf("\n");
/* capability list, if present */
if ((regs[o2i(PCI_COMMAND_STATUS_REG)] & PCI_STATUS_CAPLIST_SUPPORT)
&& (capoff > 0)) {
#ifdef _KERNEL
pci_conf_print_caplist(pc, tag, regs, capoff);
#else
pci_conf_print_caplist(regs, capoff);
#endif
printf("\n");
}
/* device-dependent header */
printf(" Device-dependent header:\n");
pci_conf_print_regs(regs, endoff, 256);
printf("\n");
#ifdef _KERNEL
if (printfn)
(*printfn)(pc, tag, regs);
else
printf(" Don't know how to pretty-print device-dependent header.\n");
printf("\n");
#endif /* _KERNEL */
}