NetBSD/sys/netinet/tcp_subr.c
ozaki-r 4c25fb2f83 Add rtcache_unref to release points of rtentry stemming from rtcache
In the MP-safe world, a rtentry stemming from a rtcache can be freed at any
points. So we need to protect rtentries somehow say by reference couting or
passive references. Regardless of the method, we need to call some release
function of a rtentry after using it.

The change adds a new function rtcache_unref to release a rtentry. At this
point, this function does nothing because for now we don't add a reference
to a rtentry when we get one from a rtcache. We will add something useful
in a further commit.

This change is a part of changes for MP-safe routing table. It is separated
to avoid one big change that makes difficult to debug by bisecting.
2016-12-08 05:16:33 +00:00

2493 lines
63 KiB
C

/* $NetBSD: tcp_subr.c,v 1.268 2016/12/08 05:16:33 ozaki-r Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1997, 1998, 2000, 2001, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
* Facility, NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tcp_subr.c,v 1.268 2016/12/08 05:16:33 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_tcp_compat_42.h"
#include "opt_inet_csum.h"
#include "opt_mbuftrace.h"
#endif
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/once.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/protosw.h>
#include <sys/errno.h>
#include <sys/kernel.h>
#include <sys/pool.h>
#include <sys/md5.h>
#include <sys/cprng.h>
#include <net/route.h>
#include <net/if.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#ifdef INET6
#ifndef INET
#include <netinet/in.h>
#endif
#include <netinet/ip6.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_var.h>
#include <netinet6/ip6protosw.h>
#include <netinet/icmp6.h>
#include <netinet6/nd6.h>
#endif
#include <netinet/tcp.h>
#include <netinet/tcp_fsm.h>
#include <netinet/tcp_seq.h>
#include <netinet/tcp_timer.h>
#include <netinet/tcp_var.h>
#include <netinet/tcp_vtw.h>
#include <netinet/tcp_private.h>
#include <netinet/tcp_congctl.h>
#include <netinet/tcpip.h>
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/xform.h>
#ifdef INET6
#include <netipsec/ipsec6.h>
#endif
#include <netipsec/key.h>
#endif /* IPSEC*/
struct inpcbtable tcbtable; /* head of queue of active tcpcb's */
u_int32_t tcp_now; /* slow ticks, for RFC 1323 timestamps */
percpu_t *tcpstat_percpu;
/* patchable/settable parameters for tcp */
int tcp_mssdflt = TCP_MSS;
int tcp_minmss = TCP_MINMSS;
int tcp_rttdflt = TCPTV_SRTTDFLT / PR_SLOWHZ;
int tcp_do_rfc1323 = 1; /* window scaling / timestamps (obsolete) */
int tcp_do_rfc1948 = 0; /* ISS by cryptographic hash */
int tcp_do_sack = 1; /* selective acknowledgement */
int tcp_do_win_scale = 1; /* RFC1323 window scaling */
int tcp_do_timestamps = 1; /* RFC1323 timestamps */
int tcp_ack_on_push = 0; /* set to enable immediate ACK-on-PUSH */
int tcp_do_ecn = 0; /* Explicit Congestion Notification */
#ifndef TCP_INIT_WIN
#define TCP_INIT_WIN 4 /* initial slow start window */
#endif
#ifndef TCP_INIT_WIN_LOCAL
#define TCP_INIT_WIN_LOCAL 4 /* initial slow start window for local nets */
#endif
/*
* Up to 5 we scale linearly, to reach 3 * 1460; then (iw) * 1460.
* This is to simulate current behavior for iw == 4
*/
int tcp_init_win_max[] = {
1 * 1460,
1 * 1460,
2 * 1460,
2 * 1460,
3 * 1460,
5 * 1460,
6 * 1460,
7 * 1460,
8 * 1460,
9 * 1460,
10 * 1460
};
int tcp_init_win = TCP_INIT_WIN;
int tcp_init_win_local = TCP_INIT_WIN_LOCAL;
int tcp_mss_ifmtu = 0;
#ifdef TCP_COMPAT_42
int tcp_compat_42 = 1;
#else
int tcp_compat_42 = 0;
#endif
int tcp_rst_ppslim = 100; /* 100pps */
int tcp_ackdrop_ppslim = 100; /* 100pps */
int tcp_do_loopback_cksum = 0;
int tcp_do_abc = 1; /* RFC3465 Appropriate byte counting. */
int tcp_abc_aggressive = 1; /* 1: L=2*SMSS 0: L=1*SMSS */
int tcp_sack_tp_maxholes = 32;
int tcp_sack_globalmaxholes = 1024;
int tcp_sack_globalholes = 0;
int tcp_ecn_maxretries = 1;
int tcp_msl_enable = 1; /* enable TIME_WAIT truncation */
int tcp_msl_loop = PR_SLOWHZ; /* MSL for loopback */
int tcp_msl_local = 5 * PR_SLOWHZ; /* MSL for 'local' */
int tcp_msl_remote = TCPTV_MSL; /* MSL otherwise */
int tcp_msl_remote_threshold = TCPTV_SRTTDFLT; /* RTT threshold */
int tcp_rttlocal = 0; /* Use RTT to decide who's 'local' */
int tcp4_vtw_enable = 0; /* 1 to enable */
int tcp6_vtw_enable = 0; /* 1 to enable */
int tcp_vtw_was_enabled = 0;
int tcp_vtw_entries = 1 << 4; /* 16 vestigial TIME_WAIT entries */
/* tcb hash */
#ifndef TCBHASHSIZE
#define TCBHASHSIZE 128
#endif
int tcbhashsize = TCBHASHSIZE;
/* syn hash parameters */
#define TCP_SYN_HASH_SIZE 293
#define TCP_SYN_BUCKET_SIZE 35
int tcp_syn_cache_size = TCP_SYN_HASH_SIZE;
int tcp_syn_cache_limit = TCP_SYN_HASH_SIZE*TCP_SYN_BUCKET_SIZE;
int tcp_syn_bucket_limit = 3*TCP_SYN_BUCKET_SIZE;
struct syn_cache_head tcp_syn_cache[TCP_SYN_HASH_SIZE];
int tcp_freeq(struct tcpcb *);
static int tcp_iss_secret_init(void);
#ifdef INET
static void tcp_mtudisc_callback(struct in_addr);
#endif
#ifdef INET6
void tcp6_mtudisc(struct in6pcb *, int);
#endif
static struct pool tcpcb_pool;
static int tcp_drainwanted;
#ifdef TCP_CSUM_COUNTERS
#include <sys/device.h>
#if defined(INET)
struct evcnt tcp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "hwcsum bad");
struct evcnt tcp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "hwcsum ok");
struct evcnt tcp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "hwcsum data");
struct evcnt tcp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "swcsum");
EVCNT_ATTACH_STATIC(tcp_hwcsum_bad);
EVCNT_ATTACH_STATIC(tcp_hwcsum_ok);
EVCNT_ATTACH_STATIC(tcp_hwcsum_data);
EVCNT_ATTACH_STATIC(tcp_swcsum);
#endif /* defined(INET) */
#if defined(INET6)
struct evcnt tcp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp6", "hwcsum bad");
struct evcnt tcp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp6", "hwcsum ok");
struct evcnt tcp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp6", "hwcsum data");
struct evcnt tcp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp6", "swcsum");
EVCNT_ATTACH_STATIC(tcp6_hwcsum_bad);
EVCNT_ATTACH_STATIC(tcp6_hwcsum_ok);
EVCNT_ATTACH_STATIC(tcp6_hwcsum_data);
EVCNT_ATTACH_STATIC(tcp6_swcsum);
#endif /* defined(INET6) */
#endif /* TCP_CSUM_COUNTERS */
#ifdef TCP_OUTPUT_COUNTERS
#include <sys/device.h>
struct evcnt tcp_output_bigheader = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "output big header");
struct evcnt tcp_output_predict_hit = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "output predict hit");
struct evcnt tcp_output_predict_miss = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "output predict miss");
struct evcnt tcp_output_copysmall = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "output copy small");
struct evcnt tcp_output_copybig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "output copy big");
struct evcnt tcp_output_refbig = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp", "output reference big");
EVCNT_ATTACH_STATIC(tcp_output_bigheader);
EVCNT_ATTACH_STATIC(tcp_output_predict_hit);
EVCNT_ATTACH_STATIC(tcp_output_predict_miss);
EVCNT_ATTACH_STATIC(tcp_output_copysmall);
EVCNT_ATTACH_STATIC(tcp_output_copybig);
EVCNT_ATTACH_STATIC(tcp_output_refbig);
#endif /* TCP_OUTPUT_COUNTERS */
#ifdef TCP_REASS_COUNTERS
#include <sys/device.h>
struct evcnt tcp_reass_ = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "tcp_reass", "calls");
struct evcnt tcp_reass_empty = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "insert into empty queue");
struct evcnt tcp_reass_iteration[8] = {
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", ">7 iterations"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "1 iteration"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "2 iterations"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "3 iterations"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "4 iterations"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "5 iterations"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "6 iterations"),
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, &tcp_reass_, "tcp_reass", "7 iterations"),
};
struct evcnt tcp_reass_prependfirst = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "prepend to first");
struct evcnt tcp_reass_prepend = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "prepend");
struct evcnt tcp_reass_insert = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "insert");
struct evcnt tcp_reass_inserttail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "insert at tail");
struct evcnt tcp_reass_append = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "append");
struct evcnt tcp_reass_appendtail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "append to tail fragment");
struct evcnt tcp_reass_overlaptail = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "overlap at end");
struct evcnt tcp_reass_overlapfront = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "overlap at start");
struct evcnt tcp_reass_segdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "duplicate segment");
struct evcnt tcp_reass_fragdup = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
&tcp_reass_, "tcp_reass", "duplicate fragment");
EVCNT_ATTACH_STATIC(tcp_reass_);
EVCNT_ATTACH_STATIC(tcp_reass_empty);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 0);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 1);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 2);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 3);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 4);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 5);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 6);
EVCNT_ATTACH_STATIC2(tcp_reass_iteration, 7);
EVCNT_ATTACH_STATIC(tcp_reass_prependfirst);
EVCNT_ATTACH_STATIC(tcp_reass_prepend);
EVCNT_ATTACH_STATIC(tcp_reass_insert);
EVCNT_ATTACH_STATIC(tcp_reass_inserttail);
EVCNT_ATTACH_STATIC(tcp_reass_append);
EVCNT_ATTACH_STATIC(tcp_reass_appendtail);
EVCNT_ATTACH_STATIC(tcp_reass_overlaptail);
EVCNT_ATTACH_STATIC(tcp_reass_overlapfront);
EVCNT_ATTACH_STATIC(tcp_reass_segdup);
EVCNT_ATTACH_STATIC(tcp_reass_fragdup);
#endif /* TCP_REASS_COUNTERS */
#ifdef MBUFTRACE
struct mowner tcp_mowner = MOWNER_INIT("tcp", "");
struct mowner tcp_rx_mowner = MOWNER_INIT("tcp", "rx");
struct mowner tcp_tx_mowner = MOWNER_INIT("tcp", "tx");
struct mowner tcp_sock_mowner = MOWNER_INIT("tcp", "sock");
struct mowner tcp_sock_rx_mowner = MOWNER_INIT("tcp", "sock rx");
struct mowner tcp_sock_tx_mowner = MOWNER_INIT("tcp", "sock tx");
#endif
callout_t tcp_slowtimo_ch;
static int
do_tcpinit(void)
{
in_pcbinit(&tcbtable, tcbhashsize, tcbhashsize);
pool_init(&tcpcb_pool, sizeof(struct tcpcb), 0, 0, 0, "tcpcbpl",
NULL, IPL_SOFTNET);
tcp_usrreq_init();
/* Initialize timer state. */
tcp_timer_init();
/* Initialize the compressed state engine. */
syn_cache_init();
/* Initialize the congestion control algorithms. */
tcp_congctl_init();
/* Initialize the TCPCB template. */
tcp_tcpcb_template();
/* Initialize reassembly queue */
tcpipqent_init();
/* SACK */
tcp_sack_init();
MOWNER_ATTACH(&tcp_tx_mowner);
MOWNER_ATTACH(&tcp_rx_mowner);
MOWNER_ATTACH(&tcp_reass_mowner);
MOWNER_ATTACH(&tcp_sock_mowner);
MOWNER_ATTACH(&tcp_sock_tx_mowner);
MOWNER_ATTACH(&tcp_sock_rx_mowner);
MOWNER_ATTACH(&tcp_mowner);
tcpstat_percpu = percpu_alloc(sizeof(uint64_t) * TCP_NSTATS);
vtw_earlyinit();
callout_init(&tcp_slowtimo_ch, CALLOUT_MPSAFE);
callout_reset(&tcp_slowtimo_ch, 1, tcp_slowtimo, NULL);
return 0;
}
void
tcp_init_common(unsigned basehlen)
{
static ONCE_DECL(dotcpinit);
unsigned hlen = basehlen + sizeof(struct tcphdr);
unsigned oldhlen;
if (max_linkhdr + hlen > MHLEN)
panic("tcp_init");
while ((oldhlen = max_protohdr) < hlen)
atomic_cas_uint(&max_protohdr, oldhlen, hlen);
RUN_ONCE(&dotcpinit, do_tcpinit);
}
/*
* Tcp initialization
*/
void
tcp_init(void)
{
icmp_mtudisc_callback_register(tcp_mtudisc_callback);
tcp_init_common(sizeof(struct ip));
}
/*
* Create template to be used to send tcp packets on a connection.
* Call after host entry created, allocates an mbuf and fills
* in a skeletal tcp/ip header, minimizing the amount of work
* necessary when the connection is used.
*/
struct mbuf *
tcp_template(struct tcpcb *tp)
{
struct inpcb *inp = tp->t_inpcb;
#ifdef INET6
struct in6pcb *in6p = tp->t_in6pcb;
#endif
struct tcphdr *n;
struct mbuf *m;
int hlen;
switch (tp->t_family) {
case AF_INET:
hlen = sizeof(struct ip);
if (inp)
break;
#ifdef INET6
if (in6p) {
/* mapped addr case */
if (IN6_IS_ADDR_V4MAPPED(&in6p->in6p_laddr)
&& IN6_IS_ADDR_V4MAPPED(&in6p->in6p_faddr))
break;
}
#endif
return NULL; /*EINVAL*/
#ifdef INET6
case AF_INET6:
hlen = sizeof(struct ip6_hdr);
if (in6p) {
/* more sainty check? */
break;
}
return NULL; /*EINVAL*/
#endif
default:
hlen = 0; /*pacify gcc*/
return NULL; /*EAFNOSUPPORT*/
}
#ifdef DIAGNOSTIC
if (hlen + sizeof(struct tcphdr) > MCLBYTES)
panic("mclbytes too small for t_template");
#endif
m = tp->t_template;
if (m && m->m_len == hlen + sizeof(struct tcphdr))
;
else {
if (m)
m_freem(m);
m = tp->t_template = NULL;
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m && hlen + sizeof(struct tcphdr) > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m = NULL;
}
}
if (m == NULL)
return NULL;
MCLAIM(m, &tcp_mowner);
m->m_pkthdr.len = m->m_len = hlen + sizeof(struct tcphdr);
}
memset(mtod(m, void *), 0, m->m_len);
n = (struct tcphdr *)(mtod(m, char *) + hlen);
switch (tp->t_family) {
case AF_INET:
{
struct ipovly *ipov;
mtod(m, struct ip *)->ip_v = 4;
mtod(m, struct ip *)->ip_hl = hlen >> 2;
ipov = mtod(m, struct ipovly *);
ipov->ih_pr = IPPROTO_TCP;
ipov->ih_len = htons(sizeof(struct tcphdr));
if (inp) {
ipov->ih_src = inp->inp_laddr;
ipov->ih_dst = inp->inp_faddr;
}
#ifdef INET6
else if (in6p) {
/* mapped addr case */
bcopy(&in6p->in6p_laddr.s6_addr32[3], &ipov->ih_src,
sizeof(ipov->ih_src));
bcopy(&in6p->in6p_faddr.s6_addr32[3], &ipov->ih_dst,
sizeof(ipov->ih_dst));
}
#endif
/*
* Compute the pseudo-header portion of the checksum
* now. We incrementally add in the TCP option and
* payload lengths later, and then compute the TCP
* checksum right before the packet is sent off onto
* the wire.
*/
n->th_sum = in_cksum_phdr(ipov->ih_src.s_addr,
ipov->ih_dst.s_addr,
htons(sizeof(struct tcphdr) + IPPROTO_TCP));
break;
}
#ifdef INET6
case AF_INET6:
{
struct ip6_hdr *ip6;
mtod(m, struct ip *)->ip_v = 6;
ip6 = mtod(m, struct ip6_hdr *);
ip6->ip6_nxt = IPPROTO_TCP;
ip6->ip6_plen = htons(sizeof(struct tcphdr));
ip6->ip6_src = in6p->in6p_laddr;
ip6->ip6_dst = in6p->in6p_faddr;
ip6->ip6_flow = in6p->in6p_flowinfo & IPV6_FLOWINFO_MASK;
if (ip6_auto_flowlabel) {
ip6->ip6_flow &= ~IPV6_FLOWLABEL_MASK;
ip6->ip6_flow |=
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
}
ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
ip6->ip6_vfc |= IPV6_VERSION;
/*
* Compute the pseudo-header portion of the checksum
* now. We incrementally add in the TCP option and
* payload lengths later, and then compute the TCP
* checksum right before the packet is sent off onto
* the wire.
*/
n->th_sum = in6_cksum_phdr(&in6p->in6p_laddr,
&in6p->in6p_faddr, htonl(sizeof(struct tcphdr)),
htonl(IPPROTO_TCP));
break;
}
#endif
}
if (inp) {
n->th_sport = inp->inp_lport;
n->th_dport = inp->inp_fport;
}
#ifdef INET6
else if (in6p) {
n->th_sport = in6p->in6p_lport;
n->th_dport = in6p->in6p_fport;
}
#endif
n->th_seq = 0;
n->th_ack = 0;
n->th_x2 = 0;
n->th_off = 5;
n->th_flags = 0;
n->th_win = 0;
n->th_urp = 0;
return (m);
}
/*
* Send a single message to the TCP at address specified by
* the given TCP/IP header. If m == 0, then we make a copy
* of the tcpiphdr at ti and send directly to the addressed host.
* This is used to force keep alive messages out using the TCP
* template for a connection tp->t_template. If flags are given
* then we send a message back to the TCP which originated the
* segment ti, and discard the mbuf containing it and any other
* attached mbufs.
*
* In any case the ack and sequence number of the transmitted
* segment are as specified by the parameters.
*/
int
tcp_respond(struct tcpcb *tp, struct mbuf *mtemplate, struct mbuf *m,
struct tcphdr *th0, tcp_seq ack, tcp_seq seq, int flags)
{
struct route *ro;
int error, tlen, win = 0;
int hlen;
struct ip *ip;
#ifdef INET6
struct ip6_hdr *ip6;
#endif
int family; /* family on packet, not inpcb/in6pcb! */
struct tcphdr *th;
struct socket *so;
if (tp != NULL && (flags & TH_RST) == 0) {
#ifdef DIAGNOSTIC
if (tp->t_inpcb && tp->t_in6pcb)
panic("tcp_respond: both t_inpcb and t_in6pcb are set");
#endif
#ifdef INET
if (tp->t_inpcb)
win = sbspace(&tp->t_inpcb->inp_socket->so_rcv);
#endif
#ifdef INET6
if (tp->t_in6pcb)
win = sbspace(&tp->t_in6pcb->in6p_socket->so_rcv);
#endif
}
th = NULL; /* Quell uninitialized warning */
ip = NULL;
#ifdef INET6
ip6 = NULL;
#endif
if (m == 0) {
if (!mtemplate)
return EINVAL;
/* get family information from template */
switch (mtod(mtemplate, struct ip *)->ip_v) {
case 4:
family = AF_INET;
hlen = sizeof(struct ip);
break;
#ifdef INET6
case 6:
family = AF_INET6;
hlen = sizeof(struct ip6_hdr);
break;
#endif
default:
return EAFNOSUPPORT;
}
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m) {
MCLAIM(m, &tcp_tx_mowner);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
m = NULL;
}
}
if (m == NULL)
return (ENOBUFS);
if (tcp_compat_42)
tlen = 1;
else
tlen = 0;
m->m_data += max_linkhdr;
bcopy(mtod(mtemplate, void *), mtod(m, void *),
mtemplate->m_len);
switch (family) {
case AF_INET:
ip = mtod(m, struct ip *);
th = (struct tcphdr *)(ip + 1);
break;
#ifdef INET6
case AF_INET6:
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)(ip6 + 1);
break;
#endif
#if 0
default:
/* noone will visit here */
m_freem(m);
return EAFNOSUPPORT;
#endif
}
flags = TH_ACK;
} else {
if ((m->m_flags & M_PKTHDR) == 0) {
#if 0
printf("non PKTHDR to tcp_respond\n");
#endif
m_freem(m);
return EINVAL;
}
#ifdef DIAGNOSTIC
if (!th0)
panic("th0 == NULL in tcp_respond");
#endif
/* get family information from m */
switch (mtod(m, struct ip *)->ip_v) {
case 4:
family = AF_INET;
hlen = sizeof(struct ip);
ip = mtod(m, struct ip *);
break;
#ifdef INET6
case 6:
family = AF_INET6;
hlen = sizeof(struct ip6_hdr);
ip6 = mtod(m, struct ip6_hdr *);
break;
#endif
default:
m_freem(m);
return EAFNOSUPPORT;
}
/* clear h/w csum flags inherited from rx packet */
m->m_pkthdr.csum_flags = 0;
if ((flags & TH_SYN) == 0 || sizeof(*th0) > (th0->th_off << 2))
tlen = sizeof(*th0);
else
tlen = th0->th_off << 2;
if (m->m_len > hlen + tlen && (m->m_flags & M_EXT) == 0 &&
mtod(m, char *) + hlen == (char *)th0) {
m->m_len = hlen + tlen;
m_freem(m->m_next);
m->m_next = NULL;
} else {
struct mbuf *n;
#ifdef DIAGNOSTIC
if (max_linkhdr + hlen + tlen > MCLBYTES) {
m_freem(m);
return EMSGSIZE;
}
#endif
MGETHDR(n, M_DONTWAIT, MT_HEADER);
if (n && max_linkhdr + hlen + tlen > MHLEN) {
MCLGET(n, M_DONTWAIT);
if ((n->m_flags & M_EXT) == 0) {
m_freem(n);
n = NULL;
}
}
if (!n) {
m_freem(m);
return ENOBUFS;
}
MCLAIM(n, &tcp_tx_mowner);
n->m_data += max_linkhdr;
n->m_len = hlen + tlen;
m_copyback(n, 0, hlen, mtod(m, void *));
m_copyback(n, hlen, tlen, (void *)th0);
m_freem(m);
m = n;
n = NULL;
}
#define xchg(a,b,type) { type t; t=a; a=b; b=t; }
switch (family) {
case AF_INET:
ip = mtod(m, struct ip *);
th = (struct tcphdr *)(ip + 1);
ip->ip_p = IPPROTO_TCP;
xchg(ip->ip_dst, ip->ip_src, struct in_addr);
ip->ip_p = IPPROTO_TCP;
break;
#ifdef INET6
case AF_INET6:
ip6 = mtod(m, struct ip6_hdr *);
th = (struct tcphdr *)(ip6 + 1);
ip6->ip6_nxt = IPPROTO_TCP;
xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
ip6->ip6_nxt = IPPROTO_TCP;
break;
#endif
#if 0
default:
/* noone will visit here */
m_freem(m);
return EAFNOSUPPORT;
#endif
}
xchg(th->th_dport, th->th_sport, u_int16_t);
#undef xchg
tlen = 0; /*be friendly with the following code*/
}
th->th_seq = htonl(seq);
th->th_ack = htonl(ack);
th->th_x2 = 0;
if ((flags & TH_SYN) == 0) {
if (tp)
win >>= tp->rcv_scale;
if (win > TCP_MAXWIN)
win = TCP_MAXWIN;
th->th_win = htons((u_int16_t)win);
th->th_off = sizeof (struct tcphdr) >> 2;
tlen += sizeof(*th);
} else
tlen += th->th_off << 2;
m->m_len = hlen + tlen;
m->m_pkthdr.len = hlen + tlen;
m_reset_rcvif(m);
th->th_flags = flags;
th->th_urp = 0;
switch (family) {
#ifdef INET
case AF_INET:
{
struct ipovly *ipov = (struct ipovly *)ip;
memset(ipov->ih_x1, 0, sizeof ipov->ih_x1);
ipov->ih_len = htons((u_int16_t)tlen);
th->th_sum = 0;
th->th_sum = in_cksum(m, hlen + tlen);
ip->ip_len = htons(hlen + tlen);
ip->ip_ttl = ip_defttl;
break;
}
#endif
#ifdef INET6
case AF_INET6:
{
th->th_sum = 0;
th->th_sum = in6_cksum(m, IPPROTO_TCP, sizeof(struct ip6_hdr),
tlen);
ip6->ip6_plen = htons(tlen);
if (tp && tp->t_in6pcb)
ip6->ip6_hlim = in6_selecthlim_rt(tp->t_in6pcb);
else
ip6->ip6_hlim = ip6_defhlim;
ip6->ip6_flow &= ~IPV6_FLOWINFO_MASK;
if (ip6_auto_flowlabel) {
ip6->ip6_flow |=
(htonl(ip6_randomflowlabel()) & IPV6_FLOWLABEL_MASK);
}
break;
}
#endif
}
if (tp && tp->t_inpcb)
so = tp->t_inpcb->inp_socket;
#ifdef INET6
else if (tp && tp->t_in6pcb)
so = tp->t_in6pcb->in6p_socket;
#endif
else
so = NULL;
if (tp != NULL && tp->t_inpcb != NULL) {
ro = &tp->t_inpcb->inp_route;
#ifdef DIAGNOSTIC
if (family != AF_INET)
panic("tcp_respond: address family mismatch");
if (!in_hosteq(ip->ip_dst, tp->t_inpcb->inp_faddr)) {
panic("tcp_respond: ip_dst %x != inp_faddr %x",
ntohl(ip->ip_dst.s_addr),
ntohl(tp->t_inpcb->inp_faddr.s_addr));
}
#endif
}
#ifdef INET6
else if (tp != NULL && tp->t_in6pcb != NULL) {
ro = (struct route *)&tp->t_in6pcb->in6p_route;
#ifdef DIAGNOSTIC
if (family == AF_INET) {
if (!IN6_IS_ADDR_V4MAPPED(&tp->t_in6pcb->in6p_faddr))
panic("tcp_respond: not mapped addr");
if (memcmp(&ip->ip_dst,
&tp->t_in6pcb->in6p_faddr.s6_addr32[3],
sizeof(ip->ip_dst)) != 0) {
panic("tcp_respond: ip_dst != in6p_faddr");
}
} else if (family == AF_INET6) {
if (!IN6_ARE_ADDR_EQUAL(&ip6->ip6_dst,
&tp->t_in6pcb->in6p_faddr))
panic("tcp_respond: ip6_dst != in6p_faddr");
} else
panic("tcp_respond: address family mismatch");
#endif
}
#endif
else
ro = NULL;
switch (family) {
#ifdef INET
case AF_INET:
error = ip_output(m, NULL, ro,
(tp && tp->t_mtudisc ? IP_MTUDISC : 0), NULL, so);
break;
#endif
#ifdef INET6
case AF_INET6:
error = ip6_output(m, NULL, ro, 0, NULL, so, NULL);
break;
#endif
default:
error = EAFNOSUPPORT;
break;
}
return (error);
}
/*
* Template TCPCB. Rather than zeroing a new TCPCB and initializing
* a bunch of members individually, we maintain this template for the
* static and mostly-static components of the TCPCB, and copy it into
* the new TCPCB instead.
*/
static struct tcpcb tcpcb_template = {
.t_srtt = TCPTV_SRTTBASE,
.t_rttmin = TCPTV_MIN,
.snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT,
.snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT,
.snd_numholes = 0,
.snd_cubic_wmax = 0,
.snd_cubic_wmax_last = 0,
.snd_cubic_ctime = 0,
.t_partialacks = -1,
.t_bytes_acked = 0,
.t_sndrexmitpack = 0,
.t_rcvoopack = 0,
.t_sndzerowin = 0,
};
/*
* Updates the TCPCB template whenever a parameter that would affect
* the template is changed.
*/
void
tcp_tcpcb_template(void)
{
struct tcpcb *tp = &tcpcb_template;
int flags;
tp->t_peermss = tcp_mssdflt;
tp->t_ourmss = tcp_mssdflt;
tp->t_segsz = tcp_mssdflt;
flags = 0;
if (tcp_do_rfc1323 && tcp_do_win_scale)
flags |= TF_REQ_SCALE;
if (tcp_do_rfc1323 && tcp_do_timestamps)
flags |= TF_REQ_TSTMP;
tp->t_flags = flags;
/*
* Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
* rtt estimate. Set rttvar so that srtt + 2 * rttvar gives
* reasonable initial retransmit time.
*/
tp->t_rttvar = tcp_rttdflt * PR_SLOWHZ << (TCP_RTTVAR_SHIFT + 2 - 1);
TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
TCPTV_MIN, TCPTV_REXMTMAX);
/* Keep Alive */
tp->t_keepinit = tcp_keepinit;
tp->t_keepidle = tcp_keepidle;
tp->t_keepintvl = tcp_keepintvl;
tp->t_keepcnt = tcp_keepcnt;
tp->t_maxidle = tp->t_keepcnt * tp->t_keepintvl;
/* MSL */
tp->t_msl = TCPTV_MSL;
}
/*
* Create a new TCP control block, making an
* empty reassembly queue and hooking it to the argument
* protocol control block.
*/
/* family selects inpcb, or in6pcb */
struct tcpcb *
tcp_newtcpcb(int family, void *aux)
{
struct tcpcb *tp;
int i;
/* XXX Consider using a pool_cache for speed. */
tp = pool_get(&tcpcb_pool, PR_NOWAIT); /* splsoftnet via tcp_usrreq */
if (tp == NULL)
return (NULL);
memcpy(tp, &tcpcb_template, sizeof(*tp));
TAILQ_INIT(&tp->segq);
TAILQ_INIT(&tp->timeq);
tp->t_family = family; /* may be overridden later on */
TAILQ_INIT(&tp->snd_holes);
LIST_INIT(&tp->t_sc); /* XXX can template this */
/* Don't sweat this loop; hopefully the compiler will unroll it. */
for (i = 0; i < TCPT_NTIMERS; i++) {
callout_init(&tp->t_timer[i], CALLOUT_MPSAFE);
TCP_TIMER_INIT(tp, i);
}
callout_init(&tp->t_delack_ch, CALLOUT_MPSAFE);
switch (family) {
case AF_INET:
{
struct inpcb *inp = (struct inpcb *)aux;
inp->inp_ip.ip_ttl = ip_defttl;
inp->inp_ppcb = (void *)tp;
tp->t_inpcb = inp;
tp->t_mtudisc = ip_mtudisc;
break;
}
#ifdef INET6
case AF_INET6:
{
struct in6pcb *in6p = (struct in6pcb *)aux;
in6p->in6p_ip6.ip6_hlim = in6_selecthlim_rt(in6p);
in6p->in6p_ppcb = (void *)tp;
tp->t_in6pcb = in6p;
/* for IPv6, always try to run path MTU discovery */
tp->t_mtudisc = 1;
break;
}
#endif /* INET6 */
default:
for (i = 0; i < TCPT_NTIMERS; i++)
callout_destroy(&tp->t_timer[i]);
callout_destroy(&tp->t_delack_ch);
pool_put(&tcpcb_pool, tp); /* splsoftnet via tcp_usrreq */
return (NULL);
}
/*
* Initialize our timebase. When we send timestamps, we take
* the delta from tcp_now -- this means each connection always
* gets a timebase of 1, which makes it, among other things,
* more difficult to determine how long a system has been up,
* and thus how many TCP sequence increments have occurred.
*
* We start with 1, because 0 doesn't work with linux, which
* considers timestamp 0 in a SYN packet as a bug and disables
* timestamps.
*/
tp->ts_timebase = tcp_now - 1;
tcp_congctl_select(tp, tcp_congctl_global_name);
return (tp);
}
/*
* Drop a TCP connection, reporting
* the specified error. If connection is synchronized,
* then send a RST to peer.
*/
struct tcpcb *
tcp_drop(struct tcpcb *tp, int errno)
{
struct socket *so = NULL;
#ifdef DIAGNOSTIC
if (tp->t_inpcb && tp->t_in6pcb)
panic("tcp_drop: both t_inpcb and t_in6pcb are set");
#endif
#ifdef INET
if (tp->t_inpcb)
so = tp->t_inpcb->inp_socket;
#endif
#ifdef INET6
if (tp->t_in6pcb)
so = tp->t_in6pcb->in6p_socket;
#endif
if (!so)
return NULL;
if (TCPS_HAVERCVDSYN(tp->t_state)) {
tp->t_state = TCPS_CLOSED;
(void) tcp_output(tp);
TCP_STATINC(TCP_STAT_DROPS);
} else
TCP_STATINC(TCP_STAT_CONNDROPS);
if (errno == ETIMEDOUT && tp->t_softerror)
errno = tp->t_softerror;
so->so_error = errno;
return (tcp_close(tp));
}
/*
* Close a TCP control block:
* discard all space held by the tcp
* discard internet protocol block
* wake up any sleepers
*/
struct tcpcb *
tcp_close(struct tcpcb *tp)
{
struct inpcb *inp;
#ifdef INET6
struct in6pcb *in6p;
#endif
struct socket *so;
#ifdef RTV_RTT
struct rtentry *rt = NULL;
#endif
struct route *ro;
int j;
inp = tp->t_inpcb;
#ifdef INET6
in6p = tp->t_in6pcb;
#endif
so = NULL;
ro = NULL;
if (inp) {
so = inp->inp_socket;
ro = &inp->inp_route;
}
#ifdef INET6
else if (in6p) {
so = in6p->in6p_socket;
ro = (struct route *)&in6p->in6p_route;
}
#endif
#ifdef RTV_RTT
/*
* If we sent enough data to get some meaningful characteristics,
* save them in the routing entry. 'Enough' is arbitrarily
* defined as the sendpipesize (default 4K) * 16. This would
* give us 16 rtt samples assuming we only get one sample per
* window (the usual case on a long haul net). 16 samples is
* enough for the srtt filter to converge to within 5% of the correct
* value; fewer samples and we could save a very bogus rtt.
*
* Don't update the default route's characteristics and don't
* update anything that the user "locked".
*/
if (SEQ_LT(tp->iss + so->so_snd.sb_hiwat * 16, tp->snd_max) &&
ro && (rt = rtcache_validate(ro)) != NULL &&
!in_nullhost(satocsin(rt_getkey(rt))->sin_addr)) {
u_long i = 0;
if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
i = tp->t_srtt *
((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
if (rt->rt_rmx.rmx_rtt && i)
/*
* filter this update to half the old & half
* the new values, converting scale.
* See route.h and tcp_var.h for a
* description of the scaling constants.
*/
rt->rt_rmx.rmx_rtt =
(rt->rt_rmx.rmx_rtt + i) / 2;
else
rt->rt_rmx.rmx_rtt = i;
}
if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
i = tp->t_rttvar *
((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
if (rt->rt_rmx.rmx_rttvar && i)
rt->rt_rmx.rmx_rttvar =
(rt->rt_rmx.rmx_rttvar + i) / 2;
else
rt->rt_rmx.rmx_rttvar = i;
}
/*
* update the pipelimit (ssthresh) if it has been updated
* already or if a pipesize was specified & the threshhold
* got below half the pipesize. I.e., wait for bad news
* before we start updating, then update on both good
* and bad news.
*/
if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
(i = tp->snd_ssthresh) && rt->rt_rmx.rmx_ssthresh) ||
i < (rt->rt_rmx.rmx_sendpipe / 2)) {
/*
* convert the limit from user data bytes to
* packets then to packet data bytes.
*/
i = (i + tp->t_segsz / 2) / tp->t_segsz;
if (i < 2)
i = 2;
i *= (u_long)(tp->t_segsz + sizeof (struct tcpiphdr));
if (rt->rt_rmx.rmx_ssthresh)
rt->rt_rmx.rmx_ssthresh =
(rt->rt_rmx.rmx_ssthresh + i) / 2;
else
rt->rt_rmx.rmx_ssthresh = i;
}
}
rtcache_unref(rt, ro);
#endif /* RTV_RTT */
/* free the reassembly queue, if any */
TCP_REASS_LOCK(tp);
(void) tcp_freeq(tp);
TCP_REASS_UNLOCK(tp);
/* free the SACK holes list. */
tcp_free_sackholes(tp);
tcp_congctl_release(tp);
syn_cache_cleanup(tp);
if (tp->t_template) {
m_free(tp->t_template);
tp->t_template = NULL;
}
/*
* Detaching the pcb will unlock the socket/tcpcb, and stopping
* the timers can also drop the lock. We need to prevent access
* to the tcpcb as it's half torn down. Flag the pcb as dead
* (prevents access by timers) and only then detach it.
*/
tp->t_flags |= TF_DEAD;
if (inp) {
inp->inp_ppcb = 0;
soisdisconnected(so);
in_pcbdetach(inp);
}
#ifdef INET6
else if (in6p) {
in6p->in6p_ppcb = 0;
soisdisconnected(so);
in6_pcbdetach(in6p);
}
#endif
/*
* pcb is no longer visble elsewhere, so we can safely release
* the lock in callout_halt() if needed.
*/
TCP_STATINC(TCP_STAT_CLOSED);
for (j = 0; j < TCPT_NTIMERS; j++) {
callout_halt(&tp->t_timer[j], softnet_lock);
callout_destroy(&tp->t_timer[j]);
}
callout_halt(&tp->t_delack_ch, softnet_lock);
callout_destroy(&tp->t_delack_ch);
pool_put(&tcpcb_pool, tp);
return NULL;
}
int
tcp_freeq(struct tcpcb *tp)
{
struct ipqent *qe;
int rv = 0;
#ifdef TCPREASS_DEBUG
int i = 0;
#endif
TCP_REASS_LOCK_CHECK(tp);
while ((qe = TAILQ_FIRST(&tp->segq)) != NULL) {
#ifdef TCPREASS_DEBUG
printf("tcp_freeq[%p,%d]: %u:%u(%u) 0x%02x\n",
tp, i++, qe->ipqe_seq, qe->ipqe_seq + qe->ipqe_len,
qe->ipqe_len, qe->ipqe_flags & (TH_SYN|TH_FIN|TH_RST));
#endif
TAILQ_REMOVE(&tp->segq, qe, ipqe_q);
TAILQ_REMOVE(&tp->timeq, qe, ipqe_timeq);
m_freem(qe->ipqe_m);
tcpipqent_free(qe);
rv = 1;
}
tp->t_segqlen = 0;
KASSERT(TAILQ_EMPTY(&tp->timeq));
return (rv);
}
void
tcp_fasttimo(void)
{
if (tcp_drainwanted) {
tcp_drain();
tcp_drainwanted = 0;
}
}
void
tcp_drainstub(void)
{
tcp_drainwanted = 1;
}
/*
* Protocol drain routine. Called when memory is in short supply.
* Called from pr_fasttimo thus a callout context.
*/
void
tcp_drain(void)
{
struct inpcb_hdr *inph;
struct tcpcb *tp;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
/*
* Free the sequence queue of all TCP connections.
*/
TAILQ_FOREACH(inph, &tcbtable.inpt_queue, inph_queue) {
switch (inph->inph_af) {
case AF_INET:
tp = intotcpcb((struct inpcb *)inph);
break;
#ifdef INET6
case AF_INET6:
tp = in6totcpcb((struct in6pcb *)inph);
break;
#endif
default:
tp = NULL;
break;
}
if (tp != NULL) {
/*
* We may be called from a device's interrupt
* context. If the tcpcb is already busy,
* just bail out now.
*/
if (tcp_reass_lock_try(tp) == 0)
continue;
if (tcp_freeq(tp))
TCP_STATINC(TCP_STAT_CONNSDRAINED);
TCP_REASS_UNLOCK(tp);
}
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* Notify a tcp user of an asynchronous error;
* store error as soft error, but wake up user
* (for now, won't do anything until can select for soft error).
*/
void
tcp_notify(struct inpcb *inp, int error)
{
struct tcpcb *tp = (struct tcpcb *)inp->inp_ppcb;
struct socket *so = inp->inp_socket;
/*
* Ignore some errors if we are hooked up.
* If connection hasn't completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(error == EHOSTUNREACH || error == ENETUNREACH ||
error == EHOSTDOWN)) {
return;
} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
tp->t_rxtshift > 3 && tp->t_softerror)
so->so_error = error;
else
tp->t_softerror = error;
cv_broadcast(&so->so_cv);
sorwakeup(so);
sowwakeup(so);
}
#ifdef INET6
void
tcp6_notify(struct in6pcb *in6p, int error)
{
struct tcpcb *tp = (struct tcpcb *)in6p->in6p_ppcb;
struct socket *so = in6p->in6p_socket;
/*
* Ignore some errors if we are hooked up.
* If connection hasn't completed, has retransmitted several times,
* and receives a second error, give up now. This is better
* than waiting a long time to establish a connection that
* can never complete.
*/
if (tp->t_state == TCPS_ESTABLISHED &&
(error == EHOSTUNREACH || error == ENETUNREACH ||
error == EHOSTDOWN)) {
return;
} else if (TCPS_HAVEESTABLISHED(tp->t_state) == 0 &&
tp->t_rxtshift > 3 && tp->t_softerror)
so->so_error = error;
else
tp->t_softerror = error;
cv_broadcast(&so->so_cv);
sorwakeup(so);
sowwakeup(so);
}
#endif
#ifdef INET6
void *
tcp6_ctlinput(int cmd, const struct sockaddr *sa, void *d)
{
struct tcphdr th;
void (*notify)(struct in6pcb *, int) = tcp6_notify;
int nmatch;
struct ip6_hdr *ip6;
const struct sockaddr_in6 *sa6_src = NULL;
const struct sockaddr_in6 *sa6 = (const struct sockaddr_in6 *)sa;
struct mbuf *m;
int off;
if (sa->sa_family != AF_INET6 ||
sa->sa_len != sizeof(struct sockaddr_in6))
return NULL;
if ((unsigned)cmd >= PRC_NCMDS)
return NULL;
else if (cmd == PRC_QUENCH) {
/*
* Don't honor ICMP Source Quench messages meant for
* TCP connections.
*/
return NULL;
} else if (PRC_IS_REDIRECT(cmd))
notify = in6_rtchange, d = NULL;
else if (cmd == PRC_MSGSIZE)
; /* special code is present, see below */
else if (cmd == PRC_HOSTDEAD)
d = NULL;
else if (inet6ctlerrmap[cmd] == 0)
return NULL;
/* if the parameter is from icmp6, decode it. */
if (d != NULL) {
struct ip6ctlparam *ip6cp = (struct ip6ctlparam *)d;
m = ip6cp->ip6c_m;
ip6 = ip6cp->ip6c_ip6;
off = ip6cp->ip6c_off;
sa6_src = ip6cp->ip6c_src;
} else {
m = NULL;
ip6 = NULL;
sa6_src = &sa6_any;
off = 0;
}
if (ip6) {
/*
* XXX: We assume that when ip6 is non NULL,
* M and OFF are valid.
*/
/* check if we can safely examine src and dst ports */
if (m->m_pkthdr.len < off + sizeof(th)) {
if (cmd == PRC_MSGSIZE)
icmp6_mtudisc_update((struct ip6ctlparam *)d, 0);
return NULL;
}
memset(&th, 0, sizeof(th));
m_copydata(m, off, sizeof(th), (void *)&th);
if (cmd == PRC_MSGSIZE) {
int valid = 0;
/*
* Check to see if we have a valid TCP connection
* corresponding to the address in the ICMPv6 message
* payload.
*/
if (in6_pcblookup_connect(&tcbtable, &sa6->sin6_addr,
th.th_dport,
(const struct in6_addr *)&sa6_src->sin6_addr,
th.th_sport, 0, 0))
valid++;
/*
* Depending on the value of "valid" and routing table
* size (mtudisc_{hi,lo}wat), we will:
* - recalcurate the new MTU and create the
* corresponding routing entry, or
* - ignore the MTU change notification.
*/
icmp6_mtudisc_update((struct ip6ctlparam *)d, valid);
/*
* no need to call in6_pcbnotify, it should have been
* called via callback if necessary
*/
return NULL;
}
nmatch = in6_pcbnotify(&tcbtable, sa, th.th_dport,
(const struct sockaddr *)sa6_src, th.th_sport, cmd, NULL, notify);
if (nmatch == 0 && syn_cache_count &&
(inet6ctlerrmap[cmd] == EHOSTUNREACH ||
inet6ctlerrmap[cmd] == ENETUNREACH ||
inet6ctlerrmap[cmd] == EHOSTDOWN))
syn_cache_unreach((const struct sockaddr *)sa6_src,
sa, &th);
} else {
(void) in6_pcbnotify(&tcbtable, sa, 0,
(const struct sockaddr *)sa6_src, 0, cmd, NULL, notify);
}
return NULL;
}
#endif
#ifdef INET
/* assumes that ip header and tcp header are contiguous on mbuf */
void *
tcp_ctlinput(int cmd, const struct sockaddr *sa, void *v)
{
struct ip *ip = v;
struct tcphdr *th;
struct icmp *icp;
extern const int inetctlerrmap[];
void (*notify)(struct inpcb *, int) = tcp_notify;
int errno;
int nmatch;
struct tcpcb *tp;
u_int mtu;
tcp_seq seq;
struct inpcb *inp;
#ifdef INET6
struct in6pcb *in6p;
struct in6_addr src6, dst6;
#endif
if (sa->sa_family != AF_INET ||
sa->sa_len != sizeof(struct sockaddr_in))
return NULL;
if ((unsigned)cmd >= PRC_NCMDS)
return NULL;
errno = inetctlerrmap[cmd];
if (cmd == PRC_QUENCH)
/*
* Don't honor ICMP Source Quench messages meant for
* TCP connections.
*/
return NULL;
else if (PRC_IS_REDIRECT(cmd))
notify = in_rtchange, ip = 0;
else if (cmd == PRC_MSGSIZE && ip && ip->ip_v == 4) {
/*
* Check to see if we have a valid TCP connection
* corresponding to the address in the ICMP message
* payload.
*
* Boundary check is made in icmp_input(), with ICMP_ADVLENMIN.
*/
th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
#ifdef INET6
in6_in_2_v4mapin6(&ip->ip_src, &src6);
in6_in_2_v4mapin6(&ip->ip_dst, &dst6);
#endif
if ((inp = in_pcblookup_connect(&tcbtable, ip->ip_dst,
th->th_dport, ip->ip_src, th->th_sport, 0)) != NULL)
#ifdef INET6
in6p = NULL;
#else
;
#endif
#ifdef INET6
else if ((in6p = in6_pcblookup_connect(&tcbtable, &dst6,
th->th_dport, &src6, th->th_sport, 0, 0)) != NULL)
;
#endif
else
return NULL;
/*
* Now that we've validated that we are actually communicating
* with the host indicated in the ICMP message, locate the
* ICMP header, recalculate the new MTU, and create the
* corresponding routing entry.
*/
icp = (struct icmp *)((char *)ip -
offsetof(struct icmp, icmp_ip));
if (inp) {
if ((tp = intotcpcb(inp)) == NULL)
return NULL;
}
#ifdef INET6
else if (in6p) {
if ((tp = in6totcpcb(in6p)) == NULL)
return NULL;
}
#endif
else
return NULL;
seq = ntohl(th->th_seq);
if (SEQ_LT(seq, tp->snd_una) || SEQ_GT(seq, tp->snd_max))
return NULL;
/*
* If the ICMP message advertises a Next-Hop MTU
* equal or larger than the maximum packet size we have
* ever sent, drop the message.
*/
mtu = (u_int)ntohs(icp->icmp_nextmtu);
if (mtu >= tp->t_pmtud_mtu_sent)
return NULL;
if (mtu >= tcp_hdrsz(tp) + tp->t_pmtud_mss_acked) {
/*
* Calculate new MTU, and create corresponding
* route (traditional PMTUD).
*/
tp->t_flags &= ~TF_PMTUD_PEND;
icmp_mtudisc(icp, ip->ip_dst);
} else {
/*
* Record the information got in the ICMP
* message; act on it later.
* If we had already recorded an ICMP message,
* replace the old one only if the new message
* refers to an older TCP segment
*/
if (tp->t_flags & TF_PMTUD_PEND) {
if (SEQ_LT(tp->t_pmtud_th_seq, seq))
return NULL;
} else
tp->t_flags |= TF_PMTUD_PEND;
tp->t_pmtud_th_seq = seq;
tp->t_pmtud_nextmtu = icp->icmp_nextmtu;
tp->t_pmtud_ip_len = icp->icmp_ip.ip_len;
tp->t_pmtud_ip_hl = icp->icmp_ip.ip_hl;
}
return NULL;
} else if (cmd == PRC_HOSTDEAD)
ip = 0;
else if (errno == 0)
return NULL;
if (ip && ip->ip_v == 4 && sa->sa_family == AF_INET) {
th = (struct tcphdr *)((char *)ip + (ip->ip_hl << 2));
nmatch = in_pcbnotify(&tcbtable, satocsin(sa)->sin_addr,
th->th_dport, ip->ip_src, th->th_sport, errno, notify);
if (nmatch == 0 && syn_cache_count &&
(inetctlerrmap[cmd] == EHOSTUNREACH ||
inetctlerrmap[cmd] == ENETUNREACH ||
inetctlerrmap[cmd] == EHOSTDOWN)) {
struct sockaddr_in sin;
memset(&sin, 0, sizeof(sin));
sin.sin_len = sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_port = th->th_sport;
sin.sin_addr = ip->ip_src;
syn_cache_unreach((struct sockaddr *)&sin, sa, th);
}
/* XXX mapped address case */
} else
in_pcbnotifyall(&tcbtable, satocsin(sa)->sin_addr, errno,
notify);
return NULL;
}
/*
* When a source quench is received, we are being notified of congestion.
* Close the congestion window down to the Loss Window (one segment).
* We will gradually open it again as we proceed.
*/
void
tcp_quench(struct inpcb *inp, int errno)
{
struct tcpcb *tp = intotcpcb(inp);
if (tp) {
tp->snd_cwnd = tp->t_segsz;
tp->t_bytes_acked = 0;
}
}
#endif
#ifdef INET6
void
tcp6_quench(struct in6pcb *in6p, int errno)
{
struct tcpcb *tp = in6totcpcb(in6p);
if (tp) {
tp->snd_cwnd = tp->t_segsz;
tp->t_bytes_acked = 0;
}
}
#endif
#ifdef INET
/*
* Path MTU Discovery handlers.
*/
void
tcp_mtudisc_callback(struct in_addr faddr)
{
#ifdef INET6
struct in6_addr in6;
#endif
in_pcbnotifyall(&tcbtable, faddr, EMSGSIZE, tcp_mtudisc);
#ifdef INET6
in6_in_2_v4mapin6(&faddr, &in6);
tcp6_mtudisc_callback(&in6);
#endif
}
/*
* On receipt of path MTU corrections, flush old route and replace it
* with the new one. Retransmit all unacknowledged packets, to ensure
* that all packets will be received.
*/
void
tcp_mtudisc(struct inpcb *inp, int errno)
{
struct tcpcb *tp = intotcpcb(inp);
struct rtentry *rt;
if (tp == NULL)
return;
rt = in_pcbrtentry(inp);
if (rt != NULL) {
/*
* If this was not a host route, remove and realloc.
*/
if ((rt->rt_flags & RTF_HOST) == 0) {
in_pcbrtentry_unref(rt, inp);
in_rtchange(inp, errno);
if ((rt = in_pcbrtentry(inp)) == NULL)
return;
}
/*
* Slow start out of the error condition. We
* use the MTU because we know it's smaller
* than the previously transmitted segment.
*
* Note: This is more conservative than the
* suggestion in draft-floyd-incr-init-win-03.
*/
if (rt->rt_rmx.rmx_mtu != 0)
tp->snd_cwnd =
TCP_INITIAL_WINDOW(tcp_init_win,
rt->rt_rmx.rmx_mtu);
in_pcbrtentry_unref(rt, inp);
}
/*
* Resend unacknowledged packets.
*/
tp->snd_nxt = tp->sack_newdata = tp->snd_una;
tcp_output(tp);
}
#endif /* INET */
#ifdef INET6
/*
* Path MTU Discovery handlers.
*/
void
tcp6_mtudisc_callback(struct in6_addr *faddr)
{
struct sockaddr_in6 sin6;
memset(&sin6, 0, sizeof(sin6));
sin6.sin6_family = AF_INET6;
sin6.sin6_len = sizeof(struct sockaddr_in6);
sin6.sin6_addr = *faddr;
(void) in6_pcbnotify(&tcbtable, (struct sockaddr *)&sin6, 0,
(const struct sockaddr *)&sa6_any, 0, PRC_MSGSIZE, NULL, tcp6_mtudisc);
}
void
tcp6_mtudisc(struct in6pcb *in6p, int errno)
{
struct tcpcb *tp = in6totcpcb(in6p);
struct rtentry *rt;
if (tp == NULL)
return;
rt = in6_pcbrtentry(in6p);
if (rt != NULL) {
/*
* If this was not a host route, remove and realloc.
*/
if ((rt->rt_flags & RTF_HOST) == 0) {
in6_pcbrtentry_unref(rt, in6p);
in6_rtchange(in6p, errno);
rt = in6_pcbrtentry(in6p);
if (rt == NULL)
return;
}
/*
* Slow start out of the error condition. We
* use the MTU because we know it's smaller
* than the previously transmitted segment.
*
* Note: This is more conservative than the
* suggestion in draft-floyd-incr-init-win-03.
*/
if (rt->rt_rmx.rmx_mtu != 0) {
tp->snd_cwnd = TCP_INITIAL_WINDOW(tcp_init_win,
rt->rt_rmx.rmx_mtu);
}
in6_pcbrtentry_unref(rt, in6p);
}
/*
* Resend unacknowledged packets.
*/
tp->snd_nxt = tp->sack_newdata = tp->snd_una;
tcp_output(tp);
}
#endif /* INET6 */
/*
* Compute the MSS to advertise to the peer. Called only during
* the 3-way handshake. If we are the server (peer initiated
* connection), we are called with a pointer to the interface
* on which the SYN packet arrived. If we are the client (we
* initiated connection), we are called with a pointer to the
* interface out which this connection should go.
*
* NOTE: Do not subtract IP option/extension header size nor IPsec
* header size from MSS advertisement. MSS option must hold the maximum
* segment size we can accept, so it must always be:
* max(if mtu) - ip header - tcp header
*/
u_long
tcp_mss_to_advertise(const struct ifnet *ifp, int af)
{
extern u_long in_maxmtu;
u_long mss = 0;
u_long hdrsiz;
/*
* In order to avoid defeating path MTU discovery on the peer,
* we advertise the max MTU of all attached networks as our MSS,
* per RFC 1191, section 3.1.
*
* We provide the option to advertise just the MTU of
* the interface on which we hope this connection will
* be receiving. If we are responding to a SYN, we
* will have a pretty good idea about this, but when
* initiating a connection there is a bit more doubt.
*
* We also need to ensure that loopback has a large enough
* MSS, as the loopback MTU is never included in in_maxmtu.
*/
if (ifp != NULL)
switch (af) {
case AF_INET:
mss = ifp->if_mtu;
break;
#ifdef INET6
case AF_INET6:
mss = IN6_LINKMTU(ifp);
break;
#endif
}
if (tcp_mss_ifmtu == 0)
switch (af) {
case AF_INET:
mss = max(in_maxmtu, mss);
break;
#ifdef INET6
case AF_INET6:
mss = max(in6_maxmtu, mss);
break;
#endif
}
switch (af) {
case AF_INET:
hdrsiz = sizeof(struct ip);
break;
#ifdef INET6
case AF_INET6:
hdrsiz = sizeof(struct ip6_hdr);
break;
#endif
default:
hdrsiz = 0;
break;
}
hdrsiz += sizeof(struct tcphdr);
if (mss > hdrsiz)
mss -= hdrsiz;
mss = max(tcp_mssdflt, mss);
return (mss);
}
/*
* Set connection variables based on the peer's advertised MSS.
* We are passed the TCPCB for the actual connection. If we
* are the server, we are called by the compressed state engine
* when the 3-way handshake is complete. If we are the client,
* we are called when we receive the SYN,ACK from the server.
*
* NOTE: Our advertised MSS value must be initialized in the TCPCB
* before this routine is called!
*/
void
tcp_mss_from_peer(struct tcpcb *tp, int offer)
{
struct socket *so;
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
struct rtentry *rt;
#endif
u_long bufsize;
int mss;
#ifdef DIAGNOSTIC
if (tp->t_inpcb && tp->t_in6pcb)
panic("tcp_mss_from_peer: both t_inpcb and t_in6pcb are set");
#endif
so = NULL;
rt = NULL;
#ifdef INET
if (tp->t_inpcb) {
so = tp->t_inpcb->inp_socket;
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
rt = in_pcbrtentry(tp->t_inpcb);
#endif
}
#endif
#ifdef INET6
if (tp->t_in6pcb) {
so = tp->t_in6pcb->in6p_socket;
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
rt = in6_pcbrtentry(tp->t_in6pcb);
#endif
}
#endif
/*
* As per RFC1122, use the default MSS value, unless they
* sent us an offer. Do not accept offers less than 256 bytes.
*/
mss = tcp_mssdflt;
if (offer)
mss = offer;
mss = max(mss, 256); /* sanity */
tp->t_peermss = mss;
mss -= tcp_optlen(tp);
#ifdef INET
if (tp->t_inpcb)
mss -= ip_optlen(tp->t_inpcb);
#endif
#ifdef INET6
if (tp->t_in6pcb)
mss -= ip6_optlen(tp->t_in6pcb);
#endif
/*
* If there's a pipesize, change the socket buffer to that size.
* Make the socket buffer an integral number of MSS units. If
* the MSS is larger than the socket buffer, artificially decrease
* the MSS.
*/
#ifdef RTV_SPIPE
if (rt != NULL && rt->rt_rmx.rmx_sendpipe != 0)
bufsize = rt->rt_rmx.rmx_sendpipe;
else
#endif
{
KASSERT(so != NULL);
bufsize = so->so_snd.sb_hiwat;
}
if (bufsize < mss)
mss = bufsize;
else {
bufsize = roundup(bufsize, mss);
if (bufsize > sb_max)
bufsize = sb_max;
(void) sbreserve(&so->so_snd, bufsize, so);
}
tp->t_segsz = mss;
#ifdef RTV_SSTHRESH
if (rt != NULL && rt->rt_rmx.rmx_ssthresh) {
/*
* There's some sort of gateway or interface buffer
* limit on the path. Use this to set the slow
* start threshold, but set the threshold to no less
* than 2 * MSS.
*/
tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
}
#endif
#if defined(RTV_SPIPE) || defined(RTV_SSTHRESH)
#ifdef INET
if (tp->t_inpcb)
in_pcbrtentry_unref(rt, tp->t_inpcb);
#endif
#ifdef INET6
if (tp->t_in6pcb)
in6_pcbrtentry_unref(rt, tp->t_in6pcb);
#endif
#endif
}
/*
* Processing necessary when a TCP connection is established.
*/
void
tcp_established(struct tcpcb *tp)
{
struct socket *so;
#ifdef RTV_RPIPE
struct rtentry *rt;
#endif
u_long bufsize;
#ifdef DIAGNOSTIC
if (tp->t_inpcb && tp->t_in6pcb)
panic("tcp_established: both t_inpcb and t_in6pcb are set");
#endif
so = NULL;
rt = NULL;
#ifdef INET
/* This is a while() to reduce the dreadful stairstepping below */
while (tp->t_inpcb) {
so = tp->t_inpcb->inp_socket;
#if defined(RTV_RPIPE)
rt = in_pcbrtentry(tp->t_inpcb);
#endif
if (__predict_true(tcp_msl_enable)) {
if (tp->t_inpcb->inp_laddr.s_addr == INADDR_LOOPBACK) {
tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
break;
}
if (__predict_false(tcp_rttlocal)) {
/* This may be adjusted by tcp_input */
tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
break;
}
if (in_localaddr(tp->t_inpcb->inp_faddr)) {
tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
break;
}
}
tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
break;
}
#endif
#ifdef INET6
/* The !tp->t_inpcb lets the compiler know it can't be v4 *and* v6 */
while (!tp->t_inpcb && tp->t_in6pcb) {
so = tp->t_in6pcb->in6p_socket;
#if defined(RTV_RPIPE)
rt = in6_pcbrtentry(tp->t_in6pcb);
#endif
if (__predict_true(tcp_msl_enable)) {
extern const struct in6_addr in6addr_loopback;
if (IN6_ARE_ADDR_EQUAL(&tp->t_in6pcb->in6p_laddr,
&in6addr_loopback)) {
tp->t_msl = tcp_msl_loop ? tcp_msl_loop : (TCPTV_MSL >> 2);
break;
}
if (__predict_false(tcp_rttlocal)) {
/* This may be adjusted by tcp_input */
tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
break;
}
if (in6_localaddr(&tp->t_in6pcb->in6p_faddr)) {
tp->t_msl = tcp_msl_local ? tcp_msl_local : (TCPTV_MSL >> 1);
break;
}
}
tp->t_msl = tcp_msl_remote ? tcp_msl_remote : TCPTV_MSL;
break;
}
#endif
tp->t_state = TCPS_ESTABLISHED;
TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
#ifdef RTV_RPIPE
if (rt != NULL && rt->rt_rmx.rmx_recvpipe != 0)
bufsize = rt->rt_rmx.rmx_recvpipe;
else
#endif
{
KASSERT(so != NULL);
bufsize = so->so_rcv.sb_hiwat;
}
if (bufsize > tp->t_ourmss) {
bufsize = roundup(bufsize, tp->t_ourmss);
if (bufsize > sb_max)
bufsize = sb_max;
(void) sbreserve(&so->so_rcv, bufsize, so);
}
#ifdef RTV_RPIPE
#ifdef INET
if (tp->t_inpcb)
in_pcbrtentry_unref(rt, tp->t_inpcb);
#endif
#ifdef INET6
if (tp->t_in6pcb)
in6_pcbrtentry_unref(rt, tp->t_in6pcb);
#endif
#endif
}
/*
* Check if there's an initial rtt or rttvar. Convert from the
* route-table units to scaled multiples of the slow timeout timer.
* Called only during the 3-way handshake.
*/
void
tcp_rmx_rtt(struct tcpcb *tp)
{
#ifdef RTV_RTT
struct rtentry *rt = NULL;
int rtt;
#ifdef DIAGNOSTIC
if (tp->t_inpcb && tp->t_in6pcb)
panic("tcp_rmx_rtt: both t_inpcb and t_in6pcb are set");
#endif
#ifdef INET
if (tp->t_inpcb)
rt = in_pcbrtentry(tp->t_inpcb);
#endif
#ifdef INET6
if (tp->t_in6pcb)
rt = in6_pcbrtentry(tp->t_in6pcb);
#endif
if (rt == NULL)
return;
if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
/*
* XXX The lock bit for MTU indicates that the value
* is also a minimum value; this is subject to time.
*/
if (rt->rt_rmx.rmx_locks & RTV_RTT)
TCPT_RANGESET(tp->t_rttmin,
rtt / (RTM_RTTUNIT / PR_SLOWHZ),
TCPTV_MIN, TCPTV_REXMTMAX);
tp->t_srtt = rtt /
((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
if (rt->rt_rmx.rmx_rttvar) {
tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
((RTM_RTTUNIT / PR_SLOWHZ) >>
(TCP_RTTVAR_SHIFT + 2));
} else {
/* Default variation is +- 1 rtt */
tp->t_rttvar =
tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
}
TCPT_RANGESET(tp->t_rxtcur,
((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
tp->t_rttmin, TCPTV_REXMTMAX);
}
#ifdef INET
if (tp->t_inpcb)
in_pcbrtentry_unref(rt, tp->t_inpcb);
#endif
#ifdef INET6
if (tp->t_in6pcb)
in6_pcbrtentry_unref(rt, tp->t_in6pcb);
#endif
#endif
}
tcp_seq tcp_iss_seq = 0; /* tcp initial seq # */
/*
* Get a new sequence value given a tcp control block
*/
tcp_seq
tcp_new_iss(struct tcpcb *tp, tcp_seq addin)
{
#ifdef INET
if (tp->t_inpcb != NULL) {
return (tcp_new_iss1(&tp->t_inpcb->inp_laddr,
&tp->t_inpcb->inp_faddr, tp->t_inpcb->inp_lport,
tp->t_inpcb->inp_fport, sizeof(tp->t_inpcb->inp_laddr),
addin));
}
#endif
#ifdef INET6
if (tp->t_in6pcb != NULL) {
return (tcp_new_iss1(&tp->t_in6pcb->in6p_laddr,
&tp->t_in6pcb->in6p_faddr, tp->t_in6pcb->in6p_lport,
tp->t_in6pcb->in6p_fport, sizeof(tp->t_in6pcb->in6p_laddr),
addin));
}
#endif
/* Not possible. */
panic("tcp_new_iss");
}
static u_int8_t tcp_iss_secret[16]; /* 128 bits; should be plenty */
/*
* Initialize RFC 1948 ISS Secret
*/
static int
tcp_iss_secret_init(void)
{
cprng_strong(kern_cprng,
tcp_iss_secret, sizeof(tcp_iss_secret), 0);
return 0;
}
/*
* This routine actually generates a new TCP initial sequence number.
*/
tcp_seq
tcp_new_iss1(void *laddr, void *faddr, u_int16_t lport, u_int16_t fport,
size_t addrsz, tcp_seq addin)
{
tcp_seq tcp_iss;
if (tcp_do_rfc1948) {
MD5_CTX ctx;
u_int8_t hash[16]; /* XXX MD5 knowledge */
static ONCE_DECL(tcp_iss_secret_control);
/*
* If we haven't been here before, initialize our cryptographic
* hash secret.
*/
RUN_ONCE(&tcp_iss_secret_control, tcp_iss_secret_init);
/*
* Compute the base value of the ISS. It is a hash
* of (saddr, sport, daddr, dport, secret).
*/
MD5Init(&ctx);
MD5Update(&ctx, (u_char *) laddr, addrsz);
MD5Update(&ctx, (u_char *) &lport, sizeof(lport));
MD5Update(&ctx, (u_char *) faddr, addrsz);
MD5Update(&ctx, (u_char *) &fport, sizeof(fport));
MD5Update(&ctx, tcp_iss_secret, sizeof(tcp_iss_secret));
MD5Final(hash, &ctx);
memcpy(&tcp_iss, hash, sizeof(tcp_iss));
/*
* Now increment our "timer", and add it in to
* the computed value.
*
* XXX Use `addin'?
* XXX TCP_ISSINCR too large to use?
*/
tcp_iss_seq += TCP_ISSINCR;
#ifdef TCPISS_DEBUG
printf("ISS hash 0x%08x, ", tcp_iss);
#endif
tcp_iss += tcp_iss_seq + addin;
#ifdef TCPISS_DEBUG
printf("new ISS 0x%08x\n", tcp_iss);
#endif
} else {
/*
* Randomize.
*/
tcp_iss = cprng_fast32();
/*
* If we were asked to add some amount to a known value,
* we will take a random value obtained above, mask off
* the upper bits, and add in the known value. We also
* add in a constant to ensure that we are at least a
* certain distance from the original value.
*
* This is used when an old connection is in timed wait
* and we have a new one coming in, for instance.
*/
if (addin != 0) {
#ifdef TCPISS_DEBUG
printf("Random %08x, ", tcp_iss);
#endif
tcp_iss &= TCP_ISS_RANDOM_MASK;
tcp_iss += addin + TCP_ISSINCR;
#ifdef TCPISS_DEBUG
printf("Old ISS %08x, ISS %08x\n", addin, tcp_iss);
#endif
} else {
tcp_iss &= TCP_ISS_RANDOM_MASK;
tcp_iss += tcp_iss_seq;
tcp_iss_seq += TCP_ISSINCR;
#ifdef TCPISS_DEBUG
printf("ISS %08x\n", tcp_iss);
#endif
}
}
if (tcp_compat_42) {
/*
* Limit it to the positive range for really old TCP
* implementations.
* Just AND off the top bit instead of checking if
* is set first - saves a branch 50% of the time.
*/
tcp_iss &= 0x7fffffff; /* XXX */
}
return (tcp_iss);
}
#if defined(IPSEC)
/* compute ESP/AH header size for TCP, including outer IP header. */
size_t
ipsec4_hdrsiz_tcp(struct tcpcb *tp)
{
struct inpcb *inp;
size_t hdrsiz;
/* XXX mapped addr case (tp->t_in6pcb) */
if (!tp || !tp->t_template || !(inp = tp->t_inpcb))
return 0;
switch (tp->t_family) {
case AF_INET:
/* XXX: should use currect direction. */
hdrsiz = ipsec4_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, inp);
break;
default:
hdrsiz = 0;
break;
}
return hdrsiz;
}
#ifdef INET6
size_t
ipsec6_hdrsiz_tcp(struct tcpcb *tp)
{
struct in6pcb *in6p;
size_t hdrsiz;
if (!tp || !tp->t_template || !(in6p = tp->t_in6pcb))
return 0;
switch (tp->t_family) {
case AF_INET6:
/* XXX: should use currect direction. */
hdrsiz = ipsec6_hdrsiz(tp->t_template, IPSEC_DIR_OUTBOUND, in6p);
break;
case AF_INET:
/* mapped address case - tricky */
default:
hdrsiz = 0;
break;
}
return hdrsiz;
}
#endif
#endif /*IPSEC*/
/*
* Determine the length of the TCP options for this connection.
*
* XXX: What do we do for SACK, when we add that? Just reserve
* all of the space? Otherwise we can't exactly be incrementing
* cwnd by an amount that varies depending on the amount we last
* had to SACK!
*/
u_int
tcp_optlen(struct tcpcb *tp)
{
u_int optlen;
optlen = 0;
if ((tp->t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP|TF_NOOPT)) ==
(TF_REQ_TSTMP | TF_RCVD_TSTMP))
optlen += TCPOLEN_TSTAMP_APPA;
#ifdef TCP_SIGNATURE
if (tp->t_flags & TF_SIGNATURE)
optlen += TCPOLEN_SIGNATURE + 2;
#endif /* TCP_SIGNATURE */
return optlen;
}
u_int
tcp_hdrsz(struct tcpcb *tp)
{
u_int hlen;
switch (tp->t_family) {
#ifdef INET6
case AF_INET6:
hlen = sizeof(struct ip6_hdr);
break;
#endif
case AF_INET:
hlen = sizeof(struct ip);
break;
default:
hlen = 0;
break;
}
hlen += sizeof(struct tcphdr);
if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
(tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
hlen += TCPOLEN_TSTAMP_APPA;
#ifdef TCP_SIGNATURE
if (tp->t_flags & TF_SIGNATURE)
hlen += TCPOLEN_SIGLEN;
#endif
return hlen;
}
void
tcp_statinc(u_int stat)
{
KASSERT(stat < TCP_NSTATS);
TCP_STATINC(stat);
}
void
tcp_statadd(u_int stat, uint64_t val)
{
KASSERT(stat < TCP_NSTATS);
TCP_STATADD(stat, val);
}