NetBSD/sys/dev/ic/elinkxl.c

1899 lines
47 KiB
C

/* $NetBSD: elinkxl.c,v 1.57 2001/10/01 09:26:29 yamt Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Frank van der Linden.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <uvm/uvm_extern.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <machine/endian.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/ic/elink3reg.h>
/* #include <dev/ic/elink3var.h> */
#include <dev/ic/elinkxlreg.h>
#include <dev/ic/elinkxlvar.h>
#ifdef DEBUG
int exdebug = 0;
#endif
/* ifmedia callbacks */
int ex_media_chg __P((struct ifnet *ifp));
void ex_media_stat __P((struct ifnet *ifp, struct ifmediareq *req));
void ex_probe_media __P((struct ex_softc *));
void ex_set_filter __P((struct ex_softc *));
void ex_set_media __P((struct ex_softc *));
struct mbuf *ex_get __P((struct ex_softc *, int));
u_int16_t ex_read_eeprom __P((struct ex_softc *, int));
int ex_init __P((struct ifnet *));
void ex_read __P((struct ex_softc *));
void ex_reset __P((struct ex_softc *));
void ex_set_mc __P((struct ex_softc *));
void ex_getstats __P((struct ex_softc *));
void ex_printstats __P((struct ex_softc *));
void ex_tick __P((void *));
int ex_enable __P((struct ex_softc *));
void ex_disable __P((struct ex_softc *));
void ex_power __P((int, void *));
static int ex_eeprom_busy __P((struct ex_softc *));
static int ex_add_rxbuf __P((struct ex_softc *, struct ex_rxdesc *));
static void ex_init_txdescs __P((struct ex_softc *));
static void ex_shutdown __P((void *));
static void ex_start __P((struct ifnet *));
static void ex_txstat __P((struct ex_softc *));
int ex_mii_readreg __P((struct device *, int, int));
void ex_mii_writereg __P((struct device *, int, int, int));
void ex_mii_statchg __P((struct device *));
void ex_probemedia __P((struct ex_softc *));
/*
* Structure to map media-present bits in boards to ifmedia codes and
* printable media names. Used for table-driven ifmedia initialization.
*/
struct ex_media {
int exm_mpbit; /* media present bit */
const char *exm_name; /* name of medium */
int exm_ifmedia; /* ifmedia word for medium */
int exm_epmedia; /* ELINKMEDIA_* constant */
};
/*
* Media table for 3c90x chips. Note that chips with MII have no
* `native' media.
*/
struct ex_media ex_native_media[] = {
{ ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
ELINKMEDIA_10BASE_T },
{ ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
ELINKMEDIA_10BASE_T },
{ ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
ELINKMEDIA_AUI },
{ ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
ELINKMEDIA_10BASE_2 },
{ ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
ELINKMEDIA_100BASE_TX },
{ ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
ELINKMEDIA_100BASE_TX },
{ ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
ELINKMEDIA_100BASE_FX },
{ ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
ELINKMEDIA_MII },
{ ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
ELINKMEDIA_100BASE_T4 },
{ 0, NULL, 0,
0 },
};
/*
* MII bit-bang glue.
*/
u_int32_t ex_mii_bitbang_read __P((struct device *));
void ex_mii_bitbang_write __P((struct device *, u_int32_t));
const struct mii_bitbang_ops ex_mii_bitbang_ops = {
ex_mii_bitbang_read,
ex_mii_bitbang_write,
{
ELINK_PHY_DATA, /* MII_BIT_MDO */
ELINK_PHY_DATA, /* MII_BIT_MDI */
ELINK_PHY_CLK, /* MII_BIT_MDC */
ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
0, /* MII_BIT_DIR_PHY_HOST */
}
};
/*
* Back-end attach and configure.
*/
void
ex_config(sc)
struct ex_softc *sc;
{
struct ifnet *ifp;
u_int16_t val;
u_int8_t macaddr[ETHER_ADDR_LEN] = {0};
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i, error, attach_stage;
callout_init(&sc->ex_mii_callout);
ex_reset(sc);
val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
macaddr[0] = val >> 8;
macaddr[1] = val & 0xff;
val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
macaddr[2] = val >> 8;
macaddr[3] = val & 0xff;
val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
macaddr[4] = val >> 8;
macaddr[5] = val & 0xff;
printf("%s: MAC address %s\n", sc->sc_dev.dv_xname,
ether_sprintf(macaddr));
if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
GO_WINDOW(2);
val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
val |= ELINK_RESET_OPT_LEDPOLAR;
if (sc->ex_conf & EX_CONF_PHY_POWER)
val |= ELINK_RESET_OPT_PHYPOWER;
bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
}
attach_stage = 0;
/*
* Allocate the upload descriptors, and create and load the DMA
* map for them.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
&sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't allocate upload descriptors, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 1;
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
EX_NUPD * sizeof (struct ex_upd), (caddr_t *)&sc->sc_upd,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: can't map upload descriptors, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 2;
if ((error = bus_dmamap_create(sc->sc_dmat,
EX_NUPD * sizeof (struct ex_upd), 1,
EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
&sc->sc_upd_dmamap)) != 0) {
printf("%s: can't create upload desc. DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 3;
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load upload desc. DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 4;
/*
* Allocate the download descriptors, and create and load the DMA
* map for them.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
EX_NDPD * sizeof (struct ex_dpd), PAGE_SIZE, 0, &sc->sc_dseg, 1,
&sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't allocate download descriptors, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 5;
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
EX_NDPD * sizeof (struct ex_dpd), (caddr_t *)&sc->sc_dpd,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf("%s: can't map download descriptors, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
memset(sc->sc_dpd, 0, EX_NDPD * sizeof (struct ex_dpd));
attach_stage = 6;
if ((error = bus_dmamap_create(sc->sc_dmat,
EX_NDPD * sizeof (struct ex_dpd), 1,
EX_NDPD * sizeof (struct ex_dpd), 0, BUS_DMA_NOWAIT,
&sc->sc_dpd_dmamap)) != 0) {
printf("%s: can't create download desc. DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 7;
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
sc->sc_dpd, EX_NDPD * sizeof (struct ex_dpd), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf("%s: can't load download desc. DMA map, error = %d\n",
sc->sc_dev.dv_xname, error);
goto fail;
}
attach_stage = 8;
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < EX_NDPD; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_tx_dmamaps[i])) != 0) {
printf("%s: can't create tx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
goto fail;
}
}
attach_stage = 9;
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < EX_NUPD; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
&sc->sc_rx_dmamaps[i])) != 0) {
printf("%s: can't create rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
goto fail;
}
}
attach_stage = 10;
/*
* Create ring of upload descriptors, only once. The DMA engine
* will loop over this when receiving packets, stalling if it
* hits an UPD with a finished receive.
*/
for (i = 0; i < EX_NUPD; i++) {
sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
sc->sc_upd[i].upd_frags[0].fr_len =
htole32((MCLBYTES - 2) | EX_FR_LAST);
if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
printf("%s: can't allocate or map rx buffers\n",
sc->sc_dev.dv_xname);
goto fail;
}
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
EX_NUPD * sizeof (struct ex_upd),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
ex_init_txdescs(sc);
attach_stage = 11;
GO_WINDOW(3);
val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
if (val & ELINK_MEDIACAP_MII)
sc->ex_conf |= EX_CONF_MII;
ifp = &sc->sc_ethercom.ec_if;
/*
* Initialize our media structures and MII info. We'll
* probe the MII if we discover that we have one.
*/
sc->ex_mii.mii_ifp = ifp;
sc->ex_mii.mii_readreg = ex_mii_readreg;
sc->ex_mii.mii_writereg = ex_mii_writereg;
sc->ex_mii.mii_statchg = ex_mii_statchg;
ifmedia_init(&sc->ex_mii.mii_media, 0, ex_media_chg,
ex_media_stat);
if (sc->ex_conf & EX_CONF_MII) {
/*
* Find PHY, extract media information from it.
* First, select the right transceiver.
*/
u_int32_t icfg;
GO_WINDOW(3);
icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
icfg &= ~(CONFIG_XCVR_SEL << 16);
if (val & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
if (val & ELINK_MEDIACAP_100BASETX)
icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
if (val & ELINK_MEDIACAP_100BASEFX)
icfg |= ELINKMEDIA_100BASE_FX
<< (CONFIG_XCVR_SEL_SHIFT + 16);
bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
mii_attach(&sc->sc_dev, &sc->ex_mii, 0xffffffff,
MII_PHY_ANY, MII_OFFSET_ANY, 0);
if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
0, NULL);
ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
} else {
ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
} else
ex_probemedia(sc);
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_start = ex_start;
ifp->if_ioctl = ex_ioctl;
ifp->if_watchdog = ex_watchdog;
ifp->if_init = ex_init;
ifp->if_stop = ex_stop;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
IFQ_SET_READY(&ifp->if_snd);
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/*
* The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
*/
if (sc->ex_conf & EX_CONF_90XB)
sc->sc_ethercom.ec_if.if_capabilities |= IFCAP_CSUM_IPv4 |
IFCAP_CSUM_TCPv4 | IFCAP_CSUM_UDPv4;
if_attach(ifp);
ether_ifattach(ifp, macaddr);
GO_WINDOW(1);
sc->tx_start_thresh = 20;
sc->tx_succ_ok = 0;
/* TODO: set queues to 0 */
#if NRND > 0
rnd_attach_source(&sc->rnd_source, sc->sc_dev.dv_xname,
RND_TYPE_NET, 0);
#endif
/* Establish callback to reset card when we reboot. */
sc->sc_sdhook = shutdownhook_establish(ex_shutdown, sc);
if (sc->sc_sdhook == NULL)
printf("%s: WARNING: unable to establish shutdown hook\n",
sc->sc_dev.dv_xname);
/* Add a suspend hook to make sure we come back up after a resume. */
sc->sc_powerhook = powerhook_establish(ex_power, sc);
if (sc->sc_powerhook == NULL)
printf("%s: WARNING: unable to establish power hook\n",
sc->sc_dev.dv_xname);
/* The attach is successful. */
sc->ex_flags |= EX_FLAGS_ATTACHED;
return;
fail:
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall though.
*/
switch (attach_stage) {
case 11:
{
struct ex_rxdesc *rxd;
for (i = 0; i < EX_NUPD; i++) {
rxd = &sc->sc_rxdescs[i];
if (rxd->rx_mbhead != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
m_freem(rxd->rx_mbhead);
}
}
}
/* FALLTHROUGH */
case 10:
for (i = 0; i < EX_NUPD; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
/* FALLTHROUGH */
case 9:
for (i = 0; i < EX_NDPD; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
/* FALLTHROUGH */
case 8:
bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
/* FALLTHROUGH */
case 7:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
/* FALLTHROUGH */
case 6:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
EX_NDPD * sizeof (struct ex_dpd));
/* FALLTHROUGH */
case 5:
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
break;
case 4:
bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
/* FALLTHROUGH */
case 3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
/* FALLTHROUGH */
case 2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
EX_NUPD * sizeof (struct ex_upd));
/* FALLTHROUGH */
case 1:
bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
break;
}
}
/*
* Find the media present on non-MII chips.
*/
void
ex_probemedia(sc)
struct ex_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ifmedia *ifm = &sc->ex_mii.mii_media;
struct ex_media *exm;
u_int16_t config1, reset_options, default_media;
int defmedia = 0;
const char *sep = "", *defmedianame = NULL;
GO_WINDOW(3);
config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
GO_WINDOW(0);
default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
printf("%s: ", sc->sc_dev.dv_xname);
/* Sanity check that there are any media! */
if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
printf("no media present!\n");
ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
return;
}
#define PRINT(s) printf("%s%s", sep, s); sep = ", "
for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
if (reset_options & exm->exm_mpbit) {
/*
* Default media is a little complicated. We
* support full-duplex which uses the same
* reset options bit.
*
* XXX Check EEPROM for default to FDX?
*/
if (exm->exm_epmedia == default_media) {
if ((exm->exm_ifmedia & IFM_FDX) == 0) {
defmedia = exm->exm_ifmedia;
defmedianame = exm->exm_name;
}
} else if (defmedia == 0) {
defmedia = exm->exm_ifmedia;
defmedianame = exm->exm_name;
}
ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
NULL);
PRINT(exm->exm_name);
}
}
#undef PRINT
#ifdef DIAGNOSTIC
if (defmedia == 0)
panic("ex_probemedia: impossible");
#endif
printf(", default %s\n", defmedianame);
ifmedia_set(ifm, defmedia);
}
/*
* Bring device up.
*/
int
ex_init(ifp)
struct ifnet *ifp;
{
struct ex_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
int error = 0;
if ((error = ex_enable(sc)) != 0)
goto out;
ex_waitcmd(sc);
ex_stop(ifp, 0);
/*
* Set the station address and clear the station mask. The latter
* is needed for 90x cards, 0 is the default for 90xB cards.
*/
GO_WINDOW(2);
for (i = 0; i < ETHER_ADDR_LEN; i++) {
bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
LLADDR(ifp->if_sadl)[i]);
bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
}
GO_WINDOW(3);
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
ex_waitcmd(sc);
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
ex_waitcmd(sc);
/*
* Disable reclaim threshold for 90xB, set free threshold to
* 6 * 256 = 1536 for 90x.
*/
if (sc->ex_conf & EX_CONF_90XB)
bus_space_write_2(iot, ioh, ELINK_COMMAND,
ELINK_TXRECLTHRESH | 255);
else
bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
bus_space_write_2(iot, ioh, ELINK_COMMAND,
SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
bus_space_write_4(iot, ioh, ELINK_DMACTRL,
bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK | S_MASK);
bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK | S_MASK);
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
if (sc->intr_ack)
(* sc->intr_ack)(sc);
ex_set_media(sc);
ex_set_mc(sc);
bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
u_int16_t cbcard_config;
GO_WINDOW(2);
cbcard_config = bus_space_read_2(sc->sc_iot, sc->sc_ioh, 0x0c);
if (sc->ex_conf & EX_CONF_PHY_POWER) {
cbcard_config |= 0x4000; /* turn on PHY power */
}
if (sc->ex_conf & EX_CONF_INV_LED_POLARITY) {
cbcard_config |= 0x0010; /* invert LED polarity */
}
bus_space_write_2(sc->sc_iot, sc->sc_ioh, 0x0c, cbcard_config);
GO_WINDOW(3);
}
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ex_start(ifp);
GO_WINDOW(1);
callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
printf("%s: interface not running\n", sc->sc_dev.dv_xname);
}
return (error);
}
#define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & 0xff)
/*
* Set multicast receive filter. Also take care of promiscuous mode
* here (XXX).
*/
void
ex_set_mc(sc)
struct ex_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep estep;
int i;
u_int16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
if (ifp->if_flags & IFF_PROMISC)
mask |= FIL_PROMISC;
if (!(ifp->if_flags & IFF_MULTICAST))
goto out;
if (!(sc->ex_conf & EX_CONF_90XB) || ifp->if_flags & IFF_ALLMULTI) {
mask |= (ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0;
} else {
ETHER_FIRST_MULTI(estep, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0)
goto out;
i = ex_mchash(enm->enm_addrlo);
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
ETHER_NEXT_MULTI(estep, enm);
}
mask |= FIL_MULTIHASH;
}
out:
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
SET_RX_FILTER | mask);
}
static void
ex_txstat(sc)
struct ex_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i;
/*
* We need to read+write TX_STATUS until we get a 0 status
* in order to turn off the interrupt flag.
*/
while ((i = bus_space_read_1(iot, ioh, ELINK_TXSTATUS)) & TXS_COMPLETE) {
bus_space_write_1(iot, ioh, ELINK_TXSTATUS, 0x0);
if (i & TXS_JABBER) {
++sc->sc_ethercom.ec_if.if_oerrors;
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: jabber (%x)\n",
sc->sc_dev.dv_xname, i);
ex_init(ifp);
/* TODO: be more subtle here */
} else if (i & TXS_UNDERRUN) {
++sc->sc_ethercom.ec_if.if_oerrors;
if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
printf("%s: fifo underrun (%x) @%d\n",
sc->sc_dev.dv_xname, i,
sc->tx_start_thresh);
if (sc->tx_succ_ok < 100)
sc->tx_start_thresh = min(ETHER_MAX_LEN,
sc->tx_start_thresh + 20);
sc->tx_succ_ok = 0;
ex_init(ifp);
/* TODO: be more subtle here */
} else if (i & TXS_MAX_COLLISION) {
++sc->sc_ethercom.ec_if.if_collisions;
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
} else
sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
}
}
int
ex_media_chg(ifp)
struct ifnet *ifp;
{
if (ifp->if_flags & IFF_UP)
ex_init(ifp);
return 0;
}
void
ex_set_media(sc)
struct ex_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int32_t configreg;
if (((sc->ex_conf & EX_CONF_MII) &&
(sc->ex_mii.mii_media_active & IFM_FDX))
|| (!(sc->ex_conf & EX_CONF_MII) &&
(sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
MAC_CONTROL_FDX);
} else {
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
}
/*
* If the device has MII, select it, and then tell the
* PHY which media to use.
*/
if (sc->ex_conf & EX_CONF_MII) {
GO_WINDOW(3);
configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
configreg &= ~(CONFIG_MEDIAMASK << 16);
configreg |= (ELINKMEDIA_MII << (CONFIG_MEDIAMASK_SHIFT + 16));
bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
mii_mediachg(&sc->ex_mii);
return;
}
GO_WINDOW(4);
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
delay(800);
/*
* Now turn on the selected media/transceiver.
*/
switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
case IFM_10_T:
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
break;
case IFM_10_2:
bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
DELAY(800);
break;
case IFM_100_TX:
case IFM_100_FX:
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
LINKBEAT_ENABLE);
DELAY(800);
break;
case IFM_10_5:
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
SQE_ENABLE);
DELAY(800);
break;
case IFM_MANUAL:
break;
case IFM_NONE:
return;
default:
panic("ex_set_media: impossible");
}
GO_WINDOW(3);
configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
configreg &= ~(CONFIG_MEDIAMASK << 16);
configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
(CONFIG_MEDIAMASK_SHIFT + 16));
bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
}
/*
* Get currently-selected media from card.
* (if_media callback, may be called before interface is brought up).
*/
void
ex_media_stat(ifp, req)
struct ifnet *ifp;
struct ifmediareq *req;
{
struct ex_softc *sc = ifp->if_softc;
if (sc->ex_conf & EX_CONF_MII) {
mii_pollstat(&sc->ex_mii);
req->ifm_status = sc->ex_mii.mii_media_status;
req->ifm_active = sc->ex_mii.mii_media_active;
} else {
GO_WINDOW(4);
req->ifm_status = IFM_AVALID;
req->ifm_active = sc->ex_mii.mii_media.ifm_cur->ifm_media;
if (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
ELINK_W4_MEDIA_TYPE) & LINKBEAT_DETECT)
req->ifm_status |= IFM_ACTIVE;
GO_WINDOW(1);
}
}
/*
* Start outputting on the interface.
*/
static void
ex_start(ifp)
struct ifnet *ifp;
{
struct ex_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
volatile struct ex_fraghdr *fr = NULL;
volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
struct ex_txdesc *txp;
struct mbuf *mb_head;
bus_dmamap_t dmamap;
int offset, totlen, segment, error;
u_int32_t csum_flags;
if (sc->tx_head || sc->tx_free == NULL)
return;
txp = NULL;
/*
* We're finished if there is nothing more to add to the list or if
* we're all filled up with buffers to transmit.
*/
while (sc->tx_free != NULL) {
/*
* Grab a packet to transmit.
*/
IFQ_DEQUEUE(&ifp->if_snd, mb_head);
if (mb_head == NULL)
break;
/*
* Get pointer to next available tx desc.
*/
txp = sc->tx_free;
dmamap = txp->tx_dmamap;
/*
* Go through each of the mbufs in the chain and initialize
* the transmit buffer descriptors with the physical address
* and size of the mbuf.
*/
reload:
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
switch (error) {
case 0:
/* Success. */
break;
case EFBIG:
{
struct mbuf *mn;
/*
* We ran out of segments. We have to recopy this
* mbuf chain first. Bail out if we can't get the
* new buffers.
*/
printf("%s: too many segments, ", sc->sc_dev.dv_xname);
MGETHDR(mn, M_DONTWAIT, MT_DATA);
if (mn == NULL) {
m_freem(mb_head);
printf("aborting\n");
goto out;
}
if (mb_head->m_pkthdr.len > MHLEN) {
MCLGET(mn, M_DONTWAIT);
if ((mn->m_flags & M_EXT) == 0) {
m_freem(mn);
m_freem(mb_head);
printf("aborting\n");
goto out;
}
}
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
mtod(mn, caddr_t));
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
m_freem(mb_head);
mb_head = mn;
printf("retrying\n");
goto reload;
}
default:
/*
* Some other problem; report it.
*/
printf("%s: can't load mbuf chain, error = %d\n",
sc->sc_dev.dv_xname, error);
m_freem(mb_head);
goto out;
}
/*
* remove our tx desc from freelist.
*/
sc->tx_free = txp->tx_next;
txp->tx_next = NULL;
fr = &txp->tx_dpd->dpd_frags[0];
totlen = 0;
for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
fr->fr_len = htole32(dmamap->dm_segs[segment].ds_len);
totlen += dmamap->dm_segs[segment].ds_len;
}
fr--;
fr->fr_len |= htole32(EX_FR_LAST);
txp->tx_mbhead = mb_head;
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
dpd = txp->tx_dpd;
dpd->dpd_nextptr = 0;
dpd->dpd_fsh = htole32(totlen);
/* Byte-swap constants to compiler can optimize. */
if (sc->ex_conf & EX_CONF_90XB) {
csum_flags = 0;
if (mb_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
csum_flags |= htole32(EX_DPD_IPCKSUM);
if (mb_head->m_pkthdr.csum_flags & M_CSUM_TCPv4)
csum_flags |= htole32(EX_DPD_TCPCKSUM);
else if (mb_head->m_pkthdr.csum_flags & M_CSUM_UDPv4)
csum_flags |= htole32(EX_DPD_UDPCKSUM);
dpd->dpd_fsh |= csum_flags;
} else {
KDASSERT((mb_head->m_pkthdr.csum_flags &
(M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
((caddr_t)dpd - (caddr_t)sc->sc_dpd),
sizeof (struct ex_dpd),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* No need to stall the download engine, we know it's
* not busy right now.
*
* Fix up pointers in both the "soft" tx and the physical
* tx list.
*/
if (sc->tx_head != NULL) {
prevdpd = sc->tx_tail->tx_dpd;
offset = ((caddr_t)prevdpd - (caddr_t)sc->sc_dpd);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
offset, sizeof (struct ex_dpd),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
offset, sizeof (struct ex_dpd),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->tx_tail->tx_next = txp;
sc->tx_tail = txp;
} else {
sc->tx_tail = sc->tx_head = txp;
}
#if NBPFILTER > 0
/*
* Pass packet to bpf if there is a listener.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, mb_head);
#endif
}
out:
if (sc->tx_head) {
sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
((caddr_t)sc->tx_tail->tx_dpd - (caddr_t)sc->sc_dpd),
sizeof (struct ex_dpd),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
ifp->if_flags |= IFF_OACTIVE;
bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
DPD_DMADDR(sc, sc->tx_head));
/* trigger watchdog */
ifp->if_timer = 5;
}
}
int
ex_intr(arg)
void *arg;
{
struct ex_softc *sc = arg;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t stat;
int ret = 0;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
(sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return (0);
for (;;) {
bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
if ((stat & S_MASK) == 0) {
if ((stat & S_INTR_LATCH) == 0) {
#if 0
printf("%s: intr latch cleared\n",
sc->sc_dev.dv_xname);
#endif
break;
}
}
ret = 1;
/*
* Acknowledge interrupts.
*/
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
(stat & S_MASK));
if (sc->intr_ack)
(*sc->intr_ack)(sc);
if (stat & S_HOST_ERROR) {
printf("%s: adapter failure (%x)\n",
sc->sc_dev.dv_xname, stat);
ex_reset(sc);
ex_init(ifp);
return 1;
}
if (stat & S_TX_COMPLETE) {
ex_txstat(sc);
}
if (stat & S_UPD_STATS) {
ex_getstats(sc);
}
if (stat & S_DN_COMPLETE) {
struct ex_txdesc *txp, *ptxp = NULL;
bus_dmamap_t txmap;
/* reset watchdog timer, was set in ex_start() */
ifp->if_timer = 0;
for (txp = sc->tx_head; txp != NULL;
txp = txp->tx_next) {
bus_dmamap_sync(sc->sc_dmat,
sc->sc_dpd_dmamap,
(caddr_t)txp->tx_dpd - (caddr_t)sc->sc_dpd,
sizeof (struct ex_dpd),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
if (txp->tx_mbhead != NULL) {
txmap = txp->tx_dmamap;
bus_dmamap_sync(sc->sc_dmat, txmap,
0, txmap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txmap);
m_freem(txp->tx_mbhead);
txp->tx_mbhead = NULL;
}
ptxp = txp;
}
/*
* Move finished tx buffers back to the tx free list.
*/
if (sc->tx_free) {
sc->tx_ftail->tx_next = sc->tx_head;
sc->tx_ftail = ptxp;
} else
sc->tx_ftail = sc->tx_free = sc->tx_head;
sc->tx_head = sc->tx_tail = NULL;
ifp->if_flags &= ~IFF_OACTIVE;
}
if (stat & S_UP_COMPLETE) {
struct ex_rxdesc *rxd;
struct mbuf *m;
struct ex_upd *upd;
bus_dmamap_t rxmap;
u_int32_t pktstat;
rcvloop:
rxd = sc->rx_head;
rxmap = rxd->rx_dmamap;
m = rxd->rx_mbhead;
upd = rxd->rx_upd;
bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
rxmap->dm_mapsize,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
((caddr_t)upd - (caddr_t)sc->sc_upd),
sizeof (struct ex_upd),
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
pktstat = le32toh(upd->upd_pktstatus);
if (pktstat & EX_UPD_COMPLETE) {
/*
* Remove first packet from the chain.
*/
sc->rx_head = rxd->rx_next;
rxd->rx_next = NULL;
/*
* Add a new buffer to the receive chain.
* If this fails, the old buffer is recycled
* instead.
*/
if (ex_add_rxbuf(sc, rxd) == 0) {
u_int16_t total_len;
if (pktstat &
((sc->sc_ethercom.ec_capenable &
ETHERCAP_VLAN_MTU) ?
EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
ifp->if_ierrors++;
m_freem(m);
goto rcvloop;
}
total_len = pktstat & EX_UPD_PKTLENMASK;
if (total_len <
sizeof(struct ether_header)) {
m_freem(m);
goto rcvloop;
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = total_len;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/*
* Set the incoming checksum information for the packet.
*/
if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
(pktstat & EX_UPD_IPCHECKED) != 0) {
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (pktstat & EX_UPD_IPCKSUMERR)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
if (pktstat & EX_UPD_TCPCHECKED) {
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
if (pktstat & EX_UPD_TCPCKSUMERR)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
} else if (pktstat & EX_UPD_UDPCHECKED) {
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
if (pktstat & EX_UPD_UDPCKSUMERR)
m->m_pkthdr.csum_flags |=
M_CSUM_TCP_UDP_BAD;
}
}
(*ifp->if_input)(ifp, m);
}
goto rcvloop;
}
/*
* Just in case we filled up all UPDs and the DMA engine
* stalled. We could be more subtle about this.
*/
if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
printf("%s: uplistptr was 0\n",
sc->sc_dev.dv_xname);
ex_init(ifp);
} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
& 0x2000) {
printf("%s: receive stalled\n",
sc->sc_dev.dv_xname);
bus_space_write_2(iot, ioh, ELINK_COMMAND,
ELINK_UPUNSTALL);
}
}
}
/* no more interrupts */
if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
ex_start(ifp);
return ret;
}
int
ex_ioctl(ifp, cmd, data)
struct ifnet *ifp;
u_long cmd;
caddr_t data;
{
struct ex_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
break;
default:
error = ether_ioctl(ifp, cmd, data);
if (error == ENETRESET) {
if (sc->enabled) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ex_set_mc(sc);
}
error = 0;
}
break;
}
splx(s);
return (error);
}
void
ex_getstats(sc)
struct ex_softc *sc;
{
bus_space_handle_t ioh = sc->sc_ioh;
bus_space_tag_t iot = sc->sc_iot;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
u_int8_t upperok;
GO_WINDOW(6);
upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
ifp->if_ipackets += (upperok & 0x03) << 8;
ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
ifp->if_opackets += (upperok & 0x30) << 4;
ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
/*
* There seems to be no way to get the exact number of collisions,
* this is the number that occurred at the very least.
*/
ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
TX_AFTER_X_COLLISIONS);
ifp->if_ibytes += bus_space_read_2(iot, ioh, RX_TOTAL_OK);
ifp->if_obytes += bus_space_read_2(iot, ioh, TX_TOTAL_OK);
/*
* Clear the following to avoid stats overflow interrupts
*/
bus_space_read_1(iot, ioh, TX_DEFERRALS);
bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
bus_space_read_1(iot, ioh, TX_NO_SQE);
bus_space_read_1(iot, ioh, TX_CD_LOST);
GO_WINDOW(4);
bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
upperok = bus_space_read_1(iot, ioh, ELINK_W4_UBYTESOK);
ifp->if_ibytes += (upperok & 0x0f) << 16;
ifp->if_obytes += (upperok & 0xf0) << 12;
GO_WINDOW(1);
}
void
ex_printstats(sc)
struct ex_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
ex_getstats(sc);
printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
"%llu\n", (unsigned long long)ifp->if_ipackets,
(unsigned long long)ifp->if_opackets,
(unsigned long long)ifp->if_ierrors,
(unsigned long long)ifp->if_oerrors,
(unsigned long long)ifp->if_ibytes,
(unsigned long long)ifp->if_obytes);
}
void
ex_tick(arg)
void *arg;
{
struct ex_softc *sc = arg;
int s;
if ((sc->sc_dev.dv_flags & DVF_ACTIVE) == 0)
return;
s = splnet();
if (sc->ex_conf & EX_CONF_MII)
mii_tick(&sc->ex_mii);
if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
& S_COMMAND_IN_PROGRESS))
ex_getstats(sc);
splx(s);
callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
}
void
ex_reset(sc)
struct ex_softc *sc;
{
u_int16_t val = GLOBAL_RESET;
if (sc->ex_conf & EX_CONF_RESETHACK)
val |= 0x10;
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
/*
* XXX apparently the command in progress bit can't be trusted
* during a reset, so we just always wait this long. Fortunately
* we normally only reset the chip during autoconfig.
*/
delay(100000);
ex_waitcmd(sc);
}
void
ex_watchdog(ifp)
struct ifnet *ifp;
{
struct ex_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_ethercom.ec_if.if_oerrors;
ex_reset(sc);
ex_init(ifp);
}
void
ex_stop(ifp, disable)
struct ifnet *ifp;
int disable;
{
struct ex_softc *sc = ifp->if_softc;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
struct ex_txdesc *tx;
struct ex_rxdesc *rx;
int i;
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
if (tx->tx_mbhead == NULL)
continue;
m_freem(tx->tx_mbhead);
tx->tx_mbhead = NULL;
bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
((caddr_t)tx->tx_dpd - (caddr_t)sc->sc_dpd),
sizeof (struct ex_dpd),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->tx_tail = sc->tx_head = NULL;
ex_init_txdescs(sc);
sc->rx_tail = sc->rx_head = 0;
for (i = 0; i < EX_NUPD; i++) {
rx = &sc->sc_rxdescs[i];
if (rx->rx_mbhead != NULL) {
bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
m_freem(rx->rx_mbhead);
rx->rx_mbhead = NULL;
}
ex_add_rxbuf(sc, rx);
}
bus_space_write_2(iot, ioh, ELINK_COMMAND, C_INTR_LATCH);
callout_stop(&sc->ex_mii_callout);
if (sc->ex_conf & EX_CONF_MII)
mii_down(&sc->ex_mii);
if (disable)
ex_disable(sc);
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
}
static void
ex_init_txdescs(sc)
struct ex_softc *sc;
{
int i;
for (i = 0; i < EX_NDPD; i++) {
sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
if (i < EX_NDPD - 1)
sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
else
sc->sc_txdescs[i].tx_next = NULL;
}
sc->tx_free = &sc->sc_txdescs[0];
sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
}
int
ex_activate(self, act)
struct device *self;
enum devact act;
{
struct ex_softc *sc = (void *) self;
int s, error = 0;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
error = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if (sc->ex_conf & EX_CONF_MII)
mii_activate(&sc->ex_mii, act, MII_PHY_ANY,
MII_OFFSET_ANY);
if_deactivate(&sc->sc_ethercom.ec_if);
break;
}
splx(s);
return (error);
}
int
ex_detach(sc)
struct ex_softc *sc;
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ex_rxdesc *rxd;
int i;
/* Succeed now if there's no work to do. */
if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
return (0);
/* Unhook our tick handler. */
callout_stop(&sc->ex_mii_callout);
if (sc->ex_conf & EX_CONF_MII) {
/* Detach all PHYs */
mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
}
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
#if NRND > 0
rnd_detach_source(&sc->rnd_source);
#endif
ether_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < EX_NUPD; i++) {
rxd = &sc->sc_rxdescs[i];
if (rxd->rx_mbhead != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
m_freem(rxd->rx_mbhead);
rxd->rx_mbhead = NULL;
}
}
for (i = 0; i < EX_NUPD; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
for (i = 0; i < EX_NDPD; i++)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dpd,
EX_NDPD * sizeof (struct ex_dpd));
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_upd,
EX_NUPD * sizeof (struct ex_upd));
bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
shutdownhook_disestablish(sc->sc_sdhook);
powerhook_disestablish(sc->sc_powerhook);
return (0);
}
/*
* Before reboots, reset card completely.
*/
static void
ex_shutdown(arg)
void *arg;
{
struct ex_softc *sc = arg;
ex_stop(&sc->sc_ethercom.ec_if, 1);
}
/*
* Read EEPROM data.
* XXX what to do if EEPROM doesn't unbusy?
*/
u_int16_t
ex_read_eeprom(sc, offset)
struct ex_softc *sc;
int offset;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
u_int16_t data = 0, cmd = READ_EEPROM;
int off;
off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
GO_WINDOW(0);
if (ex_eeprom_busy(sc))
goto out;
bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
cmd | (off + (offset & 0x3f)));
if (ex_eeprom_busy(sc))
goto out;
data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
out:
return data;
}
static int
ex_eeprom_busy(sc)
struct ex_softc *sc;
{
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int i = 100;
while (i--) {
if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
EEPROM_BUSY))
return 0;
delay(100);
}
printf("\n%s: eeprom stays busy.\n", sc->sc_dev.dv_xname);
return (1);
}
/*
* Create a new rx buffer and add it to the 'soft' rx list.
*/
static int
ex_add_rxbuf(sc, rxd)
struct ex_softc *sc;
struct ex_rxdesc *rxd;
{
struct mbuf *m, *oldm;
bus_dmamap_t rxmap;
int error, rval = 0;
oldm = rxd->rx_mbhead;
rxmap = rxd->rx_dmamap;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m != NULL) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
rval = 1;
}
} else {
if (oldm == NULL)
return 1;
m = oldm;
m->m_data = m->m_ext.ext_buf;
rval = 1;
}
/*
* Setup the DMA map for this receive buffer.
*/
if (m != oldm) {
if (oldm != NULL)
bus_dmamap_unload(sc->sc_dmat, rxmap);
error = bus_dmamap_load(sc->sc_dmat, rxmap,
m->m_ext.ext_buf, MCLBYTES, NULL,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
printf("%s: can't load rx buffer, error = %d\n",
sc->sc_dev.dv_xname, error);
panic("ex_add_rxbuf"); /* XXX */
}
}
/*
* Align for data after 14 byte header.
*/
m->m_data += 2;
rxd->rx_mbhead = m;
rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
rxd->rx_upd->upd_frags[0].fr_addr =
htole32(rxmap->dm_segs[0].ds_addr + 2);
rxd->rx_upd->upd_nextptr = 0;
/*
* Attach it to the end of the list.
*/
if (sc->rx_head != NULL) {
sc->rx_tail->rx_next = rxd;
sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd));
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
(caddr_t)sc->rx_tail->rx_upd - (caddr_t)sc->sc_upd,
sizeof (struct ex_upd),
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
} else {
sc->rx_head = rxd;
}
sc->rx_tail = rxd;
bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
((caddr_t)rxd->rx_upd - (caddr_t)sc->sc_upd),
sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
return (rval);
}
u_int32_t
ex_mii_bitbang_read(self)
struct device *self;
{
struct ex_softc *sc = (void *) self;
/* We're already in Window 4. */
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
}
void
ex_mii_bitbang_write(self, val)
struct device *self;
u_int32_t val;
{
struct ex_softc *sc = (void *) self;
/* We're already in Window 4. */
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
}
int
ex_mii_readreg(v, phy, reg)
struct device *v;
int phy, reg;
{
struct ex_softc *sc = (struct ex_softc *)v;
int val;
if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
return 0;
GO_WINDOW(4);
val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
GO_WINDOW(1);
return (val);
}
void
ex_mii_writereg(v, phy, reg, data)
struct device *v;
int phy;
int reg;
int data;
{
struct ex_softc *sc = (struct ex_softc *)v;
GO_WINDOW(4);
mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
GO_WINDOW(1);
}
void
ex_mii_statchg(v)
struct device *v;
{
struct ex_softc *sc = (struct ex_softc *)v;
bus_space_tag_t iot = sc->sc_iot;
bus_space_handle_t ioh = sc->sc_ioh;
int mctl;
GO_WINDOW(3);
mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
if (sc->ex_mii.mii_media_active & IFM_FDX)
mctl |= MAC_CONTROL_FDX;
else
mctl &= ~MAC_CONTROL_FDX;
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
GO_WINDOW(1); /* back to operating window */
}
int
ex_enable(sc)
struct ex_softc *sc;
{
if (sc->enabled == 0 && sc->enable != NULL) {
if ((*sc->enable)(sc) != 0) {
printf("%s: de/vice enable failed\n",
sc->sc_dev.dv_xname);
return (EIO);
}
sc->enabled = 1;
}
return (0);
}
void
ex_disable(sc)
struct ex_softc *sc;
{
if (sc->enabled == 1 && sc->disable != NULL) {
(*sc->disable)(sc);
sc->enabled = 0;
}
}
void
ex_power(why, arg)
int why;
void *arg;
{
struct ex_softc *sc = (void *)arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int s;
s = splnet();
switch (why) {
case PWR_SUSPEND:
case PWR_STANDBY:
ex_stop(ifp, 0);
if (sc->power != NULL)
(*sc->power)(sc, why);
break;
case PWR_RESUME:
if (ifp->if_flags & IFF_UP) {
if (sc->power != NULL)
(*sc->power)(sc, why);
ex_init(ifp);
}
break;
case PWR_SOFTSUSPEND:
case PWR_SOFTSTANDBY:
case PWR_SOFTRESUME:
break;
}
splx(s);
}