449 lines
14 KiB
C
449 lines
14 KiB
C
/* Functions specific to running gdb native on a SPARC running NetBSD
|
||
Copyright 1989, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
|
||
|
||
This file is part of GDB.
|
||
|
||
This program is free software; you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation; either version 2 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
|
||
|
||
#include <sys/types.h>
|
||
#include <sys/ptrace.h>
|
||
#include <machine/reg.h>
|
||
#include <machine/frame.h>
|
||
#include <machine/pcb.h>
|
||
#include <machine/psl.h>
|
||
#include <string.h>
|
||
|
||
#include "defs.h"
|
||
#include "inferior.h"
|
||
#include "target.h"
|
||
#include "gdbcore.h"
|
||
|
||
/* We don't store all registers immediately when requested, since they
|
||
get sent over in large chunks anyway. Instead, we accumulate most
|
||
of the changes and send them over once. "deferred_stores" keeps
|
||
track of which sets of registers we have locally-changed copies of,
|
||
so we only need send the groups that have changed. */
|
||
|
||
#define INT_REGS 1
|
||
#define STACK_REGS 2
|
||
#define FP_REGS 4
|
||
|
||
/* Fetch one or more registers from the inferior. REGNO == -1 to get
|
||
them all. We actually fetch more than requested, when convenient,
|
||
marking them as valid so we won't fetch them again. */
|
||
|
||
void
|
||
fetch_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
struct reg inferior_registers;
|
||
struct fpreg inferior_fp_registers;
|
||
long save_g0;
|
||
int i;
|
||
|
||
/* We should never be called with deferred stores, because a prerequisite
|
||
for writing regs is to have fetched them all (PREPARE_TO_STORE), sigh. */
|
||
if (deferred_stores) abort();
|
||
|
||
DO_DEFERRED_STORES;
|
||
|
||
/* Global and Out regs are fetched directly, as well as the control
|
||
registers. If we're getting one of the in or local regs,
|
||
and the stack pointer has not yet been fetched,
|
||
we have to do that first, since they're found in memory relative
|
||
to the stack pointer. */
|
||
if (regno < O7_REGNUM /* including -1 */
|
||
|| regno >= PC_REGNUM
|
||
|| (!register_valid[SP_REGNUM] && regno < I7_REGNUM))
|
||
{
|
||
if (0 != ptrace (PT_GETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0))
|
||
perror("ptrace_getregs");
|
||
|
||
/* Copy them (in order shown in reg.h) */
|
||
memcpy (®isters[REGISTER_BYTE (G0_REGNUM)],
|
||
&inferior_registers.r_global[0],
|
||
sizeof(inferior_registers.r_global));
|
||
memcpy (®isters[REGISTER_BYTE (O0_REGNUM)],
|
||
&inferior_registers.r_out[0],
|
||
sizeof(inferior_registers.r_out));
|
||
*(long *)®isters[REGISTER_BYTE (TSTATE_REGNUM)] =
|
||
inferior_registers.r_tstate;
|
||
*(long *)®isters[REGISTER_BYTE (PC_REGNUM)] =
|
||
inferior_registers.r_pc;
|
||
*(long *)®isters[REGISTER_BYTE (NPC_REGNUM)] =
|
||
inferior_registers.r_npc;
|
||
*(long *)®isters[REGISTER_BYTE (Y_REGNUM)] =
|
||
inferior_registers.r_y;
|
||
|
||
/*
|
||
* Now we need to decompose good old tstate into
|
||
* its constituent parts.
|
||
*/
|
||
*(long *)®isters[REGISTER_BYTE (CWP_REGNUM)] =
|
||
(inferior_registers.r_tstate&TSTATE_CWP);
|
||
*(long *)®isters[REGISTER_BYTE (ASI_REGNUM)] =
|
||
((inferior_registers.r_tstate&TSTATE_ASI)>>TSTATE_ASI_SHIFT);
|
||
*(long *)®isters[REGISTER_BYTE (PSTATE_REGNUM)] =
|
||
((inferior_registers.r_tstate&TSTATE_PSTATE)>>TSTATE_PSTATE_SHIFT);
|
||
*(long *)®isters[REGISTER_BYTE (CCR_REGNUM)] =
|
||
((inferior_registers.r_tstate&TSTATE_CCR)>>TSTATE_CCR_SHIFT);
|
||
|
||
/*
|
||
* Note that the G0 slot actually carries the
|
||
* value of the %tt register, and G0 is zero.
|
||
*/
|
||
*(long *)®isters[REGISTER_BYTE(TT_REGNUM)] =
|
||
*(long *)®isters[REGISTER_BYTE(G0_REGNUM)];
|
||
*(long *)®isters[REGISTER_BYTE(G0_REGNUM)] = 0;
|
||
|
||
/* Mark what is valid (not the %i regs). */
|
||
for (i = G0_REGNUM; i <= O7_REGNUM; i++)
|
||
register_valid[i] = 1;
|
||
register_valid[TSTATE_REGNUM] = 1;
|
||
register_valid[PC_REGNUM] = 1;
|
||
register_valid[NPC_REGNUM] = 1;
|
||
register_valid[Y_REGNUM] = 1;
|
||
register_valid[PSTATE_REGNUM] = 1;
|
||
register_valid[ASI_REGNUM] = 1;
|
||
register_valid[CCR_REGNUM] = 1;
|
||
register_valid[CWP_REGNUM] = 1;
|
||
|
||
#if 0
|
||
/* If we don't set these valid, read_register_bytes() rereads
|
||
all the regs every time it is called! FIXME. */
|
||
register_valid[TBR_REGNUM] = 1; /* Not true yet, FIXME */
|
||
register_valid[CPS_REGNUM] = 1; /* Not true yet, FIXME */
|
||
#endif
|
||
}
|
||
|
||
/* Floating point registers */
|
||
if (regno == -1 || regno == FSR_REGNUM ||
|
||
(regno >= FP0_REGNUM && regno <= FP0_REGNUM + 31))
|
||
{
|
||
if (0 != ptrace (PT_GETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers,
|
||
0))
|
||
perror("ptrace_getfpregs");
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
&inferior_fp_registers.fr_regs[0],
|
||
sizeof (inferior_fp_registers.fr_regs));
|
||
memcpy (®isters[REGISTER_BYTE (FSR_REGNUM)],
|
||
&inferior_fp_registers.fr_fsr,
|
||
sizeof (inferior_fp_registers.fr_fsr));
|
||
for (i = FP0_REGNUM; i <= FP0_REGNUM+31; i++)
|
||
register_valid[i] = 1;
|
||
register_valid[FSR_REGNUM] = 1;
|
||
}
|
||
|
||
/* These regs are saved on the stack by the kernel. Only read them
|
||
all (16 ptrace calls!) if we really need them. */
|
||
if (regno == -1)
|
||
{
|
||
CORE_ADDR sp = *(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
if (sp & 0x1)
|
||
sp += BIAS;
|
||
target_read_memory (sp,
|
||
®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16*REGISTER_RAW_SIZE (L0_REGNUM));
|
||
for (i = L0_REGNUM; i <= I7_REGNUM; i++)
|
||
register_valid[i] = 1;
|
||
}
|
||
else if (regno >= L0_REGNUM && regno <= I7_REGNUM)
|
||
{
|
||
CORE_ADDR sp = *(CORE_ADDR*)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
if (sp & 0x1)
|
||
sp += BIAS;
|
||
i = REGISTER_BYTE (regno);
|
||
if (register_valid[regno])
|
||
printf_unfiltered("register %d valid and read\n", regno);
|
||
target_read_memory (sp + i - REGISTER_BYTE (L0_REGNUM),
|
||
®isters[i], REGISTER_RAW_SIZE (regno));
|
||
register_valid[regno] = 1;
|
||
}
|
||
}
|
||
|
||
/* Store our register values back into the inferior.
|
||
If REGNO is -1, do this for all registers.
|
||
Otherwise, REGNO specifies which register (so we can save time). */
|
||
|
||
void
|
||
store_inferior_registers (regno)
|
||
int regno;
|
||
{
|
||
struct reg inferior_registers;
|
||
struct fpreg inferior_fp_registers;
|
||
int wanna_store = INT_REGS + STACK_REGS + FP_REGS;
|
||
long save_g0;
|
||
|
||
/* First decide which pieces of machine-state we need to modify.
|
||
Default for regno == -1 case is all pieces. */
|
||
if (regno >= 0)
|
||
if (FP0_REGNUM <= regno && regno < FP0_REGNUM + 32)
|
||
{
|
||
wanna_store = FP_REGS;
|
||
}
|
||
else
|
||
{
|
||
if (regno == SP_REGNUM)
|
||
wanna_store = INT_REGS + STACK_REGS;
|
||
else if (regno < L0_REGNUM || regno > I7_REGNUM)
|
||
wanna_store = INT_REGS;
|
||
else if (regno == FSR_REGNUM)
|
||
wanna_store = FP_REGS;
|
||
else
|
||
wanna_store = STACK_REGS;
|
||
}
|
||
|
||
/* See if we're forcing the stores to happen now, or deferring. */
|
||
if (regno == -2)
|
||
{
|
||
wanna_store = deferred_stores;
|
||
deferred_stores = 0;
|
||
}
|
||
else
|
||
{
|
||
if (wanna_store == STACK_REGS)
|
||
{
|
||
/* Fall through and just store one stack reg. If we deferred
|
||
it, we'd have to store them all, or remember more info. */
|
||
}
|
||
else
|
||
{
|
||
deferred_stores |= wanna_store;
|
||
return;
|
||
}
|
||
}
|
||
|
||
if (wanna_store & STACK_REGS)
|
||
{
|
||
CORE_ADDR sp = *(CORE_ADDR *)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
|
||
if (regno < 0 || regno == SP_REGNUM)
|
||
{
|
||
if (!register_valid[L0_REGNUM+5]) abort();
|
||
target_write_memory (sp,
|
||
®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16*REGISTER_RAW_SIZE (L0_REGNUM));
|
||
}
|
||
else
|
||
{
|
||
if (!register_valid[regno]) abort();
|
||
target_write_memory ((sp + REGISTER_BYTE (regno) -
|
||
REGISTER_BYTE (L0_REGNUM)),
|
||
®isters[REGISTER_BYTE (regno)],
|
||
REGISTER_RAW_SIZE (regno));
|
||
}
|
||
|
||
}
|
||
|
||
if (wanna_store & INT_REGS)
|
||
{
|
||
if (!register_valid[G1_REGNUM]) abort();
|
||
|
||
/* The G0 slot really holds %tt (leave it alone). */
|
||
save_g0 = inferior_registers.r_global[0];
|
||
memcpy (&inferior_registers.r_global[0],
|
||
®isters[REGISTER_BYTE (G0_REGNUM)],
|
||
sizeof(inferior_registers.r_global));
|
||
inferior_registers.r_global[0] = save_g0;
|
||
memcpy (&inferior_registers.r_out[0],
|
||
®isters[REGISTER_BYTE (O0_REGNUM)],
|
||
sizeof(inferior_registers.r_out));
|
||
|
||
inferior_registers.r_tstate =
|
||
*(int *)®isters[REGISTER_BYTE (TSTATE_REGNUM)];
|
||
inferior_registers.r_pc =
|
||
*(int *)®isters[REGISTER_BYTE (PC_REGNUM)];
|
||
inferior_registers.r_npc =
|
||
*(int *)®isters[REGISTER_BYTE (NPC_REGNUM)];
|
||
inferior_registers.r_y =
|
||
*(int *)®isters[REGISTER_BYTE (Y_REGNUM)];
|
||
|
||
if (0 != ptrace (PT_SETREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_registers, 0))
|
||
perror("ptrace_setregs");
|
||
}
|
||
|
||
if (wanna_store & FP_REGS)
|
||
{
|
||
if (!register_valid[FP0_REGNUM+9]) abort();
|
||
memcpy (&inferior_fp_registers.fr_regs[0],
|
||
®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
sizeof(inferior_fp_registers.fr_regs));
|
||
memcpy (&inferior_fp_registers.fr_fsr,
|
||
®isters[REGISTER_BYTE (FSR_REGNUM)],
|
||
sizeof(inferior_fp_registers.fr_fsr));
|
||
if (0 !=
|
||
ptrace (PT_SETFPREGS, inferior_pid,
|
||
(PTRACE_ARG3_TYPE) &inferior_fp_registers, 0))
|
||
perror("ptrace_setfpregs");
|
||
}
|
||
}
|
||
|
||
|
||
static void
|
||
fetch_core_registers (core_reg_sect, core_reg_size, which, reg_addr)
|
||
char *core_reg_sect;
|
||
unsigned core_reg_size;
|
||
int which;
|
||
unsigned int reg_addr; /* Unused in this version */
|
||
{
|
||
struct md_coredump *core_reg;
|
||
struct trapframe *tf;
|
||
struct fpstate *fs;
|
||
|
||
core_reg = (struct md_coredump *)core_reg_sect;
|
||
tf = &core_reg->md_tf;
|
||
fs = &core_reg->md_fpstate;
|
||
|
||
/* We get everything from the .reg section. */
|
||
if (which != 0)
|
||
return;
|
||
|
||
if (core_reg_size < sizeof(*core_reg)) {
|
||
fprintf_unfiltered (gdb_stderr, "Couldn't read regs from core file\n");
|
||
return;
|
||
}
|
||
|
||
/* Integer registers */
|
||
memcpy(®isters[REGISTER_BYTE (G0_REGNUM)],
|
||
&tf->tf_global[0], sizeof(tf->tf_global));
|
||
memcpy(®isters[REGISTER_BYTE (O0_REGNUM)],
|
||
&tf->tf_out[0], sizeof(tf->tf_out));
|
||
*(long *)®isters[REGISTER_BYTE (TSTATE_REGNUM)] = tf->tf_tstate;
|
||
*(long *)®isters[REGISTER_BYTE (PC_REGNUM)] = tf->tf_pc;
|
||
*(long *)®isters[REGISTER_BYTE (NPC_REGNUM)] = tf->tf_npc;
|
||
*(long *)®isters[REGISTER_BYTE (Y_REGNUM)] = tf->tf_y;
|
||
|
||
/*
|
||
* Now we need to decompose good old tstate into
|
||
* its constituent parts.
|
||
*/
|
||
*(long *)®isters[REGISTER_BYTE (CWP_REGNUM)] =
|
||
(tf->tf_tstate&TSTATE_CWP);
|
||
*(long *)®isters[REGISTER_BYTE (ASI_REGNUM)] =
|
||
((tf->tf_tstate&TSTATE_ASI)>>TSTATE_ASI_SHIFT);
|
||
*(long *)®isters[REGISTER_BYTE (PSTATE_REGNUM)] =
|
||
((tf->tf_tstate&TSTATE_PSTATE)>>TSTATE_PSTATE_SHIFT);
|
||
*(long *)®isters[REGISTER_BYTE (CCR_REGNUM)] =
|
||
((tf->tf_tstate&TSTATE_CCR)>>TSTATE_CCR_SHIFT);
|
||
|
||
/* Clear out the G0 slot (see reg.h) */
|
||
*(long *)®isters[REGISTER_BYTE(G0_REGNUM)] = 0;
|
||
|
||
/* My best guess at where to get the locals and input
|
||
registers is exactly where they usually are, right above
|
||
the stack pointer. If the core dump was caused by a bus error
|
||
from blowing away the stack pointer (as is possible) then this
|
||
won't work, but it's worth the try. */
|
||
{
|
||
CORE_ADDR sp;
|
||
|
||
sp = *(CORE_ADDR *)®isters[REGISTER_BYTE (SP_REGNUM)];
|
||
if (sp & 0x1)
|
||
sp += BIAS;
|
||
if (0 != target_read_memory (sp, ®isters[REGISTER_BYTE (L0_REGNUM)],
|
||
16 * REGISTER_RAW_SIZE (L0_REGNUM)))
|
||
{
|
||
/* fprintf_unfiltered so user can still use gdb */
|
||
fprintf_unfiltered (gdb_stderr,
|
||
"Couldn't read input and local registers from core file\n");
|
||
}
|
||
}
|
||
|
||
/* Floating point registers */
|
||
memcpy (®isters[REGISTER_BYTE (FP0_REGNUM)],
|
||
&fs->fs_regs[0], sizeof (fs->fs_regs));
|
||
memcpy (®isters[REGISTER_BYTE (FSR_REGNUM)],
|
||
&fs->fs_fsr, sizeof (fs->fs_fsr));
|
||
|
||
registers_fetched ();
|
||
}
|
||
|
||
/* Register that we are able to handle sparcnbsd core file formats.
|
||
FIXME: is this really bfd_target_unknown_flavour? */
|
||
|
||
static struct core_fns nat_core_fns =
|
||
{
|
||
bfd_target_unknown_flavour,
|
||
fetch_core_registers,
|
||
NULL
|
||
};
|
||
|
||
void
|
||
_initialize_sparcnbsd_nat ()
|
||
{
|
||
add_core_fns (&nat_core_fns);
|
||
}
|
||
|
||
|
||
/*
|
||
* kernel_u_size() is not helpful on NetBSD because
|
||
* the "u" struct is NOT in the core dump file.
|
||
*/
|
||
|
||
#ifdef FETCH_KCORE_REGISTERS
|
||
/*
|
||
* Get registers from a kernel crash dump or live kernel.
|
||
* Called by kcore-nbsd.c:get_kcore_registers().
|
||
*/
|
||
void
|
||
fetch_kcore_registers (pcb)
|
||
struct pcb *pcb;
|
||
{
|
||
struct rwindow64 win;
|
||
int i;
|
||
u_long sp;
|
||
|
||
/* We only do integer registers */
|
||
sp = pcb->pcb_sp;
|
||
|
||
supply_register(SP_REGNUM, (char *)&pcb->pcb_sp);
|
||
supply_register(PC_REGNUM, (char *)&pcb->pcb_pc);
|
||
supply_register(O7_REGNUM, (char *)&pcb->pcb_pc);
|
||
supply_register(PSTATE_REGNUM, (char *)&pcb->pcb_pstate);
|
||
supply_register(CWP_REGNUM, (char *)&pcb->pcb_cwp);
|
||
/*
|
||
* Read last register window saved on stack.
|
||
*/
|
||
if (target_read_memory(sp, (char *)&win, sizeof win)) {
|
||
printf("cannot read register window at sp=%x\n", pcb->pcb_sp);
|
||
bzero((char *)&win, sizeof win);
|
||
}
|
||
for (i = 0; i < sizeof(win.rw_local); ++i)
|
||
supply_register(i + L0_REGNUM, (char *)&win.rw_local[i]);
|
||
for (i = 0; i < sizeof(win.rw_in); ++i)
|
||
supply_register(i + I0_REGNUM, (char *)&win.rw_in[i]);
|
||
/*
|
||
* read the globals & outs saved on the stack (for a trap frame).
|
||
*/
|
||
sp += 92 + 12; /* XXX - MINFRAME + R_Y */
|
||
for (i = 1; i < 14; ++i) {
|
||
u_long val;
|
||
|
||
if (target_read_memory(sp + i*4, (char *)&val, sizeof val) == 0)
|
||
supply_register(i, (char *)&val);
|
||
}
|
||
#if 0
|
||
if (kvread(pcb.pcb_cpctxp, &cps) == 0)
|
||
supply_register(CPS_REGNUM, (char *)&cps);
|
||
#endif
|
||
|
||
/* The kernel does not use the FPU, so ignore it. */
|
||
registers_fetched ();
|
||
}
|
||
#endif /* FETCH_KCORE_REGISTERS */
|