bd52d17906
too large to list, but see: http://gcc.gnu.org/gcc-3.4/changes.html http://gcc.gnu.org/gcc-4.0/changes.html http://gcc.gnu.org/gcc-4.1/changes.html for the details.
485 lines
22 KiB
Plaintext
485 lines
22 KiB
Plaintext
@c Copyright (C) 2003, 2004 Free Software Foundation, Inc.
|
|
@c This is part of the GCC manual.
|
|
@c For copying conditions, see the file gcc.texi.
|
|
@c Contributed by Aldy Hernandez <aldy@quesejoda.com>
|
|
|
|
@node Libgcc
|
|
@chapter The GCC low-level runtime library
|
|
|
|
GCC provides a low-level runtime library, @file{libgcc.a} or
|
|
@file{libgcc_s.so.1} on some platforms. GCC generates calls to
|
|
routines in this library automatically, whenever it needs to perform
|
|
some operation that is too complicated to emit inline code for.
|
|
|
|
Most of the routines in @code{libgcc} handle arithmetic operations
|
|
that the target processor cannot perform directly. This includes
|
|
integer multiply and divide on some machines, and all floating-point
|
|
operations on other machines. @code{libgcc} also includes routines
|
|
for exception handling, and a handful of miscellaneous operations.
|
|
|
|
Some of these routines can be defined in mostly machine-independent C@.
|
|
Others must be hand-written in assembly language for each processor
|
|
that needs them.
|
|
|
|
GCC will also generate calls to C library routines, such as
|
|
@code{memcpy} and @code{memset}, in some cases. The set of routines
|
|
that GCC may possibly use is documented in @ref{Other
|
|
Builtins,,,gcc, Using the GNU Compiler Collection (GCC)}.
|
|
|
|
These routines take arguments and return values of a specific machine
|
|
mode, not a specific C type. @xref{Machine Modes}, for an explanation
|
|
of this concept. For illustrative purposes, in this chapter the
|
|
floating point type @code{float} is assumed to correspond to @code{SFmode};
|
|
@code{double} to @code{DFmode}; and @code{@w{long double}} to both
|
|
@code{TFmode} and @code{XFmode}. Similarly, the integer types @code{int}
|
|
and @code{@w{unsigned int}} correspond to @code{SImode}; @code{long} and
|
|
@code{@w{unsigned long}} to @code{DImode}; and @code{@w{long long}} and
|
|
@code{@w{unsigned long long}} to @code{TImode}.
|
|
|
|
@menu
|
|
* Integer library routines::
|
|
* Soft float library routines::
|
|
* Exception handling routines::
|
|
* Miscellaneous routines::
|
|
@end menu
|
|
|
|
@node Integer library routines
|
|
@section Routines for integer arithmetic
|
|
|
|
The integer arithmetic routines are used on platforms that don't provide
|
|
hardware support for arithmetic operations on some modes.
|
|
|
|
@subsection Arithmetic functions
|
|
|
|
@deftypefn {Runtime Function} int __ashlsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __ashldi3 (long @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} {long long} __ashlti3 (long long @var{a}, int @var{b})
|
|
These functions return the result of shifting @var{a} left by @var{b} bits.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __ashrsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __ashrdi3 (long @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} {long long} __ashrti3 (long long @var{a}, int @var{b})
|
|
These functions return the result of arithmetically shifting @var{a} right
|
|
by @var{b} bits.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __divsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __divdi3 (long @var{a}, long @var{b})
|
|
@deftypefnx {Runtime Function} {long long} __divti3 (long long @var{a}, long long @var{b})
|
|
These functions return the quotient of the signed division of @var{a} and
|
|
@var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __lshrsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __lshrdi3 (long @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} {long long} __lshrti3 (long long @var{a}, int @var{b})
|
|
These functions return the result of logically shifting @var{a} right by
|
|
@var{b} bits.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __modsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __moddi3 (long @var{a}, long @var{b})
|
|
@deftypefnx {Runtime Function} {long long} __modti3 (long long @var{a}, long long @var{b})
|
|
These functions return the remainder of the signed division of @var{a}
|
|
and @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __mulsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __muldi3 (long @var{a}, long @var{b})
|
|
@deftypefnx {Runtime Function} {long long} __multi3 (long long @var{a}, long long @var{b})
|
|
These functions return the product of @var{a} and @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} long __negdi2 (long @var{a})
|
|
@deftypefnx {Runtime Function} {long long} __negti2 (long long @var{a})
|
|
These functions return the negation of @var{a}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {unsigned int} __udivsi3 (unsigned int @var{a}, unsigned int @var{b})
|
|
@deftypefnx {Runtime Function} {unsigned long} __udivdi3 (unsigned long @var{a}, unsigned long @var{b})
|
|
@deftypefnx {Runtime Function} {unsigned long long} __udivti3 (unsigned long long @var{a}, unsigned long long @var{b})
|
|
These functions return the quotient of the unsigned division of @var{a}
|
|
and @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {unsigned long} __udivmoddi3 (unsigned long @var{a}, unsigned long @var{b}, unsigned long *@var{c})
|
|
@deftypefnx {Runtime Function} {unsigned long long} __udivti3 (unsigned long long @var{a}, unsigned long long @var{b}, unsigned long long *@var{c})
|
|
These functions calculate both the quotient and remainder of the unsigned
|
|
division of @var{a} and @var{b}. The return value is the quotient, and
|
|
the remainder is placed in variable pointed to by @var{c}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {unsigned int} __umodsi3 (unsigned int @var{a}, unsigned int @var{b})
|
|
@deftypefnx {Runtime Function} {unsigned long} __umoddi3 (unsigned long @var{a}, unsigned long @var{b})
|
|
@deftypefnx {Runtime Function} {unsigned long long} __umodti3 (unsigned long long @var{a}, unsigned long long @var{b})
|
|
These functions return the remainder of the unsigned division of @var{a}
|
|
and @var{b}.
|
|
@end deftypefn
|
|
|
|
@subsection Comparison functions
|
|
|
|
The following functions implement integral comparisons. These functions
|
|
implement a low-level compare, upon which the higher level comparison
|
|
operators (such as less than and greater than or equal to) can be
|
|
constructed. The returned values lie in the range zero to two, to allow
|
|
the high-level operators to be implemented by testing the returned
|
|
result using either signed or unsigned comparison.
|
|
|
|
@deftypefn {Runtime Function} int __cmpdi2 (long @var{a}, long @var{b})
|
|
@deftypefnx {Runtime Function} int __cmpti2 (long long @var{a}, long long @var{b})
|
|
These functions perform a signed comparison of @var{a} and @var{b}. If
|
|
@var{a} is less than @var{b}, they return 0; if @var{a} is greater than
|
|
@var{b}, they return 2; and if @var{a} and @var{b} are equal they return 1.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __ucmpdi2 (unsigned long @var{a}, unsigned long @var{b})
|
|
@deftypefnx {Runtime Function} int __ucmpti2 (unsigned long long @var{a}, unsigned long long @var{b})
|
|
These functions perform an unsigned comparison of @var{a} and @var{b}.
|
|
If @var{a} is less than @var{b}, they return 0; if @var{a} is greater than
|
|
@var{b}, they return 2; and if @var{a} and @var{b} are equal they return 1.
|
|
@end deftypefn
|
|
|
|
@subsection Trapping arithmetic functions
|
|
|
|
The following functions implement trapping arithmetic. These functions
|
|
call the libc function @code{abort} upon signed arithmetic overflow.
|
|
|
|
@deftypefn {Runtime Function} int __absvsi2 (int @var{a})
|
|
@deftypefnx {Runtime Function} long __absvdi2 (long @var{a})
|
|
These functions return the absolute value of @var{a}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __addvsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __addvdi3 (long @var{a}, long @var{b})
|
|
These functions return the sum of @var{a} and @var{b}; that is
|
|
@code{@var{a} + @var{b}}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __mulvsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __mulvdi3 (long @var{a}, long @var{b})
|
|
The functions return the product of @var{a} and @var{b}; that is
|
|
@code{@var{a} * @var{b}}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __negvsi2 (int @var{a})
|
|
@deftypefnx {Runtime Function} long __negvdi2 (long @var{a})
|
|
These functions return the negation of @var{a}; that is @code{-@var{a}}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __subvsi3 (int @var{a}, int @var{b})
|
|
@deftypefnx {Runtime Function} long __subvdi3 (long @var{a}, long @var{b})
|
|
These functions return the difference between @var{b} and @var{a};
|
|
that is @code{@var{a} - @var{b}}.
|
|
@end deftypefn
|
|
|
|
@subsection Bit operations
|
|
|
|
@deftypefn {Runtime Function} int __clzsi2 (int @var{a})
|
|
@deftypefnx {Runtime Function} int __clzdi2 (long @var{a})
|
|
@deftypefnx {Runtime Function} int __clzti2 (long long @var{a})
|
|
These functions return the number of leading 0-bits in @var{a}, starting
|
|
at the most significant bit position. If @var{a} is zero, the result is
|
|
undefined.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __ctzsi2 (int @var{a})
|
|
@deftypefnx {Runtime Function} int __ctzdi2 (long @var{a})
|
|
@deftypefnx {Runtime Function} int __ctzti2 (long long @var{a})
|
|
These functions return the number of trailing 0-bits in @var{a}, starting
|
|
at the least significant bit position. If @var{a} is zero, the result is
|
|
undefined.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __ffsdi2 (long @var{a})
|
|
@deftypefnx {Runtime Function} int __ffsti2 (long long @var{a})
|
|
These functions return the index of the least significant 1-bit in @var{a},
|
|
or the value zero if @var{a} is zero. The least significant bit is index
|
|
one.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __paritysi2 (int @var{a})
|
|
@deftypefnx {Runtime Function} int __paritydi2 (long @var{a})
|
|
@deftypefnx {Runtime Function} int __parityti2 (long long @var{a})
|
|
These functions return the value zero if the number of bits set in
|
|
@var{a} is even, and the value one otherwise.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __popcountsi2 (int @var{a})
|
|
@deftypefnx {Runtime Function} int __popcountdi2 (long @var{a})
|
|
@deftypefnx {Runtime Function} int __popcountti2 (long long @var{a})
|
|
These functions return the number of bits set in @var{a}.
|
|
@end deftypefn
|
|
|
|
@node Soft float library routines
|
|
@section Routines for floating point emulation
|
|
@cindex soft float library
|
|
@cindex arithmetic library
|
|
@cindex math library
|
|
@opindex msoft-float
|
|
|
|
The software floating point library is used on machines which do not
|
|
have hardware support for floating point. It is also used whenever
|
|
@option{-msoft-float} is used to disable generation of floating point
|
|
instructions. (Not all targets support this switch.)
|
|
|
|
For compatibility with other compilers, the floating point emulation
|
|
routines can be renamed with the @code{DECLARE_LIBRARY_RENAMES} macro
|
|
(@pxref{Library Calls}). In this section, the default names are used.
|
|
|
|
Presently the library does not support @code{XFmode}, which is used
|
|
for @code{long double} on some architectures.
|
|
|
|
@subsection Arithmetic functions
|
|
|
|
@deftypefn {Runtime Function} float __addsf3 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} double __adddf3 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __addtf3 (long double @var{a}, long double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __addxf3 (long double @var{a}, long double @var{b})
|
|
These functions return the sum of @var{a} and @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __subsf3 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} double __subdf3 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __subtf3 (long double @var{a}, long double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __subxf3 (long double @var{a}, long double @var{b})
|
|
These functions return the difference between @var{b} and @var{a};
|
|
that is, @w{@math{@var{a} - @var{b}}}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __mulsf3 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} double __muldf3 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __multf3 (long double @var{a}, long double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __mulxf3 (long double @var{a}, long double @var{b})
|
|
These functions return the product of @var{a} and @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __divsf3 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} double __divdf3 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __divtf3 (long double @var{a}, long double @var{b})
|
|
@deftypefnx {Runtime Function} {long double} __divxf3 (long double @var{a}, long double @var{b})
|
|
These functions return the quotient of @var{a} and @var{b}; that is,
|
|
@w{@math{@var{a} / @var{b}}}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __negsf2 (float @var{a})
|
|
@deftypefnx {Runtime Function} double __negdf2 (double @var{a})
|
|
@deftypefnx {Runtime Function} {long double} __negtf2 (long double @var{a})
|
|
@deftypefnx {Runtime Function} {long double} __negxf2 (long double @var{a})
|
|
These functions return the negation of @var{a}. They simply flip the
|
|
sign bit, so they can produce negative zero and negative NaN@.
|
|
@end deftypefn
|
|
|
|
@subsection Conversion functions
|
|
|
|
@deftypefn {Runtime Function} double __extendsfdf2 (float @var{a})
|
|
@deftypefnx {Runtime Function} {long double} __extendsftf2 (float @var{a})
|
|
@deftypefnx {Runtime Function} {long double} __extendsfxf2 (float @var{a})
|
|
@deftypefnx {Runtime Function} {long double} __extenddftf2 (double @var{a})
|
|
@deftypefnx {Runtime Function} {long double} __extenddfxf2 (double @var{a})
|
|
These functions extend @var{a} to the wider mode of their return
|
|
type.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} double __truncxfdf2 (long double @var{a})
|
|
@deftypefnx {Runtime Function} double __trunctfdf2 (long double @var{a})
|
|
@deftypefnx {Runtime Function} float __truncxfsf2 (long double @var{a})
|
|
@deftypefnx {Runtime Function} float __trunctfsf2 (long double @var{a})
|
|
@deftypefnx {Runtime Function} float __truncdfsf2 (double @var{a})
|
|
These functions truncate @var{a} to the narrower mode of their return
|
|
type, rounding toward zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __fixsfsi (float @var{a})
|
|
@deftypefnx {Runtime Function} int __fixdfsi (double @var{a})
|
|
@deftypefnx {Runtime Function} int __fixtfsi (long double @var{a})
|
|
@deftypefnx {Runtime Function} int __fixxfsi (long double @var{a})
|
|
These functions convert @var{a} to a signed integer, rounding toward zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} long __fixsfdi (float @var{a})
|
|
@deftypefnx {Runtime Function} long __fixdfdi (double @var{a})
|
|
@deftypefnx {Runtime Function} long __fixtfdi (long double @var{a})
|
|
@deftypefnx {Runtime Function} long __fixxfdi (long double @var{a})
|
|
These functions convert @var{a} to a signed long, rounding toward zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {long long} __fixsfti (float @var{a})
|
|
@deftypefnx {Runtime Function} {long long} __fixdfti (double @var{a})
|
|
@deftypefnx {Runtime Function} {long long} __fixtfti (long double @var{a})
|
|
@deftypefnx {Runtime Function} {long long} __fixxfti (long double @var{a})
|
|
These functions convert @var{a} to a signed long long, rounding toward zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {unsigned int} __fixunssfsi (float @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunsdfsi (double @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunstfsi (long double @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned int} __fixunsxfsi (long double @var{a})
|
|
These functions convert @var{a} to an unsigned integer, rounding
|
|
toward zero. Negative values all become zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {unsigned long} __fixunssfdi (float @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunsdfdi (double @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunstfdi (long double @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned long} __fixunsxfdi (long double @var{a})
|
|
These functions convert @var{a} to an unsigned long, rounding
|
|
toward zero. Negative values all become zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} {unsigned long long} __fixunssfti (float @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned long long} __fixunsdfti (double @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned long long} __fixunstfti (long double @var{a})
|
|
@deftypefnx {Runtime Function} {unsigned long long} __fixunsxfti (long double @var{a})
|
|
These functions convert @var{a} to an unsigned long long, rounding
|
|
toward zero. Negative values all become zero.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __floatsisf (int @var{i})
|
|
@deftypefnx {Runtime Function} double __floatsidf (int @var{i})
|
|
@deftypefnx {Runtime Function} {long double} __floatsitf (int @var{i})
|
|
@deftypefnx {Runtime Function} {long double} __floatsixf (int @var{i})
|
|
These functions convert @var{i}, a signed integer, to floating point.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __floatdisf (long @var{i})
|
|
@deftypefnx {Runtime Function} double __floatdidf (long @var{i})
|
|
@deftypefnx {Runtime Function} {long double} __floatditf (long @var{i})
|
|
@deftypefnx {Runtime Function} {long double} __floatdixf (long @var{i})
|
|
These functions convert @var{i}, a signed long, to floating point.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} float __floattisf (long long @var{i})
|
|
@deftypefnx {Runtime Function} double __floattidf (long long @var{i})
|
|
@deftypefnx {Runtime Function} {long double} __floattitf (long long @var{i})
|
|
@deftypefnx {Runtime Function} {long double} __floattixf (long long @var{i})
|
|
These functions convert @var{i}, a signed long long, to floating point.
|
|
@end deftypefn
|
|
|
|
@subsection Comparison functions
|
|
|
|
There are two sets of basic comparison functions.
|
|
|
|
@deftypefn {Runtime Function} int __cmpsf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __cmpdf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __cmptf2 (long double @var{a}, long double @var{b})
|
|
These functions calculate @math{a <=> b}. That is, if @var{a} is less
|
|
than @var{b}, they return @minus{}1; if @var{a} is greater than @var{b}, they
|
|
return 1; and if @var{a} and @var{b} are equal they return 0. If
|
|
either argument is NaN they return 1, but you should not rely on this;
|
|
if NaN is a possibility, use one of the higher-level comparison
|
|
functions.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __unordsf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __unorddf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __unordtf2 (long double @var{a}, long double @var{b})
|
|
These functions return a nonzero value if either argument is NaN, otherwise 0.
|
|
@end deftypefn
|
|
|
|
There is also a complete group of higher level functions which
|
|
correspond directly to comparison operators. They implement the ISO C
|
|
semantics for floating-point comparisons, taking NaN into account.
|
|
Pay careful attention to the return values defined for each set.
|
|
Under the hood, all of these routines are implemented as
|
|
|
|
@smallexample
|
|
if (__unord@var{X}f2 (a, b))
|
|
return @var{E};
|
|
return __cmp@var{X}f2 (a, b);
|
|
@end smallexample
|
|
|
|
@noindent
|
|
where @var{E} is a constant chosen to give the proper behavior for
|
|
NaN@. Thus, the meaning of the return value is different for each set.
|
|
Do not rely on this implementation; only the semantics documented
|
|
below are guaranteed.
|
|
|
|
@deftypefn {Runtime Function} int __eqsf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __eqdf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __eqtf2 (long double @var{a}, long double @var{b})
|
|
These functions return zero if neither argument is NaN, and @var{a} and
|
|
@var{b} are equal.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __nesf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __nedf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __netf2 (long double @var{a}, long double @var{b})
|
|
These functions return a nonzero value if either argument is NaN, or
|
|
if @var{a} and @var{b} are unequal.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __gesf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __gedf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __getf2 (long double @var{a}, long double @var{b})
|
|
These functions return a value greater than or equal to zero if
|
|
neither argument is NaN, and @var{a} is greater than or equal to
|
|
@var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __ltsf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __ltdf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __lttf2 (long double @var{a}, long double @var{b})
|
|
These functions return a value less than zero if neither argument is
|
|
NaN, and @var{a} is strictly less than @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __lesf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __ledf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __letf2 (long double @var{a}, long double @var{b})
|
|
These functions return a value less than or equal to zero if neither
|
|
argument is NaN, and @var{a} is less than or equal to @var{b}.
|
|
@end deftypefn
|
|
|
|
@deftypefn {Runtime Function} int __gtsf2 (float @var{a}, float @var{b})
|
|
@deftypefnx {Runtime Function} int __gtdf2 (double @var{a}, double @var{b})
|
|
@deftypefnx {Runtime Function} int __gttf2 (long double @var{a}, long double @var{b})
|
|
These functions return a value greater than zero if neither argument
|
|
is NaN, and @var{a} is strictly greater than @var{b}.
|
|
@end deftypefn
|
|
|
|
@node Exception handling routines
|
|
@section Language-independent routines for exception handling
|
|
|
|
document me!
|
|
|
|
@smallexample
|
|
_Unwind_DeleteException
|
|
_Unwind_Find_FDE
|
|
_Unwind_ForcedUnwind
|
|
_Unwind_GetGR
|
|
_Unwind_GetIP
|
|
_Unwind_GetLanguageSpecificData
|
|
_Unwind_GetRegionStart
|
|
_Unwind_GetTextRelBase
|
|
_Unwind_GetDataRelBase
|
|
_Unwind_RaiseException
|
|
_Unwind_Resume
|
|
_Unwind_SetGR
|
|
_Unwind_SetIP
|
|
_Unwind_FindEnclosingFunction
|
|
_Unwind_SjLj_Register
|
|
_Unwind_SjLj_Unregister
|
|
_Unwind_SjLj_RaiseException
|
|
_Unwind_SjLj_ForcedUnwind
|
|
_Unwind_SjLj_Resume
|
|
__deregister_frame
|
|
__deregister_frame_info
|
|
__deregister_frame_info_bases
|
|
__register_frame
|
|
__register_frame_info
|
|
__register_frame_info_bases
|
|
__register_frame_info_table
|
|
__register_frame_info_table_bases
|
|
__register_frame_table
|
|
@end smallexample
|
|
|
|
@node Miscellaneous routines
|
|
@section Miscellaneous runtime library routines
|
|
|
|
@subsection Cache control functions
|
|
@deftypefn {Runtime Function} void __clear_cache (char *@var{beg}, char *@var{end})
|
|
This function clears the instruction cache between @var{beg} and @var{end}.
|
|
@end deftypefn
|
|
|