938 lines
23 KiB
C
938 lines
23 KiB
C
/* $NetBSD: vfs_lockf.c,v 1.55 2006/07/23 22:06:12 ad Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* Scooter Morris at Genentech Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)ufs_lockf.c 8.4 (Berkeley) 10/26/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: vfs_lockf.c,v 1.55 2006/07/23 22:06:12 ad Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/file.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/lockf.h>
|
|
#include <sys/kauth.h>
|
|
|
|
/*
|
|
* The lockf structure is a kernel structure which contains the information
|
|
* associated with a byte range lock. The lockf structures are linked into
|
|
* the inode structure. Locks are sorted by the starting byte of the lock for
|
|
* efficiency.
|
|
*
|
|
* lf_next is used for two purposes, depending on whether the lock is
|
|
* being held, or is in conflict with an existing lock. If this lock
|
|
* is held, it indicates the next lock on the same vnode.
|
|
* For pending locks, if lock->lf_next is non-NULL, then lock->lf_block
|
|
* must be queued on the lf_blkhd TAILQ of lock->lf_next.
|
|
*/
|
|
|
|
TAILQ_HEAD(locklist, lockf);
|
|
|
|
struct lockf {
|
|
short lf_flags; /* Lock semantics: F_POSIX, F_FLOCK, F_WAIT */
|
|
short lf_type; /* Lock type: F_RDLCK, F_WRLCK */
|
|
off_t lf_start; /* The byte # of the start of the lock */
|
|
off_t lf_end; /* The byte # of the end of the lock (-1=EOF)*/
|
|
void *lf_id; /* process or file description holding lock */
|
|
struct lockf **lf_head; /* Back pointer to the head of lockf list */
|
|
struct lockf *lf_next; /* Next lock on this vnode, or blocking lock */
|
|
struct locklist lf_blkhd; /* List of requests blocked on this lock */
|
|
TAILQ_ENTRY(lockf) lf_block;/* A request waiting for a lock */
|
|
uid_t lf_uid; /* User ID responsible */
|
|
};
|
|
|
|
/* Maximum length of sleep chains to traverse to try and detect deadlock. */
|
|
#define MAXDEPTH 50
|
|
|
|
static POOL_INIT(lockfpool, sizeof(struct lockf), 0, 0, 0, "lockfpl",
|
|
&pool_allocator_nointr);
|
|
|
|
/*
|
|
* This variable controls the maximum number of processes that will
|
|
* be checked in doing deadlock detection.
|
|
*/
|
|
int maxlockdepth = MAXDEPTH;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
int lockf_debug = 0;
|
|
#endif
|
|
|
|
#define SELF 0x1
|
|
#define OTHERS 0x2
|
|
|
|
/*
|
|
* XXX TODO
|
|
* Misc cleanups: "caddr_t id" should be visible in the API as a
|
|
* "struct proc *".
|
|
* (This requires rototilling all VFS's which support advisory locking).
|
|
*/
|
|
|
|
/*
|
|
* If there's a lot of lock contention on a single vnode, locking
|
|
* schemes which allow for more paralleism would be needed. Given how
|
|
* infrequently byte-range locks are actually used in typical BSD
|
|
* code, a more complex approach probably isn't worth it.
|
|
*/
|
|
|
|
/*
|
|
* We enforce a limit on locks by uid, so that a single user cannot
|
|
* run the kernel out of memory. For now, the limit is pretty coarse.
|
|
* There is no limit on root.
|
|
*
|
|
* Splitting a lock will always succeed, regardless of current allocations.
|
|
* If you're slightly above the limit, we still have to permit an allocation
|
|
* so that the unlock can succeed. If the unlocking causes too many splits,
|
|
* however, you're totally cutoff.
|
|
*/
|
|
int maxlocksperuid = 1024;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
/*
|
|
* Print out a lock.
|
|
*/
|
|
static void
|
|
lf_print(char *tag, struct lockf *lock)
|
|
{
|
|
|
|
printf("%s: lock %p for ", tag, lock);
|
|
if (lock->lf_flags & F_POSIX)
|
|
printf("proc %d", ((struct proc *)lock->lf_id)->p_pid);
|
|
else
|
|
printf("file %p", (struct file *)lock->lf_id);
|
|
printf(" %s, start %qx, end %qx",
|
|
lock->lf_type == F_RDLCK ? "shared" :
|
|
lock->lf_type == F_WRLCK ? "exclusive" :
|
|
lock->lf_type == F_UNLCK ? "unlock" :
|
|
"unknown", lock->lf_start, lock->lf_end);
|
|
if (TAILQ_FIRST(&lock->lf_blkhd))
|
|
printf(" block %p\n", TAILQ_FIRST(&lock->lf_blkhd));
|
|
else
|
|
printf("\n");
|
|
}
|
|
|
|
static void
|
|
lf_printlist(char *tag, struct lockf *lock)
|
|
{
|
|
struct lockf *lf, *blk;
|
|
|
|
printf("%s: Lock list:\n", tag);
|
|
for (lf = *lock->lf_head; lf; lf = lf->lf_next) {
|
|
printf("\tlock %p for ", lf);
|
|
if (lf->lf_flags & F_POSIX)
|
|
printf("proc %d", ((struct proc *)lf->lf_id)->p_pid);
|
|
else
|
|
printf("file %p", (struct file *)lf->lf_id);
|
|
printf(", %s, start %qx, end %qx",
|
|
lf->lf_type == F_RDLCK ? "shared" :
|
|
lf->lf_type == F_WRLCK ? "exclusive" :
|
|
lf->lf_type == F_UNLCK ? "unlock" :
|
|
"unknown", lf->lf_start, lf->lf_end);
|
|
TAILQ_FOREACH(blk, &lf->lf_blkhd, lf_block) {
|
|
if (blk->lf_flags & F_POSIX)
|
|
printf("proc %d",
|
|
((struct proc *)blk->lf_id)->p_pid);
|
|
else
|
|
printf("file %p", (struct file *)blk->lf_id);
|
|
printf(", %s, start %qx, end %qx",
|
|
blk->lf_type == F_RDLCK ? "shared" :
|
|
blk->lf_type == F_WRLCK ? "exclusive" :
|
|
blk->lf_type == F_UNLCK ? "unlock" :
|
|
"unknown", blk->lf_start, blk->lf_end);
|
|
if (TAILQ_FIRST(&blk->lf_blkhd))
|
|
panic("lf_printlist: bad list");
|
|
}
|
|
printf("\n");
|
|
}
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
|
|
/*
|
|
* 3 options for allowfail.
|
|
* 0 - always allocate. 1 - cutoff at limit. 2 - cutoff at double limit.
|
|
*/
|
|
static struct lockf *
|
|
lf_alloc(uid_t uid, int allowfail)
|
|
{
|
|
struct uidinfo *uip;
|
|
struct lockf *lock;
|
|
int s;
|
|
|
|
uip = uid_find(uid);
|
|
UILOCK(uip, s);
|
|
if (uid && allowfail && uip->ui_lockcnt >
|
|
(allowfail == 1 ? maxlocksperuid : (maxlocksperuid * 2))) {
|
|
UIUNLOCK(uip, s);
|
|
return NULL;
|
|
}
|
|
uip->ui_lockcnt++;
|
|
UIUNLOCK(uip, s);
|
|
lock = pool_get(&lockfpool, PR_WAITOK);
|
|
lock->lf_uid = uid;
|
|
return lock;
|
|
}
|
|
|
|
static void
|
|
lf_free(struct lockf *lock)
|
|
{
|
|
struct uidinfo *uip;
|
|
int s;
|
|
|
|
uip = uid_find(lock->lf_uid);
|
|
UILOCK(uip, s);
|
|
uip->ui_lockcnt--;
|
|
UIUNLOCK(uip, s);
|
|
pool_put(&lockfpool, lock);
|
|
}
|
|
|
|
/*
|
|
* Walk the list of locks for an inode to
|
|
* find an overlapping lock (if any).
|
|
*
|
|
* NOTE: this returns only the FIRST overlapping lock. There
|
|
* may be more than one.
|
|
*/
|
|
static int
|
|
lf_findoverlap(struct lockf *lf, struct lockf *lock, int type,
|
|
struct lockf ***prev, struct lockf **overlap)
|
|
{
|
|
off_t start, end;
|
|
|
|
*overlap = lf;
|
|
if (lf == NULL)
|
|
return 0;
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
lf_print("lf_findoverlap: looking for overlap in", lock);
|
|
#endif /* LOCKF_DEBUG */
|
|
start = lock->lf_start;
|
|
end = lock->lf_end;
|
|
while (lf != NULL) {
|
|
if (((type == SELF) && lf->lf_id != lock->lf_id) ||
|
|
((type == OTHERS) && lf->lf_id == lock->lf_id)) {
|
|
*prev = &lf->lf_next;
|
|
*overlap = lf = lf->lf_next;
|
|
continue;
|
|
}
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
lf_print("\tchecking", lf);
|
|
#endif /* LOCKF_DEBUG */
|
|
/*
|
|
* OK, check for overlap
|
|
*
|
|
* Six cases:
|
|
* 0) no overlap
|
|
* 1) overlap == lock
|
|
* 2) overlap contains lock
|
|
* 3) lock contains overlap
|
|
* 4) overlap starts before lock
|
|
* 5) overlap ends after lock
|
|
*/
|
|
if ((lf->lf_end != -1 && start > lf->lf_end) ||
|
|
(end != -1 && lf->lf_start > end)) {
|
|
/* Case 0 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("no overlap\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
if ((type & SELF) && end != -1 && lf->lf_start > end)
|
|
return 0;
|
|
*prev = &lf->lf_next;
|
|
*overlap = lf = lf->lf_next;
|
|
continue;
|
|
}
|
|
if ((lf->lf_start == start) && (lf->lf_end == end)) {
|
|
/* Case 1 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap == lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return 1;
|
|
}
|
|
if ((lf->lf_start <= start) &&
|
|
(end != -1) &&
|
|
((lf->lf_end >= end) || (lf->lf_end == -1))) {
|
|
/* Case 2 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap contains lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return 2;
|
|
}
|
|
if (start <= lf->lf_start &&
|
|
(end == -1 ||
|
|
(lf->lf_end != -1 && end >= lf->lf_end))) {
|
|
/* Case 3 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("lock contains overlap\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return 3;
|
|
}
|
|
if ((lf->lf_start < start) &&
|
|
((lf->lf_end >= start) || (lf->lf_end == -1))) {
|
|
/* Case 4 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap starts before lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return 4;
|
|
}
|
|
if ((lf->lf_start > start) &&
|
|
(end != -1) &&
|
|
((lf->lf_end > end) || (lf->lf_end == -1))) {
|
|
/* Case 5 */
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
printf("overlap ends after lock\n");
|
|
#endif /* LOCKF_DEBUG */
|
|
return 5;
|
|
}
|
|
panic("lf_findoverlap: default");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Split a lock and a contained region into
|
|
* two or three locks as necessary.
|
|
*/
|
|
static void
|
|
lf_split(struct lockf *lock1, struct lockf *lock2, struct lockf **sparelock)
|
|
{
|
|
struct lockf *splitlock;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2) {
|
|
lf_print("lf_split", lock1);
|
|
lf_print("splitting from", lock2);
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
/*
|
|
* Check to see if spliting into only two pieces.
|
|
*/
|
|
if (lock1->lf_start == lock2->lf_start) {
|
|
lock1->lf_start = lock2->lf_end + 1;
|
|
lock2->lf_next = lock1;
|
|
return;
|
|
}
|
|
if (lock1->lf_end == lock2->lf_end) {
|
|
lock1->lf_end = lock2->lf_start - 1;
|
|
lock2->lf_next = lock1->lf_next;
|
|
lock1->lf_next = lock2;
|
|
return;
|
|
}
|
|
/*
|
|
* Make a new lock consisting of the last part of
|
|
* the encompassing lock
|
|
*/
|
|
splitlock = *sparelock;
|
|
*sparelock = NULL;
|
|
memcpy(splitlock, lock1, sizeof(*splitlock));
|
|
splitlock->lf_start = lock2->lf_end + 1;
|
|
TAILQ_INIT(&splitlock->lf_blkhd);
|
|
lock1->lf_end = lock2->lf_start - 1;
|
|
/*
|
|
* OK, now link it in
|
|
*/
|
|
splitlock->lf_next = lock1->lf_next;
|
|
lock2->lf_next = splitlock;
|
|
lock1->lf_next = lock2;
|
|
}
|
|
|
|
/*
|
|
* Wakeup a blocklist
|
|
*/
|
|
static void
|
|
lf_wakelock(struct lockf *listhead)
|
|
{
|
|
struct lockf *wakelock;
|
|
|
|
while ((wakelock = TAILQ_FIRST(&listhead->lf_blkhd))) {
|
|
KASSERT(wakelock->lf_next == listhead);
|
|
TAILQ_REMOVE(&listhead->lf_blkhd, wakelock, lf_block);
|
|
wakelock->lf_next = NULL;
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 2)
|
|
lf_print("lf_wakelock: awakening", wakelock);
|
|
#endif
|
|
wakeup(wakelock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove a byte-range lock on an inode.
|
|
*
|
|
* Generally, find the lock (or an overlap to that lock)
|
|
* and remove it (or shrink it), then wakeup anyone we can.
|
|
*/
|
|
static int
|
|
lf_clearlock(struct lockf *unlock, struct lockf **sparelock)
|
|
{
|
|
struct lockf **head = unlock->lf_head;
|
|
struct lockf *lf = *head;
|
|
struct lockf *overlap, **prev;
|
|
int ovcase;
|
|
|
|
if (lf == NULL)
|
|
return 0;
|
|
#ifdef LOCKF_DEBUG
|
|
if (unlock->lf_type != F_UNLCK)
|
|
panic("lf_clearlock: bad type");
|
|
if (lockf_debug & 1)
|
|
lf_print("lf_clearlock", unlock);
|
|
#endif /* LOCKF_DEBUG */
|
|
prev = head;
|
|
while ((ovcase = lf_findoverlap(lf, unlock, SELF,
|
|
&prev, &overlap)) != 0) {
|
|
/*
|
|
* Wakeup the list of locks to be retried.
|
|
*/
|
|
lf_wakelock(overlap);
|
|
|
|
switch (ovcase) {
|
|
|
|
case 1: /* overlap == lock */
|
|
*prev = overlap->lf_next;
|
|
lf_free(overlap);
|
|
break;
|
|
|
|
case 2: /* overlap contains lock: split it */
|
|
if (overlap->lf_start == unlock->lf_start) {
|
|
overlap->lf_start = unlock->lf_end + 1;
|
|
break;
|
|
}
|
|
lf_split(overlap, unlock, sparelock);
|
|
overlap->lf_next = unlock->lf_next;
|
|
break;
|
|
|
|
case 3: /* lock contains overlap */
|
|
*prev = overlap->lf_next;
|
|
lf = overlap->lf_next;
|
|
lf_free(overlap);
|
|
continue;
|
|
|
|
case 4: /* overlap starts before lock */
|
|
overlap->lf_end = unlock->lf_start - 1;
|
|
prev = &overlap->lf_next;
|
|
lf = overlap->lf_next;
|
|
continue;
|
|
|
|
case 5: /* overlap ends after lock */
|
|
overlap->lf_start = unlock->lf_end + 1;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1)
|
|
lf_printlist("lf_clearlock", unlock);
|
|
#endif /* LOCKF_DEBUG */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Walk the list of locks for an inode and
|
|
* return the first blocking lock.
|
|
*/
|
|
static struct lockf *
|
|
lf_getblock(struct lockf *lock)
|
|
{
|
|
struct lockf **prev, *overlap, *lf = *(lock->lf_head);
|
|
|
|
prev = lock->lf_head;
|
|
while (lf_findoverlap(lf, lock, OTHERS, &prev, &overlap) != 0) {
|
|
/*
|
|
* We've found an overlap, see if it blocks us
|
|
*/
|
|
if ((lock->lf_type == F_WRLCK || overlap->lf_type == F_WRLCK))
|
|
return overlap;
|
|
/*
|
|
* Nope, point to the next one on the list and
|
|
* see if it blocks us
|
|
*/
|
|
lf = overlap->lf_next;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Set a byte-range lock.
|
|
*/
|
|
static int
|
|
lf_setlock(struct lockf *lock, struct lockf **sparelock,
|
|
struct simplelock *interlock)
|
|
{
|
|
struct lockf *block;
|
|
struct lockf **head = lock->lf_head;
|
|
struct lockf **prev, *overlap, *ltmp;
|
|
static char lockstr[] = "lockf";
|
|
int ovcase, priority, needtolink, error;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1)
|
|
lf_print("lf_setlock", lock);
|
|
#endif /* LOCKF_DEBUG */
|
|
|
|
/*
|
|
* Set the priority
|
|
*/
|
|
priority = PLOCK;
|
|
if (lock->lf_type == F_WRLCK)
|
|
priority += 4;
|
|
priority |= PCATCH;
|
|
/*
|
|
* Scan lock list for this file looking for locks that would block us.
|
|
*/
|
|
while ((block = lf_getblock(lock)) != NULL) {
|
|
/*
|
|
* Free the structure and return if nonblocking.
|
|
*/
|
|
if ((lock->lf_flags & F_WAIT) == 0) {
|
|
lf_free(lock);
|
|
return EAGAIN;
|
|
}
|
|
/*
|
|
* We are blocked. Since flock style locks cover
|
|
* the whole file, there is no chance for deadlock.
|
|
* For byte-range locks we must check for deadlock.
|
|
*
|
|
* Deadlock detection is done by looking through the
|
|
* wait channels to see if there are any cycles that
|
|
* involve us. MAXDEPTH is set just to make sure we
|
|
* do not go off into neverneverland.
|
|
*/
|
|
if ((lock->lf_flags & F_POSIX) &&
|
|
(block->lf_flags & F_POSIX)) {
|
|
struct lwp *wlwp;
|
|
volatile const struct lockf *waitblock;
|
|
int i = 0;
|
|
struct proc *p;
|
|
|
|
p = (struct proc *)block->lf_id;
|
|
KASSERT(p != NULL);
|
|
while (i++ < maxlockdepth) {
|
|
simple_lock(&p->p_lock);
|
|
if (p->p_nlwps > 1) {
|
|
simple_unlock(&p->p_lock);
|
|
break;
|
|
}
|
|
wlwp = LIST_FIRST(&p->p_lwps);
|
|
if (wlwp->l_wmesg != lockstr) {
|
|
simple_unlock(&p->p_lock);
|
|
break;
|
|
}
|
|
simple_unlock(&p->p_lock);
|
|
waitblock = wlwp->l_wchan;
|
|
if (waitblock == NULL) {
|
|
/*
|
|
* this lwp just got up but
|
|
* not returned from ltsleep yet.
|
|
*/
|
|
break;
|
|
}
|
|
/* Get the owner of the blocking lock */
|
|
waitblock = waitblock->lf_next;
|
|
if ((waitblock->lf_flags & F_POSIX) == 0)
|
|
break;
|
|
p = (struct proc *)waitblock->lf_id;
|
|
if (p == curproc) {
|
|
lf_free(lock);
|
|
return EDEADLK;
|
|
}
|
|
}
|
|
/*
|
|
* If we're still following a dependency chain
|
|
* after maxlockdepth iterations, assume we're in
|
|
* a cycle to be safe.
|
|
*/
|
|
if (i >= maxlockdepth) {
|
|
lf_free(lock);
|
|
return EDEADLK;
|
|
}
|
|
}
|
|
/*
|
|
* For flock type locks, we must first remove
|
|
* any shared locks that we hold before we sleep
|
|
* waiting for an exclusive lock.
|
|
*/
|
|
if ((lock->lf_flags & F_FLOCK) &&
|
|
lock->lf_type == F_WRLCK) {
|
|
lock->lf_type = F_UNLCK;
|
|
(void) lf_clearlock(lock, NULL);
|
|
lock->lf_type = F_WRLCK;
|
|
}
|
|
/*
|
|
* Add our lock to the blocked list and sleep until we're free.
|
|
* Remember who blocked us (for deadlock detection).
|
|
*/
|
|
lock->lf_next = block;
|
|
TAILQ_INSERT_TAIL(&block->lf_blkhd, lock, lf_block);
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1) {
|
|
lf_print("lf_setlock: blocking on", block);
|
|
lf_printlist("lf_setlock", block);
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
error = ltsleep(lock, priority, lockstr, 0, interlock);
|
|
|
|
/*
|
|
* We may have been awakened by a signal (in
|
|
* which case we must remove ourselves from the
|
|
* blocked list) and/or by another process
|
|
* releasing a lock (in which case we have already
|
|
* been removed from the blocked list and our
|
|
* lf_next field set to NULL).
|
|
*/
|
|
if (lock->lf_next != NULL) {
|
|
TAILQ_REMOVE(&lock->lf_next->lf_blkhd, lock, lf_block);
|
|
lock->lf_next = NULL;
|
|
}
|
|
if (error) {
|
|
lf_free(lock);
|
|
return error;
|
|
}
|
|
}
|
|
/*
|
|
* No blocks!! Add the lock. Note that we will
|
|
* downgrade or upgrade any overlapping locks this
|
|
* process already owns.
|
|
*
|
|
* Skip over locks owned by other processes.
|
|
* Handle any locks that overlap and are owned by ourselves.
|
|
*/
|
|
prev = head;
|
|
block = *head;
|
|
needtolink = 1;
|
|
for (;;) {
|
|
ovcase = lf_findoverlap(block, lock, SELF, &prev, &overlap);
|
|
if (ovcase)
|
|
block = overlap->lf_next;
|
|
/*
|
|
* Six cases:
|
|
* 0) no overlap
|
|
* 1) overlap == lock
|
|
* 2) overlap contains lock
|
|
* 3) lock contains overlap
|
|
* 4) overlap starts before lock
|
|
* 5) overlap ends after lock
|
|
*/
|
|
switch (ovcase) {
|
|
case 0: /* no overlap */
|
|
if (needtolink) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap;
|
|
}
|
|
break;
|
|
|
|
case 1: /* overlap == lock */
|
|
/*
|
|
* If downgrading lock, others may be
|
|
* able to acquire it.
|
|
*/
|
|
if (lock->lf_type == F_RDLCK &&
|
|
overlap->lf_type == F_WRLCK)
|
|
lf_wakelock(overlap);
|
|
overlap->lf_type = lock->lf_type;
|
|
lf_free(lock);
|
|
lock = overlap; /* for debug output below */
|
|
break;
|
|
|
|
case 2: /* overlap contains lock */
|
|
/*
|
|
* Check for common starting point and different types.
|
|
*/
|
|
if (overlap->lf_type == lock->lf_type) {
|
|
lf_free(lock);
|
|
lock = overlap; /* for debug output below */
|
|
break;
|
|
}
|
|
if (overlap->lf_start == lock->lf_start) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap;
|
|
overlap->lf_start = lock->lf_end + 1;
|
|
} else
|
|
lf_split(overlap, lock, sparelock);
|
|
lf_wakelock(overlap);
|
|
break;
|
|
|
|
case 3: /* lock contains overlap */
|
|
/*
|
|
* If downgrading lock, others may be able to
|
|
* acquire it, otherwise take the list.
|
|
*/
|
|
if (lock->lf_type == F_RDLCK &&
|
|
overlap->lf_type == F_WRLCK) {
|
|
lf_wakelock(overlap);
|
|
} else {
|
|
while ((ltmp = TAILQ_FIRST(&overlap->lf_blkhd))) {
|
|
KASSERT(ltmp->lf_next == overlap);
|
|
TAILQ_REMOVE(&overlap->lf_blkhd, ltmp,
|
|
lf_block);
|
|
ltmp->lf_next = lock;
|
|
TAILQ_INSERT_TAIL(&lock->lf_blkhd,
|
|
ltmp, lf_block);
|
|
}
|
|
}
|
|
/*
|
|
* Add the new lock if necessary and delete the overlap.
|
|
*/
|
|
if (needtolink) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap->lf_next;
|
|
prev = &lock->lf_next;
|
|
needtolink = 0;
|
|
} else
|
|
*prev = overlap->lf_next;
|
|
lf_free(overlap);
|
|
continue;
|
|
|
|
case 4: /* overlap starts before lock */
|
|
/*
|
|
* Add lock after overlap on the list.
|
|
*/
|
|
lock->lf_next = overlap->lf_next;
|
|
overlap->lf_next = lock;
|
|
overlap->lf_end = lock->lf_start - 1;
|
|
prev = &lock->lf_next;
|
|
lf_wakelock(overlap);
|
|
needtolink = 0;
|
|
continue;
|
|
|
|
case 5: /* overlap ends after lock */
|
|
/*
|
|
* Add the new lock before overlap.
|
|
*/
|
|
if (needtolink) {
|
|
*prev = lock;
|
|
lock->lf_next = overlap;
|
|
}
|
|
overlap->lf_start = lock->lf_end + 1;
|
|
lf_wakelock(overlap);
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1) {
|
|
lf_print("lf_setlock: got the lock", lock);
|
|
lf_printlist("lf_setlock", lock);
|
|
}
|
|
#endif /* LOCKF_DEBUG */
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check whether there is a blocking lock,
|
|
* and if so return its process identifier.
|
|
*/
|
|
static int
|
|
lf_getlock(struct lockf *lock, struct flock *fl)
|
|
{
|
|
struct lockf *block;
|
|
|
|
#ifdef LOCKF_DEBUG
|
|
if (lockf_debug & 1)
|
|
lf_print("lf_getlock", lock);
|
|
#endif /* LOCKF_DEBUG */
|
|
|
|
if ((block = lf_getblock(lock)) != NULL) {
|
|
fl->l_type = block->lf_type;
|
|
fl->l_whence = SEEK_SET;
|
|
fl->l_start = block->lf_start;
|
|
if (block->lf_end == -1)
|
|
fl->l_len = 0;
|
|
else
|
|
fl->l_len = block->lf_end - block->lf_start + 1;
|
|
if (block->lf_flags & F_POSIX)
|
|
fl->l_pid = ((struct proc *)block->lf_id)->p_pid;
|
|
else
|
|
fl->l_pid = -1;
|
|
} else {
|
|
fl->l_type = F_UNLCK;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Do an advisory lock operation.
|
|
*/
|
|
int
|
|
lf_advlock(struct vop_advlock_args *ap, struct lockf **head, off_t size)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct flock *fl = ap->a_fl;
|
|
struct lockf *lock = NULL;
|
|
struct lockf *sparelock;
|
|
struct simplelock *interlock = &ap->a_vp->v_interlock;
|
|
off_t start, end;
|
|
int error = 0;
|
|
|
|
/*
|
|
* Convert the flock structure into a start and end.
|
|
*/
|
|
switch (fl->l_whence) {
|
|
case SEEK_SET:
|
|
case SEEK_CUR:
|
|
/*
|
|
* Caller is responsible for adding any necessary offset
|
|
* when SEEK_CUR is used.
|
|
*/
|
|
start = fl->l_start;
|
|
break;
|
|
|
|
case SEEK_END:
|
|
start = size + fl->l_start;
|
|
break;
|
|
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
if (start < 0)
|
|
return EINVAL;
|
|
|
|
/*
|
|
* Allocate locks before acquiring the simple lock. We need two
|
|
* locks in the worst case.
|
|
*/
|
|
switch (ap->a_op) {
|
|
case F_SETLK:
|
|
case F_UNLCK:
|
|
/*
|
|
* XXX For F_UNLCK case, we can re-use the lock.
|
|
*/
|
|
if ((ap->a_flags & F_FLOCK) == 0) {
|
|
/*
|
|
* Byte-range lock might need one more lock.
|
|
*/
|
|
sparelock = lf_alloc(kauth_cred_geteuid(l->l_cred), 0);
|
|
if (sparelock == NULL) {
|
|
error = ENOMEM;
|
|
goto quit;
|
|
}
|
|
break;
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case F_GETLK:
|
|
sparelock = NULL;
|
|
break;
|
|
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
lock = lf_alloc(kauth_cred_geteuid(l->l_cred),
|
|
ap->a_op != F_UNLCK ? 1 : 2);
|
|
if (lock == NULL) {
|
|
error = ENOMEM;
|
|
goto quit;
|
|
}
|
|
|
|
simple_lock(interlock);
|
|
|
|
/*
|
|
* Avoid the common case of unlocking when inode has no locks.
|
|
*/
|
|
if (*head == (struct lockf *)0) {
|
|
if (ap->a_op != F_SETLK) {
|
|
fl->l_type = F_UNLCK;
|
|
error = 0;
|
|
goto quit_unlock;
|
|
}
|
|
}
|
|
|
|
if (fl->l_len == 0)
|
|
end = -1;
|
|
else
|
|
end = start + fl->l_len - 1;
|
|
/*
|
|
* Create the lockf structure.
|
|
*/
|
|
lock->lf_start = start;
|
|
lock->lf_end = end;
|
|
/* XXX NJWLWP
|
|
* I don't want to make the entire VFS universe use LWPs, because
|
|
* they don't need them, for the most part. This is an exception,
|
|
* and a kluge.
|
|
*/
|
|
|
|
lock->lf_head = head;
|
|
lock->lf_type = fl->l_type;
|
|
lock->lf_next = (struct lockf *)0;
|
|
TAILQ_INIT(&lock->lf_blkhd);
|
|
lock->lf_flags = ap->a_flags;
|
|
if (lock->lf_flags & F_POSIX) {
|
|
KASSERT(curproc == (struct proc *)ap->a_id);
|
|
}
|
|
lock->lf_id = (struct proc *)ap->a_id;
|
|
|
|
/*
|
|
* Do the requested operation.
|
|
*/
|
|
switch (ap->a_op) {
|
|
|
|
case F_SETLK:
|
|
error = lf_setlock(lock, &sparelock, interlock);
|
|
lock = NULL; /* lf_setlock freed it */
|
|
break;
|
|
|
|
case F_UNLCK:
|
|
error = lf_clearlock(lock, &sparelock);
|
|
break;
|
|
|
|
case F_GETLK:
|
|
error = lf_getlock(lock, fl);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
quit_unlock:
|
|
simple_unlock(interlock);
|
|
quit:
|
|
if (lock)
|
|
lf_free(lock);
|
|
if (sparelock)
|
|
lf_free(sparelock);
|
|
|
|
return error;
|
|
}
|