NetBSD/sys/arch/xen/i386/cpu.c
2005-12-11 12:16:03 +00:00

811 lines
20 KiB
C

/* $NetBSD: cpu.c,v 1.3 2005/12/11 12:19:48 christos Exp $ */
/* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by RedBack Networks Inc.
*
* Author: Bill Sommerfeld
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1999 Stefan Grefen
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.3 2005/12/11 12:19:48 christos Exp $");
#include "opt_ddb.h"
#include "opt_multiprocessor.h"
#include "opt_mpbios.h" /* for MPDEBUG */
#include "opt_mtrr.h"
#include "opt_xen.h"
#include "lapic.h"
#include "ioapic.h"
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <uvm/uvm_extern.h>
#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cpuvar.h>
#include <machine/pmap.h>
#include <machine/vmparam.h>
#include <machine/mpbiosvar.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/gdt.h>
#include <machine/mtrr.h>
#include <machine/tlog.h>
#include <machine/pio.h>
#if NLAPIC > 0
#include <machine/apicvar.h>
#include <machine/i82489reg.h>
#include <machine/i82489var.h>
#endif
#if NIOAPIC > 0
#include <machine/i82093var.h>
#endif
#include <dev/ic/mc146818reg.h>
#include <i386/isa/nvram.h>
#include <dev/isa/isareg.h>
int cpu_match(struct device *, struct cfdata *, void *);
void cpu_attach(struct device *, struct device *, void *);
struct cpu_softc {
struct device sc_dev; /* device tree glue */
struct cpu_info *sc_info; /* pointer to CPU info */
};
int mp_cpu_start(struct cpu_info *);
void mp_cpu_start_cleanup(struct cpu_info *);
struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
mp_cpu_start_cleanup };
CFATTACH_DECL(cpu, sizeof(struct cpu_softc),
cpu_match, cpu_attach, NULL, NULL);
/*
* Statically-allocated CPU info for the primary CPU (or the only
* CPU, on uniprocessors). The CPU info list is initialized to
* point at it.
*/
#ifdef TRAPLOG
struct tlog tlog_primary;
struct cpu_info cpu_info_primary = { 0, &cpu_info_primary, &tlog_primary };
#else /* TRAPLOG */
struct cpu_info cpu_info_primary = { 0, &cpu_info_primary };
#endif /* !TRAPLOG */
struct cpu_info *cpu_info_list = &cpu_info_primary;
static void cpu_set_tss_gates(struct cpu_info *ci);
#if !defined(XEN)
static void cpu_init_tss(struct i386tss *, void *, void *);
#endif
u_int32_t cpus_attached = 0;
#ifdef MULTIPROCESSOR
/*
* Array of CPU info structures. Must be statically-allocated because
* curproc, etc. are used early.
*/
struct cpu_info *cpu_info[X86_MAXPROCS] = { &cpu_info_primary };
u_int32_t cpus_running = 0;
void cpu_hatch(void *);
static void cpu_boot_secondary(struct cpu_info *ci);
static void cpu_start_secondary(struct cpu_info *ci);
static void cpu_copy_trampoline(void);
/*
* Runs once per boot once multiprocessor goo has been detected and
* the local APIC on the boot processor has been mapped.
*
* Called from lapic_boot_init() (from mpbios_scan()).
*/
void
cpu_init_first()
{
int cpunum = lapic_cpu_number();
if (cpunum != 0) {
cpu_info[0] = NULL;
cpu_info[cpunum] = &cpu_info_primary;
}
cpu_copy_trampoline();
}
#endif
int
cpu_match(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct cpu_attach_args *caa = aux;
if (strcmp(caa->caa_name, match->cf_name) == 0)
return 1;
return 0;
}
static void
cpu_vm_init(struct cpu_info *ci)
{
int ncolors = 2, i;
for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
struct x86_cache_info *cai;
int tcolors;
cai = &ci->ci_cinfo[i];
tcolors = atop(cai->cai_totalsize);
switch(cai->cai_associativity) {
case 0xff:
tcolors = 1; /* fully associative */
break;
case 0:
case 1:
break;
default:
tcolors /= cai->cai_associativity;
}
ncolors = max(ncolors, tcolors);
}
/*
* Knowing the size of the largest cache on this CPU, re-color
* our pages.
*/
if (ncolors <= uvmexp.ncolors)
return;
printf("%s: %d page colors\n", ci->ci_dev->dv_xname, ncolors);
uvm_page_recolor(ncolors);
}
void
cpu_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct cpu_softc *sc = (void *) self;
struct cpu_attach_args *caa = aux;
struct cpu_info *ci;
#if defined(MULTIPROCESSOR)
int cpunum = caa->cpu_number;
vaddr_t kstack;
struct pcb *pcb;
#endif
/*
* If we're an Application Processor, allocate a cpu_info
* structure, otherwise use the primary's.
*/
if (caa->cpu_role == CPU_ROLE_AP) {
ci = malloc(sizeof(*ci), M_DEVBUF, M_WAITOK);
memset(ci, 0, sizeof(*ci));
#if defined(MULTIPROCESSOR)
if (cpu_info[cpunum] != NULL)
panic("cpu at apic id %d already attached?", cpunum);
cpu_info[cpunum] = ci;
#endif
#ifdef TRAPLOG
ci->ci_tlog_base = malloc(sizeof(struct tlog),
M_DEVBUF, M_WAITOK);
#endif
} else {
ci = &cpu_info_primary;
#if defined(MULTIPROCESSOR)
if (cpunum != lapic_cpu_number()) {
panic("%s: running CPU is at apic %d"
" instead of at expected %d",
sc->sc_dev.dv_xname, lapic_cpu_number(), cpunum);
}
#endif
}
ci->ci_self = ci;
sc->sc_info = ci;
ci->ci_dev = self;
ci->ci_apicid = caa->cpu_number;
#ifdef MULTIPROCESSOR
ci->ci_cpuid = ci->ci_apicid;
#else
ci->ci_cpuid = 0; /* False for APs, but they're not used anyway */
#endif
ci->ci_func = caa->cpu_func;
simple_lock_init(&ci->ci_slock);
#if defined(MULTIPROCESSOR)
/*
* Allocate UPAGES contiguous pages for the idle PCB and stack.
*/
kstack = uvm_km_alloc(kernel_map, USPACE, 0, UVM_KMF_WIRED);
if (kstack == 0) {
if (caa->cpu_role != CPU_ROLE_AP) {
panic("cpu_attach: unable to allocate idle stack for"
" primary");
}
printf("%s: unable to allocate idle stack\n",
sc->sc_dev.dv_xname);
return;
}
pcb = ci->ci_idle_pcb = (struct pcb *) kstack;
memset(pcb, 0, USPACE);
pcb->pcb_tss.tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
pcb->pcb_tss.tss_esp0 =
kstack + USPACE - 16 - sizeof (struct trapframe);
pcb->pcb_tss.tss_esp =
kstack + USPACE - 16 - sizeof (struct trapframe);
pcb->pcb_cr0 = rcr0();
pcb->pcb_cr3 = pmap_kernel()->pm_pdirpa;
#endif
pmap_reference(pmap_kernel());
ci->ci_pmap = pmap_kernel();
ci->ci_tlbstate = TLBSTATE_STALE;
/* further PCB init done later. */
printf(": ");
switch (caa->cpu_role) {
case CPU_ROLE_SP:
printf("(uniprocessor)\n");
ci->ci_flags |= CPUF_PRESENT | CPUF_SP | CPUF_PRIMARY;
cpu_intr_init(ci);
identifycpu(ci);
cpu_init(ci);
cpu_set_tss_gates(ci);
break;
case CPU_ROLE_BP:
printf("apid %d (boot processor)\n", caa->cpu_number);
ci->ci_flags |= CPUF_PRESENT | CPUF_BSP | CPUF_PRIMARY;
cpu_intr_init(ci);
identifycpu(ci);
cpu_init(ci);
cpu_set_tss_gates(ci);
#if NLAPIC > 0
/*
* Enable local apic
*/
lapic_enable();
lapic_calibrate_timer(ci);
#endif
#if NIOAPIC > 0
ioapic_bsp_id = caa->cpu_number;
#endif
break;
case CPU_ROLE_AP:
/*
* report on an AP
*/
printf("apid %d (application processor)\n", caa->cpu_number);
#if defined(MULTIPROCESSOR)
cpu_intr_init(ci);
gdt_alloc_cpu(ci);
cpu_set_tss_gates(ci);
cpu_start_secondary(ci);
if (ci->ci_flags & CPUF_PRESENT) {
identifycpu(ci);
ci->ci_next = cpu_info_list->ci_next;
cpu_info_list->ci_next = ci;
}
#else
printf("%s: not started\n", sc->sc_dev.dv_xname);
#endif
break;
default:
panic("unknown processor type??\n");
}
cpu_vm_init(ci);
cpus_attached |= (1 << ci->ci_cpuid);
#if defined(MULTIPROCESSOR)
if (mp_verbose) {
printf("%s: kstack at 0x%lx for %d bytes\n",
sc->sc_dev.dv_xname, kstack, USPACE);
printf("%s: idle pcb at %p, idle sp at 0x%x\n",
sc->sc_dev.dv_xname, pcb, pcb->pcb_esp);
}
#endif
}
/*
* Initialize the processor appropriately.
*/
void
cpu_init(ci)
struct cpu_info *ci;
{
/* configure the CPU if needed */
if (ci->cpu_setup != NULL)
(*ci->cpu_setup)(ci);
#if !defined(XEN)
#if defined(I486_CPU) || defined(I586_CPU) || defined(I686_CPU)
/*
* On a 486 or above, enable ring 0 write protection.
*/
if (ci->ci_cpu_class >= CPUCLASS_486)
lcr0(rcr0() | CR0_WP);
#endif
#endif
#if defined(I686_CPU)
/*
* On a P6 or above, enable global TLB caching if the
* hardware supports it.
*/
if (cpu_feature & CPUID_PGE)
lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
#ifdef MTRR
/*
* On a P6 or above, initialize MTRR's if the hardware supports them.
*/
if (cpu_feature & CPUID_MTRR) {
if ((ci->ci_flags & CPUF_AP) == 0)
i686_mtrr_init_first();
mtrr_init_cpu(ci);
}
#endif
#endif
#if defined(I686_CPU)
/*
* If we have FXSAVE/FXRESTOR, use them.
*/
if (cpu_feature & CPUID_FXSR) {
lcr4(rcr4() | CR4_OSFXSR);
/*
* If we have SSE/SSE2, enable XMM exceptions.
*/
if (cpu_feature & (CPUID_SSE|CPUID_SSE2))
lcr4(rcr4() | CR4_OSXMMEXCPT);
}
#endif /* I686_CPU */
#ifdef MTRR
if (strcmp((char *)(ci->ci_vendor), "AuthenticAMD") == 0) {
/*
* Must be a K6-2 Step >= 7 or a K6-III.
*/
if (CPUID2FAMILY(ci->ci_signature) == 5) {
if (CPUID2MODEL(ci->ci_signature) > 8 ||
(CPUID2MODEL(ci->ci_signature) == 8 &&
CPUID2STEPPING(ci->ci_signature) >= 7)) {
mtrr_funcs = &k6_mtrr_funcs;
k6_mtrr_init_first();
mtrr_init_cpu(ci);
}
}
}
#endif /* MTRR */
#ifdef MULTIPROCESSOR
ci->ci_flags |= CPUF_RUNNING;
cpus_running |= 1 << ci->ci_cpuid;
#endif
}
#ifdef MULTIPROCESSOR
void
cpu_boot_secondary_processors()
{
struct cpu_info *ci;
u_long i;
for (i=0; i < X86_MAXPROCS; i++) {
ci = cpu_info[i];
if (ci == NULL)
continue;
if (ci->ci_idle_pcb == NULL)
continue;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
continue;
if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
continue;
cpu_boot_secondary(ci);
}
}
void
cpu_init_idle_pcbs()
{
struct cpu_info *ci;
u_long i;
for (i=0; i < X86_MAXPROCS; i++) {
ci = cpu_info[i];
if (ci == NULL)
continue;
if (ci->ci_idle_pcb == NULL)
continue;
if ((ci->ci_flags & CPUF_PRESENT) == 0)
continue;
i386_init_pcb_tss_ldt(ci);
}
}
void
cpu_start_secondary (ci)
struct cpu_info *ci;
{
struct pcb *pcb;
int i;
struct pmap *kpm = pmap_kernel();
extern u_int32_t mp_pdirpa;
mp_pdirpa = kpm->pm_pdirpa; /* XXX move elsewhere, not per CPU. */
pcb = ci->ci_idle_pcb;
ci->ci_flags |= CPUF_AP;
printf("%s: starting\n", ci->ci_dev->dv_xname);
CPU_STARTUP(ci);
/*
* wait for it to become ready
*/
for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i>0;i--) {
delay(10);
}
if (! (ci->ci_flags & CPUF_PRESENT)) {
printf("%s: failed to become ready\n", ci->ci_dev->dv_xname);
#if defined(MPDEBUG) && defined(DDB)
printf("dropping into debugger; continue from here to resume boot\n");
Debugger();
#endif
}
CPU_START_CLEANUP(ci);
}
void
cpu_boot_secondary(ci)
struct cpu_info *ci;
{
int i;
ci->ci_flags |= CPUF_GO; /* XXX atomic */
for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i>0;i--) {
delay(10);
}
if (! (ci->ci_flags & CPUF_RUNNING)) {
printf("CPU failed to start\n");
#if defined(MPDEBUG) && defined(DDB)
printf("dropping into debugger; continue from here to resume boot\n");
Debugger();
#endif
}
}
/*
* The CPU ends up here when its ready to run
* This is called from code in mptramp.s; at this point, we are running
* in the idle pcb/idle stack of the new CPU. When this function returns,
* this processor will enter the idle loop and start looking for work.
*
* XXX should share some of this with init386 in machdep.c
*/
void
cpu_hatch(void *v)
{
struct cpu_info *ci = (struct cpu_info *)v;
int s;
cpu_probe_features(ci);
cpu_feature &= ci->ci_feature_flags;
#ifdef DEBUG
if (ci->ci_flags & CPUF_PRESENT)
panic("%s: already running!?", ci->ci_dev->dv_xname);
#endif
ci->ci_flags |= CPUF_PRESENT;
lapic_enable();
lapic_initclocks();
while ((ci->ci_flags & CPUF_GO) == 0)
delay(10);
#ifdef DEBUG
if (ci->ci_flags & CPUF_RUNNING)
panic("%s: already running!?", ci->ci_dev->dv_xname);
#endif
lcr0(ci->ci_idle_pcb->pcb_cr0);
cpu_init_idt();
lapic_set_lvt();
gdt_init_cpu(ci);
npxinit(ci);
lldt(GSEL(GLDT_SEL, SEL_KPL));
cpu_init(ci);
s = splhigh();
lapic_tpr = 0;
enable_intr();
printf("%s: CPU %ld running\n",ci->ci_dev->dv_xname, ci->ci_cpuid);
#if defined(I586_CPU) || defined(I686_CPU)
if (ci->ci_feature_flags & CPUID_TSC)
cc_microset(ci);
#endif
microtime(&ci->ci_schedstate.spc_runtime);
splx(s);
}
#if defined(DDB)
#include <ddb/db_output.h>
#include <machine/db_machdep.h>
/*
* Dump CPU information from ddb.
*/
void
cpu_debug_dump(void)
{
struct cpu_info *ci;
CPU_INFO_ITERATOR cii;
db_printf("addr dev id flags ipis curproc fpcurproc\n");
for (CPU_INFO_FOREACH(cii, ci)) {
db_printf("%p %s %ld %x %x %10p %10p\n",
ci,
ci->ci_dev == NULL ? "BOOT" : ci->ci_dev->dv_xname,
ci->ci_cpuid,
ci->ci_flags, ci->ci_ipis,
ci->ci_curlwp,
ci->ci_fpcurlwp);
}
}
#endif
static void
cpu_copy_trampoline()
{
/*
* Copy boot code.
*/
extern u_char cpu_spinup_trampoline[];
extern u_char cpu_spinup_trampoline_end[];
pmap_kenter_pa((vaddr_t)MP_TRAMPOLINE, /* virtual */
(paddr_t)MP_TRAMPOLINE, /* physical */
VM_PROT_ALL); /* protection */
memcpy((caddr_t)MP_TRAMPOLINE,
cpu_spinup_trampoline,
cpu_spinup_trampoline_end-cpu_spinup_trampoline);
}
#endif
#ifndef XEN
static void
cpu_init_tss(struct i386tss *tss, void *stack, void *func)
{
memset(tss, 0, sizeof *tss);
tss->tss_esp0 = tss->tss_esp = (int)((char *)stack + USPACE - 16);
tss->tss_ss0 = GSEL(GDATA_SEL, SEL_KPL);
tss->__tss_cs = GSEL(GCODE_SEL, SEL_KPL);
tss->tss_fs = GSEL(GCPU_SEL, SEL_KPL);
tss->tss_gs = tss->__tss_es = tss->__tss_ds =
tss->__tss_ss = GSEL(GDATA_SEL, SEL_KPL);
tss->tss_cr3 = pmap_kernel()->pm_pdirpa;
tss->tss_esp = (int)((char *)stack + USPACE - 16);
tss->tss_ldt = GSEL(GLDT_SEL, SEL_KPL);
tss->__tss_eflags = PSL_MBO | PSL_NT; /* XXX not needed? */
tss->__tss_eip = (int)func;
}
#endif
/* XXX */
#define IDTVEC(name) __CONCAT(X, name)
typedef void (vector)(void);
extern vector IDTVEC(tss_trap08);
#ifdef DDB
extern vector Xintrddbipi;
extern int ddb_vec;
#endif
static void
cpu_set_tss_gates(struct cpu_info *ci)
{
#ifndef XEN
struct segment_descriptor sd;
ci->ci_doubleflt_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
UVM_KMF_WIRED);
cpu_init_tss(&ci->ci_doubleflt_tss, ci->ci_doubleflt_stack,
IDTVEC(tss_trap08));
setsegment(&sd, &ci->ci_doubleflt_tss, sizeof(struct i386tss) - 1,
SDT_SYS386TSS, SEL_KPL, 0, 0);
ci->ci_gdt[GTRAPTSS_SEL].sd = sd;
setgate(&idt[8], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
GSEL(GTRAPTSS_SEL, SEL_KPL));
#endif
#if defined(DDB) && defined(MULTIPROCESSOR)
/*
* Set up seperate handler for the DDB IPI, so that it doesn't
* stomp on a possibly corrupted stack.
*
* XXX overwriting the gate set in db_machine_init.
* Should rearrange the code so that it's set only once.
*/
ci->ci_ddbipi_stack = (char *)uvm_km_alloc(kernel_map, USPACE, 0,
UVM_KMF_WIRED);
cpu_init_tss(&ci->ci_ddbipi_tss, ci->ci_ddbipi_stack,
Xintrddbipi);
setsegment(&sd, &ci->ci_ddbipi_tss, sizeof(struct i386tss) - 1,
SDT_SYS386TSS, SEL_KPL, 0, 0);
ci->ci_gdt[GIPITSS_SEL].sd = sd;
setgate(&idt[ddb_vec], NULL, 0, SDT_SYSTASKGT, SEL_KPL,
GSEL(GIPITSS_SEL, SEL_KPL));
#endif
}
int
mp_cpu_start(struct cpu_info *ci)
{
#if NLAPIC > 0
int error;
#endif
unsigned short dwordptr[2];
/*
* "The BSP must initialize CMOS shutdown code to 0Ah ..."
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_JUMP);
/*
* "and the warm reset vector (DWORD based at 40:67) to point
* to the AP startup code ..."
*/
dwordptr[0] = 0;
dwordptr[1] = MP_TRAMPOLINE >> 4;
pmap_kenter_pa (0, 0, VM_PROT_READ|VM_PROT_WRITE);
memcpy ((u_int8_t *) 0x467, dwordptr, 4);
pmap_kremove (0, PAGE_SIZE);
#if NLAPIC > 0
/*
* ... prior to executing the following sequence:"
*/
if (ci->ci_flags & CPUF_AP) {
if ((error = x86_ipi_init(ci->ci_apicid)) != 0)
return error;
delay(10000);
if (cpu_feature & CPUID_APIC) {
if ((error = x86_ipi(MP_TRAMPOLINE/PAGE_SIZE,
ci->ci_apicid,
LAPIC_DLMODE_STARTUP)) != 0)
return error;
delay(200);
if ((error = x86_ipi(MP_TRAMPOLINE/PAGE_SIZE,
ci->ci_apicid,
LAPIC_DLMODE_STARTUP)) != 0)
return error;
delay(200);
}
}
#endif
return 0;
}
void
mp_cpu_start_cleanup(struct cpu_info *ci)
{
/*
* Ensure the NVRAM reset byte contains something vaguely sane.
*/
outb(IO_RTC, NVRAM_RESET);
outb(IO_RTC+1, NVRAM_RESET_RST);
}