NetBSD/sys/dev/pci/if_dge.c
ozaki-r dd8638eea5 Move bpf_mtap and if_ipackets++ on Rx of each driver to percpuq if_input
The benefits of the change are:
- We can reduce codes
- We can provide the same behavior between drivers
  - Where/When if_ipackets is counted up
  - Note that some drivers still update packet statistics in their own
    way (periodical update)
- Moved bpf_mtap run in softint
  - This makes it easy to MP-ify bpf

Proposed on tech-kern and tech-net
2016-12-15 09:28:02 +00:00

2461 lines
64 KiB
C

/* $NetBSD: if_dge.c,v 1.47 2016/12/15 09:28:05 ozaki-r Exp $ */
/*
* Copyright (c) 2004, SUNET, Swedish University Computer Network.
* All rights reserved.
*
* Written by Anders Magnusson for SUNET, Swedish University Computer Network.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* SUNET, Swedish University Computer Network.
* 4. The name of SUNET may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY SUNET ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2001, 2002, 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for the Intel 82597EX Ten Gigabit Ethernet controller.
*
* TODO (in no specific order):
* HW VLAN support.
* TSE offloading (needs kernel changes...)
* RAIDC (receive interrupt delay adaptation)
* Use memory > 4GB.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_dge.c,v 1.47 2016/12/15 09:28:05 ozaki-r Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/rndsource.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <netinet/in.h> /* XXX for struct ip */
#include <netinet/in_systm.h> /* XXX for struct ip */
#include <netinet/ip.h> /* XXX for struct ip */
#include <netinet/tcp.h> /* XXX for struct tcphdr */
#include <sys/bus.h>
#include <sys/intr.h>
#include <machine/endian.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/if_dgereg.h>
/*
* The receive engine may sometimes become off-by-one when writing back
* chained descriptors. Avoid this by allocating a large chunk of
* memory and use if instead (to avoid chained descriptors).
* This only happens with chained descriptors under heavy load.
*/
#define DGE_OFFBYONE_RXBUG
#define DGE_EVENT_COUNTERS
#define DGE_DEBUG
#ifdef DGE_DEBUG
#define DGE_DEBUG_LINK 0x01
#define DGE_DEBUG_TX 0x02
#define DGE_DEBUG_RX 0x04
#define DGE_DEBUG_CKSUM 0x08
int dge_debug = 0;
#define DPRINTF(x, y) if (dge_debug & (x)) printf y
#else
#define DPRINTF(x, y) /* nothing */
#endif /* DGE_DEBUG */
/*
* Transmit descriptor list size. We allow up to 100 DMA segments per
* packet (Intel reports of jumbo frame packets with as
* many as 80 DMA segments when using 16k buffers).
*/
#define DGE_NTXSEGS 100
#define DGE_IFQUEUELEN 20000
#define DGE_TXQUEUELEN 2048
#define DGE_TXQUEUELEN_MASK (DGE_TXQUEUELEN - 1)
#define DGE_TXQUEUE_GC (DGE_TXQUEUELEN / 8)
#define DGE_NTXDESC 1024
#define DGE_NTXDESC_MASK (DGE_NTXDESC - 1)
#define DGE_NEXTTX(x) (((x) + 1) & DGE_NTXDESC_MASK)
#define DGE_NEXTTXS(x) (((x) + 1) & DGE_TXQUEUELEN_MASK)
/*
* Receive descriptor list size.
* Packet is of size MCLBYTES, and for jumbo packets buffers may
* be chained. Due to the nature of the card (high-speed), keep this
* ring large. With 2k buffers the ring can store 400 jumbo packets,
* which at full speed will be received in just under 3ms.
*/
#define DGE_NRXDESC 2048
#define DGE_NRXDESC_MASK (DGE_NRXDESC - 1)
#define DGE_NEXTRX(x) (((x) + 1) & DGE_NRXDESC_MASK)
/*
* # of descriptors between head and written descriptors.
* This is to work-around two erratas.
*/
#define DGE_RXSPACE 10
#define DGE_PREVRX(x) (((x) - DGE_RXSPACE) & DGE_NRXDESC_MASK)
/*
* Receive descriptor fetch threshholds. These are values recommended
* by Intel, do not touch them unless you know what you are doing.
*/
#define RXDCTL_PTHRESH_VAL 128
#define RXDCTL_HTHRESH_VAL 16
#define RXDCTL_WTHRESH_VAL 16
/*
* Tweakable parameters; default values.
*/
#define FCRTH 0x30000 /* Send XOFF water mark */
#define FCRTL 0x28000 /* Send XON water mark */
#define RDTR 0x20 /* Interrupt delay after receive, .8192us units */
#define TIDV 0x20 /* Interrupt delay after send, .8192us units */
/*
* Control structures are DMA'd to the i82597 chip. We allocate them in
* a single clump that maps to a single DMA segment to make serveral things
* easier.
*/
struct dge_control_data {
/*
* The transmit descriptors.
*/
struct dge_tdes wcd_txdescs[DGE_NTXDESC];
/*
* The receive descriptors.
*/
struct dge_rdes wcd_rxdescs[DGE_NRXDESC];
};
#define DGE_CDOFF(x) offsetof(struct dge_control_data, x)
#define DGE_CDTXOFF(x) DGE_CDOFF(wcd_txdescs[(x)])
#define DGE_CDRXOFF(x) DGE_CDOFF(wcd_rxdescs[(x)])
/*
* The DGE interface have a higher max MTU size than normal jumbo frames.
*/
#define DGE_MAX_MTU 16288 /* Max MTU size for this interface */
/*
* Software state for transmit jobs.
*/
struct dge_txsoft {
struct mbuf *txs_mbuf; /* head of our mbuf chain */
bus_dmamap_t txs_dmamap; /* our DMA map */
int txs_firstdesc; /* first descriptor in packet */
int txs_lastdesc; /* last descriptor in packet */
int txs_ndesc; /* # of descriptors used */
};
/*
* Software state for receive buffers. Each descriptor gets a
* 2k (MCLBYTES) buffer and a DMA map. For packets which fill
* more than one buffer, we chain them together.
*/
struct dge_rxsoft {
struct mbuf *rxs_mbuf; /* head of our mbuf chain */
bus_dmamap_t rxs_dmamap; /* our DMA map */
};
/*
* Software state per device.
*/
struct dge_softc {
device_t sc_dev; /* generic device information */
bus_space_tag_t sc_st; /* bus space tag */
bus_space_handle_t sc_sh; /* bus space handle */
bus_dma_tag_t sc_dmat; /* bus DMA tag */
struct ethercom sc_ethercom; /* ethernet common data */
int sc_flags; /* flags; see below */
int sc_bus_speed; /* PCI/PCIX bus speed */
int sc_pcix_offset; /* PCIX capability register offset */
const struct dge_product *sc_dgep; /* Pointer to the dge_product entry */
pci_chipset_tag_t sc_pc;
pcitag_t sc_pt;
int sc_mmrbc; /* Max PCIX memory read byte count */
void *sc_ih; /* interrupt cookie */
struct ifmedia sc_media;
bus_dmamap_t sc_cddmamap; /* control data DMA map */
#define sc_cddma sc_cddmamap->dm_segs[0].ds_addr
int sc_align_tweak;
/*
* Software state for the transmit and receive descriptors.
*/
struct dge_txsoft sc_txsoft[DGE_TXQUEUELEN];
struct dge_rxsoft sc_rxsoft[DGE_NRXDESC];
/*
* Control data structures.
*/
struct dge_control_data *sc_control_data;
#define sc_txdescs sc_control_data->wcd_txdescs
#define sc_rxdescs sc_control_data->wcd_rxdescs
#ifdef DGE_EVENT_COUNTERS
/* Event counters. */
struct evcnt sc_ev_txsstall; /* Tx stalled due to no txs */
struct evcnt sc_ev_txdstall; /* Tx stalled due to no txd */
struct evcnt sc_ev_txforceintr; /* Tx interrupts forced */
struct evcnt sc_ev_txdw; /* Tx descriptor interrupts */
struct evcnt sc_ev_txqe; /* Tx queue empty interrupts */
struct evcnt sc_ev_rxintr; /* Rx interrupts */
struct evcnt sc_ev_linkintr; /* Link interrupts */
struct evcnt sc_ev_rxipsum; /* IP checksums checked in-bound */
struct evcnt sc_ev_rxtusum; /* TCP/UDP cksums checked in-bound */
struct evcnt sc_ev_txipsum; /* IP checksums comp. out-bound */
struct evcnt sc_ev_txtusum; /* TCP/UDP cksums comp. out-bound */
struct evcnt sc_ev_txctx_init; /* Tx cksum context cache initialized */
struct evcnt sc_ev_txctx_hit; /* Tx cksum context cache hit */
struct evcnt sc_ev_txctx_miss; /* Tx cksum context cache miss */
struct evcnt sc_ev_txseg[DGE_NTXSEGS]; /* Tx packets w/ N segments */
struct evcnt sc_ev_txdrop; /* Tx packets dropped (too many segs) */
#endif /* DGE_EVENT_COUNTERS */
int sc_txfree; /* number of free Tx descriptors */
int sc_txnext; /* next ready Tx descriptor */
int sc_txsfree; /* number of free Tx jobs */
int sc_txsnext; /* next free Tx job */
int sc_txsdirty; /* dirty Tx jobs */
uint32_t sc_txctx_ipcs; /* cached Tx IP cksum ctx */
uint32_t sc_txctx_tucs; /* cached Tx TCP/UDP cksum ctx */
int sc_rxptr; /* next ready Rx descriptor/queue ent */
int sc_rxdiscard;
int sc_rxlen;
struct mbuf *sc_rxhead;
struct mbuf *sc_rxtail;
struct mbuf **sc_rxtailp;
uint32_t sc_ctrl0; /* prototype CTRL0 register */
uint32_t sc_icr; /* prototype interrupt bits */
uint32_t sc_tctl; /* prototype TCTL register */
uint32_t sc_rctl; /* prototype RCTL register */
int sc_mchash_type; /* multicast filter offset */
uint16_t sc_eeprom[EEPROM_SIZE];
krndsource_t rnd_source; /* random source */
#ifdef DGE_OFFBYONE_RXBUG
void *sc_bugbuf;
SLIST_HEAD(, rxbugentry) sc_buglist;
bus_dmamap_t sc_bugmap;
struct rxbugentry *sc_entry;
#endif
};
#define DGE_RXCHAIN_RESET(sc) \
do { \
(sc)->sc_rxtailp = &(sc)->sc_rxhead; \
*(sc)->sc_rxtailp = NULL; \
(sc)->sc_rxlen = 0; \
} while (/*CONSTCOND*/0)
#define DGE_RXCHAIN_LINK(sc, m) \
do { \
*(sc)->sc_rxtailp = (sc)->sc_rxtail = (m); \
(sc)->sc_rxtailp = &(m)->m_next; \
} while (/*CONSTCOND*/0)
/* sc_flags */
#define DGE_F_BUS64 0x20 /* bus is 64-bit */
#define DGE_F_PCIX 0x40 /* bus is PCI-X */
#ifdef DGE_EVENT_COUNTERS
#define DGE_EVCNT_INCR(ev) (ev)->ev_count++
#else
#define DGE_EVCNT_INCR(ev) /* nothing */
#endif
#define CSR_READ(sc, reg) \
bus_space_read_4((sc)->sc_st, (sc)->sc_sh, (reg))
#define CSR_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_st, (sc)->sc_sh, (reg), (val))
#define DGE_CDTXADDR(sc, x) ((sc)->sc_cddma + DGE_CDTXOFF((x)))
#define DGE_CDRXADDR(sc, x) ((sc)->sc_cddma + DGE_CDRXOFF((x)))
#define DGE_CDTXSYNC(sc, x, n, ops) \
do { \
int __x, __n; \
\
__x = (x); \
__n = (n); \
\
/* If it will wrap around, sync to the end of the ring. */ \
if ((__x + __n) > DGE_NTXDESC) { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * \
(DGE_NTXDESC - __x), (ops)); \
__n -= (DGE_NTXDESC - __x); \
__x = 0; \
} \
\
/* Now sync whatever is left. */ \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
DGE_CDTXOFF(__x), sizeof(struct dge_tdes) * __n, (ops)); \
} while (/*CONSTCOND*/0)
#define DGE_CDRXSYNC(sc, x, ops) \
do { \
bus_dmamap_sync((sc)->sc_dmat, (sc)->sc_cddmamap, \
DGE_CDRXOFF((x)), sizeof(struct dge_rdes), (ops)); \
} while (/*CONSTCOND*/0)
#ifdef DGE_OFFBYONE_RXBUG
#define DGE_INIT_RXDESC(sc, x) \
do { \
struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
struct mbuf *__m = __rxs->rxs_mbuf; \
\
__rxd->dr_baddrl = htole32(sc->sc_bugmap->dm_segs[0].ds_addr + \
(mtod((__m), char *) - (char *)sc->sc_bugbuf)); \
__rxd->dr_baddrh = 0; \
__rxd->dr_len = 0; \
__rxd->dr_cksum = 0; \
__rxd->dr_status = 0; \
__rxd->dr_errors = 0; \
__rxd->dr_special = 0; \
DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
\
CSR_WRITE((sc), DGE_RDT, (x)); \
} while (/*CONSTCOND*/0)
#else
#define DGE_INIT_RXDESC(sc, x) \
do { \
struct dge_rxsoft *__rxs = &(sc)->sc_rxsoft[(x)]; \
struct dge_rdes *__rxd = &(sc)->sc_rxdescs[(x)]; \
struct mbuf *__m = __rxs->rxs_mbuf; \
\
/* \
* Note: We scoot the packet forward 2 bytes in the buffer \
* so that the payload after the Ethernet header is aligned \
* to a 4-byte boundary. \
* \
* XXX BRAINDAMAGE ALERT! \
* The stupid chip uses the same size for every buffer, which \
* is set in the Receive Control register. We are using the 2K \
* size option, but what we REALLY want is (2K - 2)! For this \
* reason, we can't "scoot" packets longer than the standard \
* Ethernet MTU. On strict-alignment platforms, if the total \
* size exceeds (2K - 2) we set align_tweak to 0 and let \
* the upper layer copy the headers. \
*/ \
__m->m_data = __m->m_ext.ext_buf + (sc)->sc_align_tweak; \
\
__rxd->dr_baddrl = \
htole32(__rxs->rxs_dmamap->dm_segs[0].ds_addr + \
(sc)->sc_align_tweak); \
__rxd->dr_baddrh = 0; \
__rxd->dr_len = 0; \
__rxd->dr_cksum = 0; \
__rxd->dr_status = 0; \
__rxd->dr_errors = 0; \
__rxd->dr_special = 0; \
DGE_CDRXSYNC((sc), (x), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE); \
\
CSR_WRITE((sc), DGE_RDT, (x)); \
} while (/*CONSTCOND*/0)
#endif
#ifdef DGE_OFFBYONE_RXBUG
/*
* Allocation constants. Much memory may be used for this.
*/
#ifndef DGE_BUFFER_SIZE
#define DGE_BUFFER_SIZE DGE_MAX_MTU
#endif
#define DGE_NBUFFERS (4*DGE_NRXDESC)
#define DGE_RXMEM (DGE_NBUFFERS*DGE_BUFFER_SIZE)
struct rxbugentry {
SLIST_ENTRY(rxbugentry) rb_entry;
int rb_slot;
};
static int
dge_alloc_rcvmem(struct dge_softc *sc)
{
char *kva;
bus_dma_segment_t seg;
int i, rseg, state, error;
struct rxbugentry *entry;
state = error = 0;
if (bus_dmamem_alloc(sc->sc_dmat, DGE_RXMEM, PAGE_SIZE, 0,
&seg, 1, &rseg, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev, "can't alloc rx buffers\n");
return ENOBUFS;
}
state = 1;
if (bus_dmamem_map(sc->sc_dmat, &seg, rseg, DGE_RXMEM, (void **)&kva,
BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev, "can't map DMA buffers (%d bytes)\n",
(int)DGE_RXMEM);
error = ENOBUFS;
goto out;
}
state = 2;
if (bus_dmamap_create(sc->sc_dmat, DGE_RXMEM, 1, DGE_RXMEM, 0,
BUS_DMA_NOWAIT, &sc->sc_bugmap)) {
aprint_error_dev(sc->sc_dev, "can't create DMA map\n");
error = ENOBUFS;
goto out;
}
state = 3;
if (bus_dmamap_load(sc->sc_dmat, sc->sc_bugmap,
kva, DGE_RXMEM, NULL, BUS_DMA_NOWAIT)) {
aprint_error_dev(sc->sc_dev, "can't load DMA map\n");
error = ENOBUFS;
goto out;
}
state = 4;
sc->sc_bugbuf = (void *)kva;
SLIST_INIT(&sc->sc_buglist);
/*
* Now divide it up into DGE_BUFFER_SIZE pieces and save the addresses
* in an array.
*/
if ((entry = malloc(sizeof(*entry) * DGE_NBUFFERS,
M_DEVBUF, M_NOWAIT)) == NULL) {
error = ENOBUFS;
goto out;
}
sc->sc_entry = entry;
for (i = 0; i < DGE_NBUFFERS; i++) {
entry[i].rb_slot = i;
SLIST_INSERT_HEAD(&sc->sc_buglist, &entry[i], rb_entry);
}
out:
if (error != 0) {
switch (state) {
case 4:
bus_dmamap_unload(sc->sc_dmat, sc->sc_bugmap);
case 3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_bugmap);
case 2:
bus_dmamem_unmap(sc->sc_dmat, kva, DGE_RXMEM);
case 1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
break;
default:
break;
}
}
return error;
}
/*
* Allocate a jumbo buffer.
*/
static void *
dge_getbuf(struct dge_softc *sc)
{
struct rxbugentry *entry;
entry = SLIST_FIRST(&sc->sc_buglist);
if (entry == NULL) {
printf("%s: no free RX buffers\n", device_xname(sc->sc_dev));
return(NULL);
}
SLIST_REMOVE_HEAD(&sc->sc_buglist, rb_entry);
return (char *)sc->sc_bugbuf + entry->rb_slot * DGE_BUFFER_SIZE;
}
/*
* Release a jumbo buffer.
*/
static void
dge_freebuf(struct mbuf *m, void *buf, size_t size, void *arg)
{
struct rxbugentry *entry;
struct dge_softc *sc;
int i, s;
/* Extract the softc struct pointer. */
sc = (struct dge_softc *)arg;
if (sc == NULL)
panic("dge_freebuf: can't find softc pointer!");
/* calculate the slot this buffer belongs to */
i = ((char *)buf - (char *)sc->sc_bugbuf) / DGE_BUFFER_SIZE;
if ((i < 0) || (i >= DGE_NBUFFERS))
panic("dge_freebuf: asked to free buffer %d!", i);
s = splvm();
entry = sc->sc_entry + i;
SLIST_INSERT_HEAD(&sc->sc_buglist, entry, rb_entry);
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
splx(s);
}
#endif
static void dge_start(struct ifnet *);
static void dge_watchdog(struct ifnet *);
static int dge_ioctl(struct ifnet *, u_long, void *);
static int dge_init(struct ifnet *);
static void dge_stop(struct ifnet *, int);
static bool dge_shutdown(device_t, int);
static void dge_reset(struct dge_softc *);
static void dge_rxdrain(struct dge_softc *);
static int dge_add_rxbuf(struct dge_softc *, int);
static void dge_set_filter(struct dge_softc *);
static int dge_intr(void *);
static void dge_txintr(struct dge_softc *);
static void dge_rxintr(struct dge_softc *);
static void dge_linkintr(struct dge_softc *, uint32_t);
static int dge_match(device_t, cfdata_t, void *);
static void dge_attach(device_t, device_t, void *);
static int dge_read_eeprom(struct dge_softc *sc);
static int dge_eeprom_clockin(struct dge_softc *sc);
static void dge_eeprom_clockout(struct dge_softc *sc, int bit);
static uint16_t dge_eeprom_word(struct dge_softc *sc, int addr);
static int dge_xgmii_mediachange(struct ifnet *);
static void dge_xgmii_mediastatus(struct ifnet *, struct ifmediareq *);
static void dge_xgmii_reset(struct dge_softc *);
static void dge_xgmii_writereg(struct dge_softc *, int, int, int);
CFATTACH_DECL_NEW(dge, sizeof(struct dge_softc),
dge_match, dge_attach, NULL, NULL);
#ifdef DGE_EVENT_COUNTERS
#if DGE_NTXSEGS > 100
#error Update dge_txseg_evcnt_names
#endif
static char (*dge_txseg_evcnt_names)[DGE_NTXSEGS][8 /* "txseg00" + \0 */];
#endif /* DGE_EVENT_COUNTERS */
/*
* Devices supported by this driver.
*/
static const struct dge_product {
pci_vendor_id_t dgep_vendor;
pci_product_id_t dgep_product;
const char *dgep_name;
int dgep_flags;
#define DGEP_F_10G_LR 0x01
#define DGEP_F_10G_SR 0x02
} dge_products[] = {
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX,
"Intel i82597EX 10GbE-LR Ethernet",
DGEP_F_10G_LR },
{ PCI_VENDOR_INTEL, PCI_PRODUCT_INTEL_82597EX_SR,
"Intel i82597EX 10GbE-SR Ethernet",
DGEP_F_10G_SR },
{ 0, 0,
NULL,
0 },
};
static const struct dge_product *
dge_lookup(const struct pci_attach_args *pa)
{
const struct dge_product *dgep;
for (dgep = dge_products; dgep->dgep_name != NULL; dgep++) {
if (PCI_VENDOR(pa->pa_id) == dgep->dgep_vendor &&
PCI_PRODUCT(pa->pa_id) == dgep->dgep_product)
return dgep;
}
return NULL;
}
static int
dge_match(device_t parent, cfdata_t cf, void *aux)
{
struct pci_attach_args *pa = aux;
if (dge_lookup(pa) != NULL)
return (1);
return (0);
}
static void
dge_attach(device_t parent, device_t self, void *aux)
{
struct dge_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr = NULL;
bus_dma_segment_t seg;
int i, rseg, error;
uint8_t enaddr[ETHER_ADDR_LEN];
pcireg_t preg, memtype;
uint32_t reg;
char intrbuf[PCI_INTRSTR_LEN];
const struct dge_product *dgep;
sc->sc_dgep = dgep = dge_lookup(pa);
if (dgep == NULL) {
printf("\n");
panic("dge_attach: impossible");
}
sc->sc_dev = self;
sc->sc_dmat = pa->pa_dmat;
sc->sc_pc = pa->pa_pc;
sc->sc_pt = pa->pa_tag;
pci_aprint_devinfo_fancy(pa, "Ethernet controller",
dgep->dgep_name, 1);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, DGE_PCI_BAR);
if (pci_mapreg_map(pa, DGE_PCI_BAR, memtype, 0,
&sc->sc_st, &sc->sc_sh, NULL, NULL)) {
aprint_error_dev(sc->sc_dev,
"unable to map device registers\n");
return;
}
/* Enable bus mastering */
preg = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
preg |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, preg);
/*
* Map and establish our interrupt.
*/
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(sc->sc_dev, "unable to map interrupt\n");
return;
}
intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
sc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, dge_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(sc->sc_dev, "unable to establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);
/*
* Determine a few things about the bus we're connected to.
*/
reg = CSR_READ(sc, DGE_STATUS);
if (reg & STATUS_BUS64)
sc->sc_flags |= DGE_F_BUS64;
sc->sc_flags |= DGE_F_PCIX;
if (pci_get_capability(pa->pa_pc, pa->pa_tag,
PCI_CAP_PCIX,
&sc->sc_pcix_offset, NULL) == 0)
aprint_error_dev(sc->sc_dev, "unable to find PCIX "
"capability\n");
if (sc->sc_flags & DGE_F_PCIX) {
switch (reg & STATUS_PCIX_MSK) {
case STATUS_PCIX_66:
sc->sc_bus_speed = 66;
break;
case STATUS_PCIX_100:
sc->sc_bus_speed = 100;
break;
case STATUS_PCIX_133:
sc->sc_bus_speed = 133;
break;
default:
aprint_error_dev(sc->sc_dev,
"unknown PCIXSPD %d; assuming 66MHz\n",
reg & STATUS_PCIX_MSK);
sc->sc_bus_speed = 66;
}
} else
sc->sc_bus_speed = (reg & STATUS_BUS64) ? 66 : 33;
aprint_verbose_dev(sc->sc_dev, "%d-bit %dMHz %s bus\n",
(sc->sc_flags & DGE_F_BUS64) ? 64 : 32, sc->sc_bus_speed,
(sc->sc_flags & DGE_F_PCIX) ? "PCIX" : "PCI");
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct dge_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate control data, error = %d\n",
error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct dge_control_data), (void **)&sc->sc_control_data,
0)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n",
error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct dge_control_data), 1,
sizeof(struct dge_control_data), 0, 0, &sc->sc_cddmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
"error = %d\n", error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cddmamap,
sc->sc_control_data, sizeof(struct dge_control_data), NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to load control data DMA map, error = %d\n",
error);
goto fail_3;
}
#ifdef DGE_OFFBYONE_RXBUG
if (dge_alloc_rcvmem(sc) != 0)
return; /* Already complained */
#endif
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < DGE_TXQUEUELEN; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, DGE_MAX_MTU,
DGE_NTXSEGS, MCLBYTES, 0, 0,
&sc->sc_txsoft[i].txs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev, "unable to create Tx DMA map %d, "
"error = %d\n", i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < DGE_NRXDESC; i++) {
#ifdef DGE_OFFBYONE_RXBUG
if ((error = bus_dmamap_create(sc->sc_dmat, DGE_BUFFER_SIZE, 1,
DGE_BUFFER_SIZE, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
#else
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxsoft[i].rxs_dmamap)) != 0) {
#endif
aprint_error_dev(sc->sc_dev, "unable to create Rx DMA map %d, "
"error = %d\n", i, error);
goto fail_5;
}
sc->sc_rxsoft[i].rxs_mbuf = NULL;
}
/*
* Set bits in ctrl0 register.
* Should get the software defined pins out of EEPROM?
*/
sc->sc_ctrl0 |= CTRL0_RPE | CTRL0_TPE; /* XON/XOFF */
sc->sc_ctrl0 |= CTRL0_SDP3_DIR | CTRL0_SDP2_DIR | CTRL0_SDP1_DIR |
CTRL0_SDP0_DIR | CTRL0_SDP3 | CTRL0_SDP2 | CTRL0_SDP0;
/*
* Reset the chip to a known state.
*/
dge_reset(sc);
/*
* Reset the PHY.
*/
dge_xgmii_reset(sc);
/*
* Read in EEPROM data.
*/
if (dge_read_eeprom(sc)) {
aprint_error_dev(sc->sc_dev, "couldn't read EEPROM\n");
return;
}
/*
* Get the ethernet address.
*/
enaddr[0] = sc->sc_eeprom[EE_ADDR01] & 0377;
enaddr[1] = sc->sc_eeprom[EE_ADDR01] >> 8;
enaddr[2] = sc->sc_eeprom[EE_ADDR23] & 0377;
enaddr[3] = sc->sc_eeprom[EE_ADDR23] >> 8;
enaddr[4] = sc->sc_eeprom[EE_ADDR45] & 0377;
enaddr[5] = sc->sc_eeprom[EE_ADDR45] >> 8;
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(enaddr));
/*
* Setup media stuff.
*/
ifmedia_init(&sc->sc_media, IFM_IMASK, dge_xgmii_mediachange,
dge_xgmii_mediastatus);
if (dgep->dgep_flags & DGEP_F_10G_SR) {
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_SR, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_SR);
} else { /* XXX default is LR */
ifmedia_add(&sc->sc_media, IFM_ETHER|IFM_10G_LR, 0, NULL);
ifmedia_set(&sc->sc_media, IFM_ETHER|IFM_10G_LR);
}
ifp = &sc->sc_ethercom.ec_if;
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = dge_ioctl;
ifp->if_start = dge_start;
ifp->if_watchdog = dge_watchdog;
ifp->if_init = dge_init;
ifp->if_stop = dge_stop;
IFQ_SET_MAXLEN(&ifp->if_snd, max(DGE_IFQUEUELEN, IFQ_MAXLEN));
IFQ_SET_READY(&ifp->if_snd);
sc->sc_ethercom.ec_capabilities |=
ETHERCAP_JUMBO_MTU | ETHERCAP_VLAN_MTU;
/*
* We can perform TCPv4 and UDPv4 checkums in-bound.
*/
ifp->if_capabilities |=
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
/*
* Attach the interface.
*/
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
ether_ifattach(ifp, enaddr);
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, RND_FLAG_DEFAULT);
#ifdef DGE_EVENT_COUNTERS
/* Fix segment event naming */
if (dge_txseg_evcnt_names == NULL) {
dge_txseg_evcnt_names =
malloc(sizeof(*dge_txseg_evcnt_names), M_DEVBUF, M_WAITOK);
for (i = 0; i < DGE_NTXSEGS; i++)
snprintf((*dge_txseg_evcnt_names)[i],
sizeof((*dge_txseg_evcnt_names)[i]), "txseg%d", i);
}
/* Attach event counters. */
evcnt_attach_dynamic(&sc->sc_ev_txsstall, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txsstall");
evcnt_attach_dynamic(&sc->sc_ev_txdstall, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txdstall");
evcnt_attach_dynamic(&sc->sc_ev_txforceintr, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txforceintr");
evcnt_attach_dynamic(&sc->sc_ev_txdw, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "txdw");
evcnt_attach_dynamic(&sc->sc_ev_txqe, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "txqe");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "rxintr");
evcnt_attach_dynamic(&sc->sc_ev_linkintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "linkintr");
evcnt_attach_dynamic(&sc->sc_ev_rxipsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxipsum");
evcnt_attach_dynamic(&sc->sc_ev_rxtusum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxtusum");
evcnt_attach_dynamic(&sc->sc_ev_txipsum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txipsum");
evcnt_attach_dynamic(&sc->sc_ev_txtusum, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txtusum");
evcnt_attach_dynamic(&sc->sc_ev_txctx_init, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txctx init");
evcnt_attach_dynamic(&sc->sc_ev_txctx_hit, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txctx hit");
evcnt_attach_dynamic(&sc->sc_ev_txctx_miss, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txctx miss");
for (i = 0; i < DGE_NTXSEGS; i++)
evcnt_attach_dynamic(&sc->sc_ev_txseg[i], EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), (*dge_txseg_evcnt_names)[i]);
evcnt_attach_dynamic(&sc->sc_ev_txdrop, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txdrop");
#endif /* DGE_EVENT_COUNTERS */
/*
* Make sure the interface is shutdown during reboot.
*/
if (pmf_device_register1(self, NULL, NULL, dge_shutdown))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_5:
for (i = 0; i < DGE_NRXDESC; i++) {
if (sc->sc_rxsoft[i].rxs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_rxsoft[i].rxs_dmamap);
}
fail_4:
for (i = 0; i < DGE_TXQUEUELEN; i++) {
if (sc->sc_txsoft[i].txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
sc->sc_txsoft[i].txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cddmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cddmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct dge_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* dge_shutdown:
*
* Make sure the interface is stopped at reboot time.
*/
static bool
dge_shutdown(device_t self, int howto)
{
struct dge_softc *sc;
sc = device_private(self);
dge_stop(&sc->sc_ethercom.ec_if, 1);
return true;
}
/*
* dge_tx_cksum:
*
* Set up TCP/IP checksumming parameters for the
* specified packet.
*/
static int
dge_tx_cksum(struct dge_softc *sc, struct dge_txsoft *txs, uint8_t *fieldsp)
{
struct mbuf *m0 = txs->txs_mbuf;
struct dge_ctdes *t;
uint32_t ipcs, tucs;
struct ether_header *eh;
int offset, iphl;
uint8_t fields = 0;
/*
* XXX It would be nice if the mbuf pkthdr had offset
* fields for the protocol headers.
*/
eh = mtod(m0, struct ether_header *);
switch (htons(eh->ether_type)) {
case ETHERTYPE_IP:
offset = ETHER_HDR_LEN;
break;
case ETHERTYPE_VLAN:
offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
break;
default:
/*
* Don't support this protocol or encapsulation.
*/
*fieldsp = 0;
return (0);
}
iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
/*
* NOTE: Even if we're not using the IP or TCP/UDP checksum
* offload feature, if we load the context descriptor, we
* MUST provide valid values for IPCSS and TUCSS fields.
*/
if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4) {
DGE_EVCNT_INCR(&sc->sc_ev_txipsum);
fields |= TDESC_POPTS_IXSM;
ipcs = DGE_TCPIP_IPCSS(offset) |
DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
DGE_TCPIP_IPCSE(offset + iphl - 1);
} else if (__predict_true(sc->sc_txctx_ipcs != 0xffffffff)) {
/* Use the cached value. */
ipcs = sc->sc_txctx_ipcs;
} else {
/* Just initialize it to the likely value anyway. */
ipcs = DGE_TCPIP_IPCSS(offset) |
DGE_TCPIP_IPCSO(offset + offsetof(struct ip, ip_sum)) |
DGE_TCPIP_IPCSE(offset + iphl - 1);
}
DPRINTF(DGE_DEBUG_CKSUM,
("%s: CKSUM: offset %d ipcs 0x%x\n",
device_xname(sc->sc_dev), offset, ipcs));
offset += iphl;
if (m0->m_pkthdr.csum_flags & (M_CSUM_TCPv4|M_CSUM_UDPv4)) {
DGE_EVCNT_INCR(&sc->sc_ev_txtusum);
fields |= TDESC_POPTS_TXSM;
tucs = DGE_TCPIP_TUCSS(offset) |
DGE_TCPIP_TUCSO(offset + M_CSUM_DATA_IPv4_OFFSET(m0->m_pkthdr.csum_data)) |
DGE_TCPIP_TUCSE(0) /* rest of packet */;
} else if (__predict_true(sc->sc_txctx_tucs != 0xffffffff)) {
/* Use the cached value. */
tucs = sc->sc_txctx_tucs;
} else {
/* Just initialize it to a valid TCP context. */
tucs = DGE_TCPIP_TUCSS(offset) |
DGE_TCPIP_TUCSO(offset + offsetof(struct tcphdr, th_sum)) |
DGE_TCPIP_TUCSE(0) /* rest of packet */;
}
DPRINTF(DGE_DEBUG_CKSUM,
("%s: CKSUM: offset %d tucs 0x%x\n",
device_xname(sc->sc_dev), offset, tucs));
if (sc->sc_txctx_ipcs == ipcs &&
sc->sc_txctx_tucs == tucs) {
/* Cached context is fine. */
DGE_EVCNT_INCR(&sc->sc_ev_txctx_hit);
} else {
/* Fill in the context descriptor. */
#ifdef DGE_EVENT_COUNTERS
if (sc->sc_txctx_ipcs == 0xffffffff &&
sc->sc_txctx_tucs == 0xffffffff)
DGE_EVCNT_INCR(&sc->sc_ev_txctx_init);
else
DGE_EVCNT_INCR(&sc->sc_ev_txctx_miss);
#endif
t = (struct dge_ctdes *)&sc->sc_txdescs[sc->sc_txnext];
t->dc_tcpip_ipcs = htole32(ipcs);
t->dc_tcpip_tucs = htole32(tucs);
t->dc_tcpip_cmdlen = htole32(TDESC_DTYP_CTD);
t->dc_tcpip_seg = 0;
DGE_CDTXSYNC(sc, sc->sc_txnext, 1, BUS_DMASYNC_PREWRITE);
sc->sc_txctx_ipcs = ipcs;
sc->sc_txctx_tucs = tucs;
sc->sc_txnext = DGE_NEXTTX(sc->sc_txnext);
txs->txs_ndesc++;
}
*fieldsp = fields;
return (0);
}
/*
* dge_start: [ifnet interface function]
*
* Start packet transmission on the interface.
*/
static void
dge_start(struct ifnet *ifp)
{
struct dge_softc *sc = ifp->if_softc;
struct mbuf *m0;
struct dge_txsoft *txs;
bus_dmamap_t dmamap;
int error, nexttx, lasttx = -1, ofree, seg;
uint32_t cksumcmd;
uint8_t cksumfields;
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous number of free descriptors.
*/
ofree = sc->sc_txfree;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
/* Grab a packet off the queue. */
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
DPRINTF(DGE_DEBUG_TX,
("%s: TX: have packet to transmit: %p\n",
device_xname(sc->sc_dev), m0));
/* Get a work queue entry. */
if (sc->sc_txsfree < DGE_TXQUEUE_GC) {
dge_txintr(sc);
if (sc->sc_txsfree == 0) {
DPRINTF(DGE_DEBUG_TX,
("%s: TX: no free job descriptors\n",
device_xname(sc->sc_dev)));
DGE_EVCNT_INCR(&sc->sc_ev_txsstall);
break;
}
}
txs = &sc->sc_txsoft[sc->sc_txsnext];
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the allotted number of segments, or we
* were short on resources. For the too-many-segments
* case, we simply report an error and drop the packet,
* since we can't sanely copy a jumbo packet to a single
* buffer.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
if (error == EFBIG) {
DGE_EVCNT_INCR(&sc->sc_ev_txdrop);
printf("%s: Tx packet consumes too many "
"DMA segments, dropping...\n",
device_xname(sc->sc_dev));
IFQ_DEQUEUE(&ifp->if_snd, m0);
m_freem(m0);
continue;
}
/*
* Short on resources, just stop for now.
*/
DPRINTF(DGE_DEBUG_TX,
("%s: TX: dmamap load failed: %d\n",
device_xname(sc->sc_dev), error));
break;
}
/*
* Ensure we have enough descriptors free to describe
* the packet. Note, we always reserve one descriptor
* at the end of the ring due to the semantics of the
* TDT register, plus one more in the event we need
* to re-load checksum offload context.
*/
if (dmamap->dm_nsegs > (sc->sc_txfree - 2)) {
/*
* Not enough free descriptors to transmit this
* packet. We haven't committed anything yet,
* so just unload the DMA map, put the packet
* pack on the queue, and punt. Notify the upper
* layer that there are no more slots left.
*/
DPRINTF(DGE_DEBUG_TX,
("%s: TX: need %d descriptors, have %d\n",
device_xname(sc->sc_dev), dmamap->dm_nsegs,
sc->sc_txfree - 1));
ifp->if_flags |= IFF_OACTIVE;
bus_dmamap_unload(sc->sc_dmat, dmamap);
DGE_EVCNT_INCR(&sc->sc_ev_txdstall);
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
/*
* WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
*/
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
DPRINTF(DGE_DEBUG_TX,
("%s: TX: packet has %d DMA segments\n",
device_xname(sc->sc_dev), dmamap->dm_nsegs));
DGE_EVCNT_INCR(&sc->sc_ev_txseg[dmamap->dm_nsegs - 1]);
/*
* Store a pointer to the packet so that we can free it
* later.
*
* Initially, we consider the number of descriptors the
* packet uses the number of DMA segments. This may be
* incremented by 1 if we do checksum offload (a descriptor
* is used to set the checksum context).
*/
txs->txs_mbuf = m0;
txs->txs_firstdesc = sc->sc_txnext;
txs->txs_ndesc = dmamap->dm_nsegs;
/*
* Set up checksum offload parameters for
* this packet.
*/
if (m0->m_pkthdr.csum_flags &
(M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) {
if (dge_tx_cksum(sc, txs, &cksumfields) != 0) {
/* Error message already displayed. */
bus_dmamap_unload(sc->sc_dmat, dmamap);
continue;
}
} else {
cksumfields = 0;
}
cksumcmd = TDESC_DCMD_IDE | TDESC_DTYP_DATA;
/*
* Initialize the transmit descriptor.
*/
for (nexttx = sc->sc_txnext, seg = 0;
seg < dmamap->dm_nsegs;
seg++, nexttx = DGE_NEXTTX(nexttx)) {
/*
* Note: we currently only use 32-bit DMA
* addresses.
*/
sc->sc_txdescs[nexttx].dt_baddrh = 0;
sc->sc_txdescs[nexttx].dt_baddrl =
htole32(dmamap->dm_segs[seg].ds_addr);
sc->sc_txdescs[nexttx].dt_ctl =
htole32(cksumcmd | dmamap->dm_segs[seg].ds_len);
sc->sc_txdescs[nexttx].dt_status = 0;
sc->sc_txdescs[nexttx].dt_popts = cksumfields;
sc->sc_txdescs[nexttx].dt_vlan = 0;
lasttx = nexttx;
DPRINTF(DGE_DEBUG_TX,
("%s: TX: desc %d: low 0x%08lx, len 0x%04lx\n",
device_xname(sc->sc_dev), nexttx,
(unsigned long)le32toh(dmamap->dm_segs[seg].ds_addr),
(unsigned long)le32toh(dmamap->dm_segs[seg].ds_len)));
}
KASSERT(lasttx != -1);
/*
* Set up the command byte on the last descriptor of
* the packet. If we're in the interrupt delay window,
* delay the interrupt.
*/
sc->sc_txdescs[lasttx].dt_ctl |=
htole32(TDESC_DCMD_EOP | TDESC_DCMD_RS);
txs->txs_lastdesc = lasttx;
DPRINTF(DGE_DEBUG_TX,
("%s: TX: desc %d: cmdlen 0x%08x\n", device_xname(sc->sc_dev),
lasttx, le32toh(sc->sc_txdescs[lasttx].dt_ctl)));
/* Sync the descriptors we're using. */
DGE_CDTXSYNC(sc, sc->sc_txnext, dmamap->dm_nsegs,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Give the packet to the chip. */
CSR_WRITE(sc, DGE_TDT, nexttx);
DPRINTF(DGE_DEBUG_TX,
("%s: TX: TDT -> %d\n", device_xname(sc->sc_dev), nexttx));
DPRINTF(DGE_DEBUG_TX,
("%s: TX: finished transmitting packet, job %d\n",
device_xname(sc->sc_dev), sc->sc_txsnext));
/* Advance the tx pointer. */
sc->sc_txfree -= txs->txs_ndesc;
sc->sc_txnext = nexttx;
sc->sc_txsfree--;
sc->sc_txsnext = DGE_NEXTTXS(sc->sc_txsnext);
/* Pass the packet to any BPF listeners. */
bpf_mtap(ifp, m0);
}
if (sc->sc_txsfree == 0 || sc->sc_txfree <= 2) {
/* No more slots; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txfree != ofree) {
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* dge_watchdog: [ifnet interface function]
*
* Watchdog timer handler.
*/
static void
dge_watchdog(struct ifnet *ifp)
{
struct dge_softc *sc = ifp->if_softc;
/*
* Since we're using delayed interrupts, sweep up
* before we report an error.
*/
dge_txintr(sc);
if (sc->sc_txfree != DGE_NTXDESC) {
printf("%s: device timeout (txfree %d txsfree %d txnext %d)\n",
device_xname(sc->sc_dev), sc->sc_txfree, sc->sc_txsfree,
sc->sc_txnext);
ifp->if_oerrors++;
/* Reset the interface. */
(void) dge_init(ifp);
}
/* Try to get more packets going. */
dge_start(ifp);
}
/*
* dge_ioctl: [ifnet interface function]
*
* Handle control requests from the operator.
*/
static int
dge_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct dge_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *) data;
pcireg_t preg;
int s, error, mmrbc;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_media, cmd);
break;
case SIOCSIFMTU:
if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > DGE_MAX_MTU)
error = EINVAL;
else if ((error = ifioctl_common(ifp, cmd, data)) != ENETRESET)
break;
else if (ifp->if_flags & IFF_UP)
error = (*ifp->if_init)(ifp);
else
error = 0;
break;
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
/* extract link flags */
if ((ifp->if_flags & IFF_LINK0) == 0 &&
(ifp->if_flags & IFF_LINK1) == 0)
mmrbc = PCIX_MMRBC_512;
else if ((ifp->if_flags & IFF_LINK0) == 0 &&
(ifp->if_flags & IFF_LINK1) != 0)
mmrbc = PCIX_MMRBC_1024;
else if ((ifp->if_flags & IFF_LINK0) != 0 &&
(ifp->if_flags & IFF_LINK1) == 0)
mmrbc = PCIX_MMRBC_2048;
else
mmrbc = PCIX_MMRBC_4096;
if (mmrbc != sc->sc_mmrbc) {
preg = pci_conf_read(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD);
preg &= ~PCIX_MMRBC_MSK;
preg |= mmrbc;
pci_conf_write(sc->sc_pc, sc->sc_pt,DGE_PCIX_CMD, preg);
sc->sc_mmrbc = mmrbc;
}
/* FALLTHROUGH */
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd == SIOCSIFCAP)
error = (*ifp->if_init)(ifp);
else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
dge_set_filter(sc);
}
break;
}
/* Try to get more packets going. */
dge_start(ifp);
splx(s);
return (error);
}
/*
* dge_intr:
*
* Interrupt service routine.
*/
static int
dge_intr(void *arg)
{
struct dge_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
uint32_t icr;
int wantinit, handled = 0;
for (wantinit = 0; wantinit == 0;) {
icr = CSR_READ(sc, DGE_ICR);
if ((icr & sc->sc_icr) == 0)
break;
rnd_add_uint32(&sc->rnd_source, icr);
handled = 1;
#if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
if (icr & (ICR_RXDMT0|ICR_RXT0)) {
DPRINTF(DGE_DEBUG_RX,
("%s: RX: got Rx intr 0x%08x\n",
device_xname(sc->sc_dev),
icr & (ICR_RXDMT0|ICR_RXT0)));
DGE_EVCNT_INCR(&sc->sc_ev_rxintr);
}
#endif
dge_rxintr(sc);
#if defined(DGE_DEBUG) || defined(DGE_EVENT_COUNTERS)
if (icr & ICR_TXDW) {
DPRINTF(DGE_DEBUG_TX,
("%s: TX: got TXDW interrupt\n",
device_xname(sc->sc_dev)));
DGE_EVCNT_INCR(&sc->sc_ev_txdw);
}
if (icr & ICR_TXQE)
DGE_EVCNT_INCR(&sc->sc_ev_txqe);
#endif
dge_txintr(sc);
if (icr & (ICR_LSC|ICR_RXSEQ)) {
DGE_EVCNT_INCR(&sc->sc_ev_linkintr);
dge_linkintr(sc, icr);
}
if (icr & ICR_RXO) {
printf("%s: Receive overrun\n", device_xname(sc->sc_dev));
wantinit = 1;
}
}
if (handled) {
if (wantinit)
dge_init(ifp);
/* Try to get more packets going. */
if_schedule_deferred_start(ifp);
}
return (handled);
}
/*
* dge_txintr:
*
* Helper; handle transmit interrupts.
*/
static void
dge_txintr(struct dge_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct dge_txsoft *txs;
uint8_t status;
int i;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Go through the Tx list and free mbufs for those
* frames which have been transmitted.
*/
for (i = sc->sc_txsdirty; sc->sc_txsfree != DGE_TXQUEUELEN;
i = DGE_NEXTTXS(i), sc->sc_txsfree++) {
txs = &sc->sc_txsoft[i];
DPRINTF(DGE_DEBUG_TX,
("%s: TX: checking job %d\n", device_xname(sc->sc_dev), i));
DGE_CDTXSYNC(sc, txs->txs_firstdesc, txs->txs_dmamap->dm_nsegs,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status =
sc->sc_txdescs[txs->txs_lastdesc].dt_status;
if ((status & TDESC_STA_DD) == 0) {
DGE_CDTXSYNC(sc, txs->txs_lastdesc, 1,
BUS_DMASYNC_PREREAD);
break;
}
DPRINTF(DGE_DEBUG_TX,
("%s: TX: job %d done: descs %d..%d\n",
device_xname(sc->sc_dev), i, txs->txs_firstdesc,
txs->txs_lastdesc));
ifp->if_opackets++;
sc->sc_txfree += txs->txs_ndesc;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txsdirty = i;
DPRINTF(DGE_DEBUG_TX,
("%s: TX: txsdirty -> %d\n", device_xname(sc->sc_dev), i));
/*
* If there are no more pending transmissions, cancel the watchdog
* timer.
*/
if (sc->sc_txsfree == DGE_TXQUEUELEN)
ifp->if_timer = 0;
}
/*
* dge_rxintr:
*
* Helper; handle receive interrupts.
*/
static void
dge_rxintr(struct dge_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct dge_rxsoft *rxs;
struct mbuf *m;
int i, len;
uint8_t status, errors;
for (i = sc->sc_rxptr;; i = DGE_NEXTRX(i)) {
rxs = &sc->sc_rxsoft[i];
DPRINTF(DGE_DEBUG_RX,
("%s: RX: checking descriptor %d\n",
device_xname(sc->sc_dev), i));
DGE_CDRXSYNC(sc, i, BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = sc->sc_rxdescs[i].dr_status;
errors = sc->sc_rxdescs[i].dr_errors;
len = le16toh(sc->sc_rxdescs[i].dr_len);
if ((status & RDESC_STS_DD) == 0) {
/*
* We have processed all of the receive descriptors.
*/
DGE_CDRXSYNC(sc, i, BUS_DMASYNC_PREREAD);
break;
}
if (__predict_false(sc->sc_rxdiscard)) {
DPRINTF(DGE_DEBUG_RX,
("%s: RX: discarding contents of descriptor %d\n",
device_xname(sc->sc_dev), i));
DGE_INIT_RXDESC(sc, i);
if (status & RDESC_STS_EOP) {
/* Reset our state. */
DPRINTF(DGE_DEBUG_RX,
("%s: RX: resetting rxdiscard -> 0\n",
device_xname(sc->sc_dev)));
sc->sc_rxdiscard = 0;
}
continue;
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
m = rxs->rxs_mbuf;
/*
* Add a new receive buffer to the ring.
*/
if (dge_add_rxbuf(sc, i) != 0) {
/*
* Failed, throw away what we've done so
* far, and discard the rest of the packet.
*/
ifp->if_ierrors++;
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
DGE_INIT_RXDESC(sc, i);
if ((status & RDESC_STS_EOP) == 0)
sc->sc_rxdiscard = 1;
if (sc->sc_rxhead != NULL)
m_freem(sc->sc_rxhead);
DGE_RXCHAIN_RESET(sc);
DPRINTF(DGE_DEBUG_RX,
("%s: RX: Rx buffer allocation failed, "
"dropping packet%s\n", device_xname(sc->sc_dev),
sc->sc_rxdiscard ? " (discard)" : ""));
continue;
}
DGE_INIT_RXDESC(sc, DGE_PREVRX(i)); /* Write the descriptor */
DGE_RXCHAIN_LINK(sc, m);
m->m_len = len;
DPRINTF(DGE_DEBUG_RX,
("%s: RX: buffer at %p len %d\n",
device_xname(sc->sc_dev), m->m_data, len));
/*
* If this is not the end of the packet, keep
* looking.
*/
if ((status & RDESC_STS_EOP) == 0) {
sc->sc_rxlen += len;
DPRINTF(DGE_DEBUG_RX,
("%s: RX: not yet EOP, rxlen -> %d\n",
device_xname(sc->sc_dev), sc->sc_rxlen));
continue;
}
/*
* Okay, we have the entire packet now...
*/
*sc->sc_rxtailp = NULL;
m = sc->sc_rxhead;
len += sc->sc_rxlen;
DGE_RXCHAIN_RESET(sc);
DPRINTF(DGE_DEBUG_RX,
("%s: RX: have entire packet, len -> %d\n",
device_xname(sc->sc_dev), len));
/*
* If an error occurred, update stats and drop the packet.
*/
if (errors &
(RDESC_ERR_CE|RDESC_ERR_SE|RDESC_ERR_P|RDESC_ERR_RXE)) {
ifp->if_ierrors++;
if (errors & RDESC_ERR_SE)
printf("%s: symbol error\n",
device_xname(sc->sc_dev));
else if (errors & RDESC_ERR_P)
printf("%s: parity error\n",
device_xname(sc->sc_dev));
else if (errors & RDESC_ERR_CE)
printf("%s: CRC error\n",
device_xname(sc->sc_dev));
m_freem(m);
continue;
}
/*
* No errors. Receive the packet.
*/
m_set_rcvif(m, ifp);
m->m_pkthdr.len = len;
/*
* Set up checksum info for this packet.
*/
if (status & RDESC_STS_IPCS) {
DGE_EVCNT_INCR(&sc->sc_ev_rxipsum);
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
if (errors & RDESC_ERR_IPE)
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
}
if (status & RDESC_STS_TCPCS) {
/*
* Note: we don't know if this was TCP or UDP,
* so we just set both bits, and expect the
* upper layers to deal.
*/
DGE_EVCNT_INCR(&sc->sc_ev_rxtusum);
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4|M_CSUM_UDPv4;
if (errors & RDESC_ERR_TCPE)
m->m_pkthdr.csum_flags |= M_CSUM_TCP_UDP_BAD;
}
/* Pass it on. */
if_percpuq_enqueue(ifp->if_percpuq, m);
}
/* Update the receive pointer. */
sc->sc_rxptr = i;
DPRINTF(DGE_DEBUG_RX,
("%s: RX: rxptr -> %d\n", device_xname(sc->sc_dev), i));
}
/*
* dge_linkintr:
*
* Helper; handle link interrupts.
*/
static void
dge_linkintr(struct dge_softc *sc, uint32_t icr)
{
uint32_t status;
if (icr & ICR_LSC) {
status = CSR_READ(sc, DGE_STATUS);
if (status & STATUS_LINKUP) {
DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> up\n",
device_xname(sc->sc_dev)));
} else {
DPRINTF(DGE_DEBUG_LINK, ("%s: LINK: LSC -> down\n",
device_xname(sc->sc_dev)));
}
} else if (icr & ICR_RXSEQ) {
DPRINTF(DGE_DEBUG_LINK,
("%s: LINK: Receive sequence error\n",
device_xname(sc->sc_dev)));
}
/* XXX - fix errata */
}
/*
* dge_reset:
*
* Reset the i82597 chip.
*/
static void
dge_reset(struct dge_softc *sc)
{
int i;
/*
* Do a chip reset.
*/
CSR_WRITE(sc, DGE_CTRL0, CTRL0_RST | sc->sc_ctrl0);
delay(10000);
for (i = 0; i < 1000; i++) {
if ((CSR_READ(sc, DGE_CTRL0) & CTRL0_RST) == 0)
break;
delay(20);
}
if (CSR_READ(sc, DGE_CTRL0) & CTRL0_RST)
printf("%s: WARNING: reset failed to complete\n",
device_xname(sc->sc_dev));
/*
* Reset the EEPROM logic.
* This will cause the chip to reread its default values,
* which doesn't happen otherwise (errata).
*/
CSR_WRITE(sc, DGE_CTRL1, CTRL1_EE_RST);
delay(10000);
}
/*
* dge_init: [ifnet interface function]
*
* Initialize the interface. Must be called at splnet().
*/
static int
dge_init(struct ifnet *ifp)
{
struct dge_softc *sc = ifp->if_softc;
struct dge_rxsoft *rxs;
int i, error = 0;
uint32_t reg;
/*
* *_HDR_ALIGNED_P is constant 1 if __NO_STRICT_ALIGMENT is set.
* There is a small but measurable benefit to avoiding the adjusment
* of the descriptor so that the headers are aligned, for normal mtu,
* on such platforms. One possibility is that the DMA itself is
* slightly more efficient if the front of the entire packet (instead
* of the front of the headers) is aligned.
*
* Note we must always set align_tweak to 0 if we are using
* jumbo frames.
*/
#ifdef __NO_STRICT_ALIGNMENT
sc->sc_align_tweak = 0;
#else
if ((ifp->if_mtu + ETHER_HDR_LEN + ETHER_CRC_LEN) > (MCLBYTES - 2))
sc->sc_align_tweak = 0;
else
sc->sc_align_tweak = 2;
#endif /* __NO_STRICT_ALIGNMENT */
/* Cancel any pending I/O. */
dge_stop(ifp, 0);
/* Reset the chip to a known state. */
dge_reset(sc);
/* Initialize the transmit descriptor ring. */
memset(sc->sc_txdescs, 0, sizeof(sc->sc_txdescs));
DGE_CDTXSYNC(sc, 0, DGE_NTXDESC,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
sc->sc_txfree = DGE_NTXDESC;
sc->sc_txnext = 0;
sc->sc_txctx_ipcs = 0xffffffff;
sc->sc_txctx_tucs = 0xffffffff;
CSR_WRITE(sc, DGE_TDBAH, 0);
CSR_WRITE(sc, DGE_TDBAL, DGE_CDTXADDR(sc, 0));
CSR_WRITE(sc, DGE_TDLEN, sizeof(sc->sc_txdescs));
CSR_WRITE(sc, DGE_TDH, 0);
CSR_WRITE(sc, DGE_TDT, 0);
CSR_WRITE(sc, DGE_TIDV, TIDV);
#if 0
CSR_WRITE(sc, DGE_TXDCTL, TXDCTL_PTHRESH(0) |
TXDCTL_HTHRESH(0) | TXDCTL_WTHRESH(0));
#endif
CSR_WRITE(sc, DGE_RXDCTL,
RXDCTL_PTHRESH(RXDCTL_PTHRESH_VAL) |
RXDCTL_HTHRESH(RXDCTL_HTHRESH_VAL) |
RXDCTL_WTHRESH(RXDCTL_WTHRESH_VAL));
/* Initialize the transmit job descriptors. */
for (i = 0; i < DGE_TXQUEUELEN; i++)
sc->sc_txsoft[i].txs_mbuf = NULL;
sc->sc_txsfree = DGE_TXQUEUELEN;
sc->sc_txsnext = 0;
sc->sc_txsdirty = 0;
/*
* Initialize the receive descriptor and receive job
* descriptor rings.
*/
CSR_WRITE(sc, DGE_RDBAH, 0);
CSR_WRITE(sc, DGE_RDBAL, DGE_CDRXADDR(sc, 0));
CSR_WRITE(sc, DGE_RDLEN, sizeof(sc->sc_rxdescs));
CSR_WRITE(sc, DGE_RDH, DGE_RXSPACE);
CSR_WRITE(sc, DGE_RDT, 0);
CSR_WRITE(sc, DGE_RDTR, RDTR | 0x80000000);
CSR_WRITE(sc, DGE_FCRTL, FCRTL | FCRTL_XONE);
CSR_WRITE(sc, DGE_FCRTH, FCRTH);
for (i = 0; i < DGE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf == NULL) {
if ((error = dge_add_rxbuf(sc, i)) != 0) {
printf("%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
device_xname(sc->sc_dev), i, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
dge_rxdrain(sc);
goto out;
}
}
DGE_INIT_RXDESC(sc, i);
}
sc->sc_rxptr = DGE_RXSPACE;
sc->sc_rxdiscard = 0;
DGE_RXCHAIN_RESET(sc);
if (sc->sc_ethercom.ec_capabilities & ETHERCAP_JUMBO_MTU) {
sc->sc_ctrl0 |= CTRL0_JFE;
CSR_WRITE(sc, DGE_MFS, ETHER_MAX_LEN_JUMBO << 16);
}
/* Write the control registers. */
CSR_WRITE(sc, DGE_CTRL0, sc->sc_ctrl0);
/*
* Set up checksum offload parameters.
*/
reg = CSR_READ(sc, DGE_RXCSUM);
if (ifp->if_capenable & IFCAP_CSUM_IPv4_Rx)
reg |= RXCSUM_IPOFL;
else
reg &= ~RXCSUM_IPOFL;
if (ifp->if_capenable & (IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx))
reg |= RXCSUM_IPOFL | RXCSUM_TUOFL;
else {
reg &= ~RXCSUM_TUOFL;
if ((ifp->if_capenable & IFCAP_CSUM_IPv4_Rx) == 0)
reg &= ~RXCSUM_IPOFL;
}
CSR_WRITE(sc, DGE_RXCSUM, reg);
/*
* Set up the interrupt registers.
*/
CSR_WRITE(sc, DGE_IMC, 0xffffffffU);
sc->sc_icr = ICR_TXDW | ICR_LSC | ICR_RXSEQ | ICR_RXDMT0 |
ICR_RXO | ICR_RXT0;
CSR_WRITE(sc, DGE_IMS, sc->sc_icr);
/*
* Set up the transmit control register.
*/
sc->sc_tctl = TCTL_TCE|TCTL_TPDE|TCTL_TXEN;
CSR_WRITE(sc, DGE_TCTL, sc->sc_tctl);
/*
* Set up the receive control register; we actually program
* the register when we set the receive filter. Use multicast
* address offset type 0.
*/
sc->sc_mchash_type = 0;
sc->sc_rctl = RCTL_RXEN | RCTL_RDMTS_12 | RCTL_RPDA_MC |
RCTL_CFF | RCTL_SECRC | RCTL_MO(sc->sc_mchash_type);
#ifdef DGE_OFFBYONE_RXBUG
sc->sc_rctl |= RCTL_BSIZE_16k;
#else
switch(MCLBYTES) {
case 2048:
sc->sc_rctl |= RCTL_BSIZE_2k;
break;
case 4096:
sc->sc_rctl |= RCTL_BSIZE_4k;
break;
case 8192:
sc->sc_rctl |= RCTL_BSIZE_8k;
break;
case 16384:
sc->sc_rctl |= RCTL_BSIZE_16k;
break;
default:
panic("dge_init: MCLBYTES %d unsupported", MCLBYTES);
}
#endif
/* Set the receive filter. */
/* Also sets RCTL */
dge_set_filter(sc);
/* ...all done! */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
out:
if (error)
printf("%s: interface not running\n", device_xname(sc->sc_dev));
return (error);
}
/*
* dge_rxdrain:
*
* Drain the receive queue.
*/
static void
dge_rxdrain(struct dge_softc *sc)
{
struct dge_rxsoft *rxs;
int i;
for (i = 0; i < DGE_NRXDESC; i++) {
rxs = &sc->sc_rxsoft[i];
if (rxs->rxs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
m_freem(rxs->rxs_mbuf);
rxs->rxs_mbuf = NULL;
}
}
}
/*
* dge_stop: [ifnet interface function]
*
* Stop transmission on the interface.
*/
static void
dge_stop(struct ifnet *ifp, int disable)
{
struct dge_softc *sc = ifp->if_softc;
struct dge_txsoft *txs;
int i;
/* Stop the transmit and receive processes. */
CSR_WRITE(sc, DGE_TCTL, 0);
CSR_WRITE(sc, DGE_RCTL, 0);
/* Release any queued transmit buffers. */
for (i = 0; i < DGE_TXQUEUELEN; i++) {
txs = &sc->sc_txsoft[i];
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
/* Mark the interface as down and cancel the watchdog timer. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
if (disable)
dge_rxdrain(sc);
}
/*
* dge_add_rxbuf:
*
* Add a receive buffer to the indiciated descriptor.
*/
static int
dge_add_rxbuf(struct dge_softc *sc, int idx)
{
struct dge_rxsoft *rxs = &sc->sc_rxsoft[idx];
struct mbuf *m;
int error;
#ifdef DGE_OFFBYONE_RXBUG
void *buf;
#endif
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
#ifdef DGE_OFFBYONE_RXBUG
if ((buf = dge_getbuf(sc)) == NULL)
return ENOBUFS;
m->m_len = m->m_pkthdr.len = DGE_BUFFER_SIZE;
MEXTADD(m, buf, DGE_BUFFER_SIZE, M_DEVBUF, dge_freebuf, sc);
m->m_flags |= M_EXT_RW;
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
error = bus_dmamap_load(sc->sc_dmat, rxs->rxs_dmamap, buf,
DGE_BUFFER_SIZE, NULL, BUS_DMA_READ|BUS_DMA_NOWAIT);
#else
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (rxs->rxs_mbuf != NULL)
bus_dmamap_unload(sc->sc_dmat, rxs->rxs_dmamap);
rxs->rxs_mbuf = m;
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf(sc->sc_dmat, rxs->rxs_dmamap, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
#endif
if (error) {
printf("%s: unable to load rx DMA map %d, error = %d\n",
device_xname(sc->sc_dev), idx, error);
panic("dge_add_rxbuf"); /* XXX XXX XXX */
}
bus_dmamap_sync(sc->sc_dmat, rxs->rxs_dmamap, 0,
rxs->rxs_dmamap->dm_mapsize, BUS_DMASYNC_PREREAD);
return (0);
}
/*
* dge_set_ral:
*
* Set an entry in the receive address list.
*/
static void
dge_set_ral(struct dge_softc *sc, const uint8_t *enaddr, int idx)
{
uint32_t ral_lo, ral_hi;
if (enaddr != NULL) {
ral_lo = enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
(enaddr[3] << 24);
ral_hi = enaddr[4] | (enaddr[5] << 8);
ral_hi |= RAH_AV;
} else {
ral_lo = 0;
ral_hi = 0;
}
CSR_WRITE(sc, RA_ADDR(DGE_RAL, idx), ral_lo);
CSR_WRITE(sc, RA_ADDR(DGE_RAH, idx), ral_hi);
}
/*
* dge_mchash:
*
* Compute the hash of the multicast address for the 4096-bit
* multicast filter.
*/
static uint32_t
dge_mchash(struct dge_softc *sc, const uint8_t *enaddr)
{
static const int lo_shift[4] = { 4, 3, 2, 0 };
static const int hi_shift[4] = { 4, 5, 6, 8 };
uint32_t hash;
hash = (enaddr[4] >> lo_shift[sc->sc_mchash_type]) |
(((uint16_t) enaddr[5]) << hi_shift[sc->sc_mchash_type]);
return (hash & 0xfff);
}
/*
* dge_set_filter:
*
* Set up the receive filter.
*/
static void
dge_set_filter(struct dge_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t hash, reg, bit;
int i;
sc->sc_rctl &= ~(RCTL_BAM | RCTL_UPE | RCTL_MPE);
if (ifp->if_flags & IFF_BROADCAST)
sc->sc_rctl |= RCTL_BAM;
if (ifp->if_flags & IFF_PROMISC) {
sc->sc_rctl |= RCTL_UPE;
goto allmulti;
}
/*
* Set the station address in the first RAL slot, and
* clear the remaining slots.
*/
dge_set_ral(sc, CLLADDR(ifp->if_sadl), 0);
for (i = 1; i < RA_TABSIZE; i++)
dge_set_ral(sc, NULL, i);
/* Clear out the multicast table. */
for (i = 0; i < MC_TABSIZE; i++)
CSR_WRITE(sc, DGE_MTA + (i << 2), 0);
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
goto allmulti;
}
hash = dge_mchash(sc, enm->enm_addrlo);
reg = (hash >> 5) & 0x7f;
bit = hash & 0x1f;
hash = CSR_READ(sc, DGE_MTA + (reg << 2));
hash |= 1U << bit;
CSR_WRITE(sc, DGE_MTA + (reg << 2), hash);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
goto setit;
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
sc->sc_rctl |= RCTL_MPE;
setit:
CSR_WRITE(sc, DGE_RCTL, sc->sc_rctl);
}
/*
* Read in the EEPROM info and verify checksum.
*/
int
dge_read_eeprom(struct dge_softc *sc)
{
uint16_t cksum;
int i;
cksum = 0;
for (i = 0; i < EEPROM_SIZE; i++) {
sc->sc_eeprom[i] = dge_eeprom_word(sc, i);
cksum += sc->sc_eeprom[i];
}
return cksum != EEPROM_CKSUM;
}
/*
* Read a 16-bit word from address addr in the serial EEPROM.
*/
uint16_t
dge_eeprom_word(struct dge_softc *sc, int addr)
{
uint32_t reg;
uint16_t rval = 0;
int i;
reg = CSR_READ(sc, DGE_EECD) & ~(EECD_SK|EECD_DI|EECD_CS);
/* Lower clock pulse (and data in to chip) */
CSR_WRITE(sc, DGE_EECD, reg);
/* Select chip */
CSR_WRITE(sc, DGE_EECD, reg|EECD_CS);
/* Send read command */
dge_eeprom_clockout(sc, 1);
dge_eeprom_clockout(sc, 1);
dge_eeprom_clockout(sc, 0);
/* Send address */
for (i = 5; i >= 0; i--)
dge_eeprom_clockout(sc, (addr >> i) & 1);
/* Read data */
for (i = 0; i < 16; i++) {
rval <<= 1;
rval |= dge_eeprom_clockin(sc);
}
/* Deselect chip */
CSR_WRITE(sc, DGE_EECD, reg);
return rval;
}
/*
* Clock out a single bit to the EEPROM.
*/
void
dge_eeprom_clockout(struct dge_softc *sc, int bit)
{
int reg;
reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_SK);
if (bit)
reg |= EECD_DI;
CSR_WRITE(sc, DGE_EECD, reg);
delay(2);
CSR_WRITE(sc, DGE_EECD, reg|EECD_SK);
delay(2);
CSR_WRITE(sc, DGE_EECD, reg);
delay(2);
}
/*
* Clock in a single bit from EEPROM.
*/
int
dge_eeprom_clockin(struct dge_softc *sc)
{
int reg, rv;
reg = CSR_READ(sc, DGE_EECD) & ~(EECD_DI|EECD_DO|EECD_SK);
CSR_WRITE(sc, DGE_EECD, reg|EECD_SK); /* Raise clock */
delay(2);
rv = (CSR_READ(sc, DGE_EECD) & EECD_DO) != 0; /* Get bit */
CSR_WRITE(sc, DGE_EECD, reg); /* Lower clock */
delay(2);
return rv;
}
static void
dge_xgmii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct dge_softc *sc = ifp->if_softc;
ifmr->ifm_status = IFM_AVALID;
if (sc->sc_dgep->dgep_flags & DGEP_F_10G_SR ) {
ifmr->ifm_active = IFM_ETHER|IFM_10G_SR;
} else {
ifmr->ifm_active = IFM_ETHER|IFM_10G_LR;
}
if (CSR_READ(sc, DGE_STATUS) & STATUS_LINKUP)
ifmr->ifm_status |= IFM_ACTIVE;
}
static inline int
phwait(struct dge_softc *sc, int p, int r, int d, int type)
{
int i, mdic;
CSR_WRITE(sc, DGE_MDIO,
MDIO_PHY(p) | MDIO_REG(r) | MDIO_DEV(d) | type | MDIO_CMD);
for (i = 0; i < 10; i++) {
delay(10);
if (((mdic = CSR_READ(sc, DGE_MDIO)) & MDIO_CMD) == 0)
break;
}
return mdic;
}
static void
dge_xgmii_writereg(struct dge_softc *sc, int phy, int reg, int val)
{
int mdic;
CSR_WRITE(sc, DGE_MDIRW, val);
if (((mdic = phwait(sc, phy, reg, 1, MDIO_ADDR)) & MDIO_CMD)) {
printf("%s: address cycle timeout; phy %d reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return;
}
if (((mdic = phwait(sc, phy, reg, 1, MDIO_WRITE)) & MDIO_CMD)) {
printf("%s: write cycle timeout; phy %d reg %d\n",
device_xname(sc->sc_dev), phy, reg);
return;
}
}
static void
dge_xgmii_reset(struct dge_softc *sc)
{
dge_xgmii_writereg(sc, 0, 0, BMCR_RESET);
}
static int
dge_xgmii_mediachange(struct ifnet *ifp)
{
return 0;
}