NetBSD/sys/arch/mac68k/dev/if_ae.c

1387 lines
35 KiB
C

/* $NetBSD: if_ae.c,v 1.31 1995/06/28 04:31:06 cgd Exp $ */
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters.
*
* Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided that
* the above copyright and these terms are retained. Under no circumstances is
* the author responsible for the proper functioning of this software, nor does
* the author assume any responsibility for damages incurred with its use.
*
* Adapted for MacBSD by Brad Parker <brad@fcr.com>.
*
* Currently supports:
* Apples NB Ethernet card
* Interlan A310 Nubus Ethernet card
* Cayman Systems GatorCard
* Asante MacCon II/E
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include "../mac68k/via.h"
#include "nubus.h"
#include <dev/ic/dp8390reg.h>
#include "if_aereg.h"
#define INTERFACE_NAME_LEN 32
/*
* ae_softc: per line info and status
*/
struct ae_softc {
struct device sc_dev;
nubus_slot sc_slot;
/* struct intrhand sc_ih; */
struct arpcom sc_arpcom;/* ethernet common */
char type_str[INTERFACE_NAME_LEN]; /* type string */
u_short type; /* interface type code */
u_char vendor; /* interface vendor */
u_char regs_rev; /* registers are reversed */
#define REG_MAP(sc, reg) ((sc)->regs_rev ? (0x0f-(reg))<<2 : (reg)<<2)
#define NIC_GET(sc, reg) ((sc)->nic_addr[REG_MAP(sc, reg)])
#define NIC_PUT(sc, reg, val) ((sc)->nic_addr[REG_MAP(sc, reg)] = (val))
volatile caddr_t nic_addr; /* NIC (DS8390) I/O bus address */
caddr_t rom_addr; /* on board prom address */
u_char cr_proto; /* values always set in CR */
caddr_t mem_start; /* shared memory start address */
caddr_t mem_end; /* shared memory end address */
u_long mem_size; /* total shared memory size */
caddr_t mem_ring; /* start of RX ring-buffer (in smem) */
u_char mem_wr_short; /* card memory requires int16 writes */
u_char xmit_busy; /* transmitter is busy */
u_char txb_cnt; /* Number of transmit buffers */
u_char txb_inuse; /* number of TX buffers currently in-use */
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
};
int aeprobe __P((struct device *, void *, void *));
void aeattach __P((struct device *, struct device *, void *));
void aeintr __P((struct ae_softc *));
int ae_ioctl __P((struct ifnet *, u_long, caddr_t));
void ae_start __P((struct ifnet *));
void ae_watchdog __P(( /* short */ ));
void ae_reset __P((struct ae_softc *));
void ae_init __P((struct ae_softc *));
void ae_stop __P((struct ae_softc *));
void ae_getmcaf __P((struct arpcom *, u_char *));
u_short ae_put __P((struct ae_softc *, struct mbuf *, caddr_t));
#define inline /* XXX for debugging porpoises */
void ae_get_packet __P(( /* struct ae_softc *, caddr_t, u_short */ ));
static inline void ae_rint __P((struct ae_softc *));
static inline void ae_xmit __P((struct ae_softc *));
static inline caddr_t ae_ring_copy __P((
/* struct ae_softc *, caddr_t, caddr_t, u_short */ ));
struct cfdriver aecd = {
NULL, "ae", aeprobe, aeattach, DV_IFNET, sizeof(struct ae_softc)
};
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
static char zero = 0;
static u_char ones = 0xff;
/*
* XXX These two should be moved to locore, and maybe changed to use shorts
* instead of bytes. The reason for these is that bcopy and bzero use longs,
* which the ethernet cards can't handle.
*/
void
bszero(u_short * addr, int len)
{
while (len--)
*addr++ = 0;
}
/*
* Memory copy, copies word at time.
*/
static inline void
word_copy(a, b, len)
caddr_t a, b;
int len;
{
u_short *x = (u_short *) a, *y = (u_short *) b;
len >>= 1;
while (len--)
*y++ = *x++;
}
/*
* Memory copy, copies bytes at time.
*/
static inline void
byte_copy(a, b, len)
caddr_t a, b;
int len;
{
while (len--)
*b++ = *a++;
}
static int
ae_id_card(slot, sc)
nubus_slot *slot;
struct ae_softc *sc;
{
nubus_dir dir;
nubus_dirent dirent;
nubus_type slottype;
nubus_get_main_dir(slot, &dir);
if (nubus_find_rsrc(slot, &dir, 0x80, &dirent) <= 0)
return 0;
nubus_get_dir_from_rsrc(slot, &dirent, &dir);
if (nubus_find_rsrc(slot, &dir, NUBUS_RSRC_TYPE, &dirent) <= 0)
return 0;
if (nubus_get_ind_data(slot, &dirent,
(caddr_t) &slottype, sizeof(nubus_type)) <= 0)
return 0;
if (slottype.category != NUBUS_CATEGORY_NETWORK)
return 0;
if (slottype.type != NUBUS_TYPE_ETHERNET)
return 0;
switch (slottype.drsw) {
case NUBUS_DRSW_3COM:
case NUBUS_DRSW_APPLE:
sc->vendor = AE_VENDOR_APPLE;
break;
case NUBUS_DRSW_ASANTE:
sc->vendor = AE_VENDOR_ASANTE;
break;
case NUBUS_DRSW_GATOR:
switch (slottype.drhw) {
default:
case NUBUS_DRHW_INTERLAN:
sc->vendor = AE_VENDOR_INTERLAN;
break;
case NUBUS_DRHW_KINETICS:
sc->vendor = AE_VENDOR_DAYNA;
break;
}
break;
default:
sc->vendor = AE_VENDOR_UNKNOWN;
return 0;
}
strncpy(sc->type_str, nubus_get_card_name(slot), INTERFACE_NAME_LEN);
sc->type_str[INTERFACE_NAME_LEN-1] = '\0';
return 1;
}
int
ae_size_card_memory(sc)
struct ae_softc *sc;
{
u_short *p;
u_short i1, i2, i3, i4;
int size;
p = (u_short *) sc->mem_start;
/*
* very simple size memory, assuming it's installed in 8k
* banks; also assume it will generally mirror in upper banks
* if not installed.
*/
i1 = (8192 * 0) / 2;
i2 = (8192 * 1) / 2;
i3 = (8192 * 2) / 2;
i4 = (8192 * 3) / 2;
p[i1] = 0x1111;
p[i2] = 0x2222;
p[i3] = 0x3333;
p[i4] = 0x4444;
if (p[i1] == 0x1111 && p[i2] == 0x2222 &&
p[i3] == 0x3333 && p[i4] == 0x4444)
return 8192 * 4;
if ((p[i1] == 0x1111 && p[i2] == 0x2222) ||
(p[i1] == 0x3333 && p[i2] == 0x4444))
return 8192 * 2;
if (p[i1] == 0x1111 || p[i1] == 0x4444)
return 8192;
return 0;
}
int
aeprobe(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct ae_softc *sc = match;
nubus_slot *nu = (nubus_slot *) aux;
caddr_t addr;
int i, memsize;
int flags = 0;
if (ae_id_card(nu, sc) <= 0)
return 0;
sc->regs_rev = 0;
sc->mem_wr_short = 0;
addr = (caddr_t) NUBUS_SLOT_TO_BASE(nu->slot);
switch (sc->vendor) {
case AE_VENDOR_INTERLAN:
sc->nic_addr = addr + GC_NIC_OFFSET;
sc->rom_addr = addr + GC_ROM_OFFSET;
sc->mem_start = addr + GC_DATA_OFFSET;
if ((memsize = ae_size_card_memory(sc)) == 0)
return 0;
/* reset the NIC chip */
*((caddr_t) addr + GC_RESET_OFFSET) = (char) zero;
/* Get station address from on-board ROM */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 4);
break;
case AE_VENDOR_ASANTE:
/* memory writes require *(u_short *) */
sc->mem_wr_short = 1;
/* otherwise, pretend to be an apple card (fall through) */
case AE_VENDOR_APPLE:
sc->regs_rev = 1;
sc->nic_addr = addr + AE_NIC_OFFSET;
sc->rom_addr = addr + AE_ROM_OFFSET;
sc->mem_start = addr + AE_DATA_OFFSET;
if ((memsize = ae_size_card_memory(sc)) == 0)
return (0);
/* Get station address from on-board ROM */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2);
break;
case AE_VENDOR_DAYNA:
printf("We think we are a Dayna card, but ");
sc->nic_addr = addr + DP_NIC_OFFSET;
sc->rom_addr = addr + DP_ROM_OFFSET;
sc->mem_start = addr + DP_DATA_OFFSET;
memsize = 8192;
/* Get station address from on-board ROM */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
sc->sc_arpcom.ac_enaddr[i] = *(sc->rom_addr + i * 2);
printf("it is dangerous to continue.\n");
return (0); /* Since we don't work yet... */
break;
default:
return (0);
break;
}
sc->cr_proto = ED_CR_RD2;
/* Allocate one xmit buffer if < 16k, two buffers otherwise. */
if ((memsize < 16384) || (flags & AE_FLAGS_NO_DOUBLE_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->tx_page_start = 0;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + (memsize >> ED_PAGE_SHIFT);
sc->mem_ring = sc->mem_start + (sc->rec_page_start << ED_PAGE_SHIFT);
sc->mem_size = memsize;
sc->mem_end = sc->mem_start + memsize;
/* Now zero memory and verify that it is clear. */
bszero((u_short *) sc->mem_start, memsize / 2);
for (i = 0; i < memsize; ++i)
if (sc->mem_start[i]) {
printf("%s: failed to clear shared memory at %x - check configuration\n",
sc->sc_dev.dv_xname,
sc->mem_start + i);
return (0);
}
bcopy(nu, &sc->sc_slot, sizeof(nubus_slot));
return (1);
}
/*
* Install interface into kernel networking data structures
*/
void
aeattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ae_softc *sc = (void *) self;
struct nubus_hw *nu = aux;
struct cfdata *cf = sc->sc_dev.dv_cfdata;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
/* Set interface to stopped condition (reset). */
ae_stop(sc);
/* Initialize ifnet structure. */
ifp->if_unit = sc->sc_dev.dv_unit;
ifp->if_name = aecd.cd_name;
ifp->if_start = ae_start;
ifp->if_ioctl = ae_ioctl;
ifp->if_watchdog = ae_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp);
/* Print additional info when attached. */
printf(": address %s, ", ether_sprintf(sc->sc_arpcom.ac_enaddr));
printf("type %s, %dk mem.\n", sc->type_str, sc->mem_size / 1024);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
/* make sure interrupts are vectored to us */
add_nubus_intr(sc->sc_slot.slot, aeintr, sc);
/*
* XXX -- enable nubus interrupts here. Should be done elsewhere,
* but that currently breaks with some nubus video cards'
* interrupts. So we only enable nubus interrupts if we
* have an ethernet card... i.e., we do it here.
*/
enable_nubus_intr();
}
/*
* Reset interface.
*/
void
ae_reset(sc)
struct ae_softc *sc;
{
int s;
s = splimp();
ae_stop(sc);
ae_init(sc);
splx(s);
}
/*
* Take interface offline.
*/
void
ae_stop(sc)
struct ae_softc *sc;
{
int n = 5000;
/* Stop everything on the interface, and select page 0 registers. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to generate
* an interrupt after a transmit has been started on it.
*/
static int aeintr_ctr = 0;
void
ae_watchdog(unit)
int unit;
{
struct ae_softc *sc = aecd.cd_devs[unit];
#if 1
/*
* This is a kludge! The via code seems to miss slot interrupts
* sometimes. This kludges around that by calling the handler
* by hand if the watchdog is activated. -- XXX (akb)
*/
int i;
i = aeintr_ctr;
(*via2itab[1]) (1);
if (i != aeintr_ctr) {
log(LOG_ERR, "ae%d: device timeout, recovered\n", unit);
return;
}
#endif
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_arpcom.ac_if.if_oerrors;
ae_reset(sc);
}
/*
* Initialize device.
*/
void
ae_init(sc)
struct ae_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int i, s;
u_char command;
u_char mcaf[8];
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
s = splimp();
/* Reset transmitter flags. */
sc->xmit_busy = 0;
sc->sc_arpcom.ac_if.if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* Set interface for page 0, remote DMA complete, stopped. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=80x86, word-wide DMA xfers,
*/
NIC_PUT(sc, ED_P0_DCR,
ED_DCR_FT1 | ED_DCR_WTS | ED_DCR_LS);
/* Clear remote byte count registers. */
NIC_PUT(sc, ED_P0_RBCR0, 0);
NIC_PUT(sc, ED_P0_RBCR1, 0);
/* Tell RCR to do nothing for now. */
NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON);
/* Place NIC in internal loopback mode. */
NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0);
/* Initialize receive buffer ring. */
NIC_PUT(sc, ED_P0_TPSR, sc->rec_page_start);
NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start);
NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop);
NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
NIC_PUT(sc, ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
NIC_PUT(sc, ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
ED_IMR_OVWE);
/* Program command register for page 1. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/* Copy out our station address. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]);
/* Set multicast filter on chip. */
ae_getmcaf(&sc->sc_arpcom, mcaf);
for (i = 0; i < 8; i++)
NIC_PUT(sc, ED_P1_MAR0 + i, mcaf[i]);
/*
* Set current page pointer to one page after the boundary pointer, as
* recommended in the National manual.
*/
sc->next_packet = sc->rec_page_start + 1;
NIC_PUT(sc, ED_P1_CURR, sc->next_packet);
/* Program command register for page 0. */
NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
i = ED_RCR_AB | ED_RCR_AM;
if (ifp->if_flags & IFF_PROMISC) {
/*
* Set promiscuous mode. Multicast filter was set earlier so
* that we should receive all multicast packets.
*/
i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
}
NIC_PUT(sc, ED_P0_RCR, i);
/* Take interface out of loopback. */
NIC_PUT(sc, ED_P0_TCR, 0);
/* Fire up the interface. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set 'running' flag, and clear output active flag. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* ...and attempt to start output. */
ae_start(ifp);
splx(s);
}
/*
* This routine actually starts the transmission on the interface.
*/
static inline void
ae_xmit(sc)
struct ae_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_short len;
len = sc->txb_len[sc->txb_next_tx];
/* Set NIC for page 0 register access. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set TX buffer start page. */
NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/* Set TX length. */
NIC_PUT(sc, ED_P0_TBCR0, len);
NIC_PUT(sc, ED_P0_TBCR1, len >> 8);
/* Set page 0, remote DMA complete, transmit packet, and *start*. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
sc->xmit_busy = 1;
/* Point to next transmit buffer slot and wrap if necessary. */
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/* Set a timer just in case we never hear from the board again. */
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splimp _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
ae_start(ifp)
struct ifnet *ifp;
{
struct ae_softc *sc = aecd.cd_devs[ifp->if_unit];
struct mbuf *m0, *m;
caddr_t buffer;
int len;
outloop:
/*
* First, see if there are buffered packets and an idle transmitter -
* should never happen at this point.
*/
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
printf("%s: packets buffered, but transmitter idle\n",
sc->sc_dev.dv_xname);
ae_xmit(sc);
}
/* See if there is room to put another packet in the buffer. */
if (sc->txb_inuse == sc->txb_cnt) {
/* No room. Indicate this to the outside world and exit. */
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
if (m == 0) {
/*
* We are using the !OACTIVE flag to indicate to the outside
* world that we can accept an additional packet rather than
* that the transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't filled all the
* buffers with data then we still want to accept more.
*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/* Copy the mbuf chain into the transmit buffer. */
m0 = m;
/* txb_new points to next open buffer slot. */
buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
len = ae_put(sc, m, buffer);
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
sc->txb_inuse++;
/* Point to next buffer slot and wrap if necessary. */
if (++sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
if (sc->xmit_busy == 0)
ae_xmit(sc);
#if NBPFILTER > 0
/* Tap off here if there is a BPF listener. */
if (sc->sc_arpcom.ac_if.if_bpf)
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
#endif
m_freem(m0);
/* Loop back to the top to possibly buffer more packets. */
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ae_rint(sc)
struct ae_softc *sc;
{
u_char boundary, current;
u_short len;
u_char nlen;
struct ae_ring packet_hdr;
caddr_t packet_ptr;
loop:
/* Set NIC to page 1 registers to get 'current' pointer. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
* it points to where new data has been buffered. The 'CURR' (current)
* register points to the logical end of the ring-buffer - i.e. it
* points to where additional new data will be added. We loop here
* until the logical beginning equals the logical end (or in other
* words, until the ring-buffer is empty).
*/
current = NIC_GET(sc, ED_P1_CURR);
if (sc->next_packet == current)
return;
/* Set NIC to page 0 registers to update boundary register. */
NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
do {
/* Get pointer to this buffer's header structure. */
packet_ptr = sc->mem_ring +
((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
packet_hdr = *(struct ae_ring *) packet_ptr;
packet_hdr.count =
((packet_hdr.count >> 8) & 0xff) |
((packet_hdr.count & 0xff) << 8);
len = packet_hdr.count;
/*
* Try do deal with old, buggy chips that sometimes duplicate
* the low byte of the length into the high byte. We do this
* by simply ignoring the high byte of the length and always
* recalculating it.
*
* NOTE: sc->next_packet is pointing at the current packet.
*/
if (packet_hdr.next_packet >= sc->next_packet)
nlen = (packet_hdr.next_packet - sc->next_packet);
else
nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet));
--nlen;
if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
--nlen;
len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
#ifdef DIAGNOSTIC
if (len != packet_hdr.count) {
printf("%s: length does not match next packet pointer\n",
sc->sc_dev.dv_xname);
printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n",
sc->sc_dev.dv_xname, packet_hdr.count, len,
sc->rec_page_start, sc->next_packet, current,
packet_hdr.next_packet, sc->rec_page_stop);
}
#endif
/*
* Be fairly liberal about what we allow as a "reasonable"
* length so that a [crufty] packet will make it to BPF (and
* can thus be analyzed). Note that all that is really
* important is that we have a length that will fit into one
* mbuf cluster or less; the upper layer protocols can then
* figure out the length from their own length field(s).
*/
if (len <= MCLBYTES &&
packet_hdr.next_packet >= sc->rec_page_start &&
packet_hdr.next_packet < sc->rec_page_stop) {
/* Go get packet. */
ae_get_packet(sc, packet_ptr + sizeof(struct ae_ring),
len - sizeof(struct ae_ring));
++sc->sc_arpcom.ac_if.if_ipackets;
} else {
/* Really BAD. The ring pointers are corrupted. */
log(LOG_ERR,
"%s: NIC memory corrupt - invalid packet length %d\n",
sc->sc_dev.dv_xname, len);
++sc->sc_arpcom.ac_if.if_ierrors;
ae_reset(sc);
return;
}
/* Update next packet pointer. */
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundary pointer - being careful to keep it one
* buffer behind (as recommended by NS databook).
*/
boundary = sc->next_packet - 1;
if (boundary < sc->rec_page_start)
boundary = sc->rec_page_stop - 1;
NIC_PUT(sc, ED_P0_BNRY, boundary);
} while (sc->next_packet != current);
goto loop;
}
/* Ethernet interface interrupt processor. */
void
aeintr(sc)
struct ae_softc *sc;
{
u_char isr;
aeintr_ctr++;
/* Set NIC to page 0 registers. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
isr = NIC_GET(sc, ED_P0_ISR);
if (!isr)
return;
/* Loop until there are no more new interrupts. */
for (;;) {
/*
* Reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set.
* (Writing a '1' *clears* the bit.)
*/
NIC_PUT(sc, ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow the
* automatic mechanisms of TCP to backoff the flow. Of
* course, with UDP we're screwed, but this is expected
* when a network is heavily loaded.
*/
(void) NIC_GET(sc, ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16).
*/
if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the P0_NCR
* will indicate 0, and the TSR_ABT is
* set.
*/
collisions = 16;
}
/* Update output errors counter. */
++sc->sc_arpcom.ac_if.if_oerrors;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
++sc->sc_arpcom.ac_if.if_opackets;
}
/* Reset TX busy and output active flags. */
sc->xmit_busy = 0;
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
/* Clear watchdog timer. */
sc->sc_arpcom.ac_if.if_timer = 0;
/*
* Add in total number of collisions on last
* transmission.
*/
sc->sc_arpcom.ac_if.if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while not
* actually transmitting).
* If data is ready to transmit, start it transmitting,
* otherwise defer until after handling receiver.
*/
if (sc->txb_inuse && --sc->txb_inuse)
ae_xmit(sc);
}
/* Handle receiver interrupts. */
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
++sc->sc_arpcom.ac_if.if_ierrors;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"%s: warning - receiver ring buffer overrun\n",
sc->sc_dev.dv_xname);
#endif
/* Stop/reset/re-init NIC. */
ae_reset(sc);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
++sc->sc_arpcom.ac_if.if_ierrors;
#ifdef AE_DEBUG
printf("%s: receive error %x\n",
sc->sc_dev.dv_xname,
NIC_GET(sc, ED_P0_RSR));
#endif
}
/*
* Go get the packet(s)
* XXX - Doing this on an error is dubious
* because there shouldn't be any data to get
* (we've configured the interface to not
* accept packets with errors).
*/
ae_rint(sc);
}
}
/*
* If it looks like the transmitter can take more data, attempt
* to start output on the interface. This is done after
* handling the receiver to give the receiver priority.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
ae_start(&sc->sc_arpcom.ac_if);
/*
* Return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high).
*/
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) NIC_GET(sc, ED_P0_CNTR0);
(void) NIC_GET(sc, ED_P0_CNTR1);
(void) NIC_GET(sc, ED_P0_CNTR2);
}
isr = NIC_GET(sc, ED_P0_ISR);
if (!isr)
return;
}
}
/*
* Process an ioctl request. This code needs some work - it looks pretty ugly.
*/
int
ae_ioctl(ifp, command, data)
register struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ae_softc *sc = aecd.cd_devs[ifp->if_unit];
register struct ifaddr *ifa = (struct ifaddr *) data;
struct ifreq *ifr = (struct ifreq *) data;
int s, error = 0;
s = splimp();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
ae_init(sc);
arp_ifinit(&sc->sc_arpcom, ifa);
break;
#endif
#ifdef NS
/* XXX - This code is probably wrong. */
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *) (sc->sc_arpcom.ac_enaddr);
else
bcopy(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
/* Set new address. */
ae_init(sc);
break;
}
#endif
default:
ae_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
ae_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else
if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
ae_init(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
ae_stop(sc);
ae_init(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ae_stop(sc); /* XXX for ds_setmcaf? */
ae_init(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
void
ae_get_packet(sc, buf, len)
struct ae_softc *sc;
caddr_t buf;
u_short len;
{
struct ether_header *eh;
struct mbuf *m, *ae_ring_to_mbuf();
/* Allocate a header mbuf. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return;
m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
m->m_pkthdr.len = len;
m->m_len = 0;
/* The following silliness is to make NFS happy. */
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
/*
* The following assumes there is room for the ether header in the
* header mbuf.
*/
m->m_data += EOFF;
eh = mtod(m, struct ether_header *);
word_copy(buf, mtod(m, caddr_t), sizeof(struct ether_header));
buf += sizeof(struct ether_header);
m->m_len += sizeof(struct ether_header);
len -= sizeof(struct ether_header);
/* Pull packet off interface. */
if (ae_ring_to_mbuf(sc, buf, m, len) == 0) {
m_freem(m);
return;
}
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface. If so, hand off
* the raw packet to bpf.
*/
if (sc->sc_arpcom.ac_if.if_bpf) {
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* Fix up data start offset in mbuf to point past ether header. */
m_adj(m, sizeof(struct ether_header));
ether_input(&sc->sc_arpcom.ac_if, eh, m);
}
/*
* Supporting routines.
*/
/*
* Given a source and destination address, copy 'amount' of a packet from the
* ring buffer into a linear destination buffer. Takes into account ring-wrap.
*/
static inline caddr_t
ae_ring_copy(sc, src, dst, amount)
struct ae_softc *sc;
caddr_t src, dst;
u_short amount;
{
u_short tmp_amount;
/* Does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* Copy amount up to end of NIC memory. */
byte_copy(src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
byte_copy(src, dst, amount);
return (src + amount);
}
/*
* Copy data from receive buffer to end of mbuf chain allocate additional mbufs
* as needed. Return pointer to last mbuf in chain.
* sc = ae info (softc)
* src = pointer in ae ring buffer
* dst = pointer to last mbuf in mbuf chain to copy to
* amount = amount of data to copy
*/
struct mbuf *
ae_ring_to_mbuf(sc, src, dst, total_len)
struct ae_softc *sc;
caddr_t src;
struct mbuf *dst;
u_short total_len;
{
register struct mbuf *m = dst;
while (total_len) {
register u_short amount = min(total_len, M_TRAILINGSPACE(m));
if (amount == 0) {
/*
* No more data in this mbuf; alloc another.
*
* If there is enough data for an mbuf cluster, attempt
* to allocate one of those, otherwise, a regular mbuf
* will do.
* Note that a regular mbuf is always required, even if
* we get a cluster - getting a cluster does not
* allocate any mbufs, and one is needed to assign the
* cluster to. The mbuf that has a cluster extension
* can not be used to contain data - only the cluster
* can contain data.
*/
dst = m;
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
if (total_len >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
dst->m_next = m;
amount = min(total_len, M_TRAILINGSPACE(m));
}
src = ae_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
amount);
m->m_len += amount;
total_len -= amount;
}
return (m);
}
/*
* Compute the multicast address filter from the list of multicast addresses we
* need to listen to.
*/
void
ae_getmcaf(ac, af)
struct arpcom *ac;
u_char *af;
{
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
for (i = 0; i < 8; i++)
af[i] = 0xff;
return;
}
for (i = 0; i < 8; i++)
af[i] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
for (i = 0; i < 8; i++)
af[i] = 0xff;
return;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
crc <<= 1;
crc ^= 0x04c11db6 | 1;
} else
crc <<= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 3] |= 1 << (crc & 0x7);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}
/*
* Copy packet from mbuf to the board memory
*
* Currently uses an extra buffer/extra memory copy,
* unless the whole packet fits in one mbuf.
*
*/
u_short
ae_put(sc, m, buf)
struct ae_softc *sc;
struct mbuf *m;
caddr_t buf;
{
u_char *data, savebyte[2];
int len, wantbyte;
u_short totlen = 0;
wantbyte = 0;
for (; m != 0; m = m->m_next) {
data = mtod(m, u_char *);
len = m->m_len;
totlen += len;
if (len > 0) {
/* Finish the last word. */
if (wantbyte) {
savebyte[1] = *data;
word_copy(savebyte, buf, 2);
buf += 2;
data++;
len--;
wantbyte = 0;
}
/* Output contiguous words. */
if (len > 1) {
word_copy(data, buf, len);
buf += len & ~1;
data += len & ~1;
len &= 1;
}
/* Save last byte, if necessary. */
if (len == 1) {
savebyte[0] = *data;
wantbyte = 1;
}
}
}
if (wantbyte) {
savebyte[1] = 0;
word_copy(savebyte, buf, 2);
}
return (totlen);
}