NetBSD/sys/dev/usb/if_otus.c

2905 lines
87 KiB
C

/* $NetBSD: if_otus.c,v 1.9 2010/12/02 17:38:05 christos Exp $ */
/* $OpenBSD: if_otus.c,v 1.18 2010/08/27 17:08:00 jsg Exp $ */
/*-
* Copyright (c) 2009 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Driver for Atheros AR9001U chipset.
* http://www.atheros.com/pt/bulletins/AR9001USBBulletin.pdf
*/
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/if_otusreg.h>
#include <dev/usb/if_otusvar.h>
#ifdef USB_DEBUG
#define OTUS_DEBUG
#endif
#ifdef OTUS_DEBUG
int otus_debug = 0;
#define DPRINTFN(n, ...) \
do { if (otus_debug >= (n)) printf(__VA_ARGS__); } while (0)
#else
#define DPRINTFN(n, ...) \
do { } while (0)
#endif
#define DPRINTF(...) \
DPRINTFN(1, __VA_ARGS__)
Static int otus_match(device_t, cfdata_t, void *);
Static void otus_attach(device_t, device_t, void *);
Static int otus_detach(struct device *, int);
Static int otus_activate(device_t, devact_t);
Static void otus_attachhook(device_t);
Static void otus_get_chanlist(struct otus_softc *);
Static int otus_load_firmware(struct otus_softc *, const char *,
uint32_t);
Static int otus_open_pipes(struct otus_softc *);
Static void otus_close_pipes(struct otus_softc *);
Static int otus_alloc_tx_cmd(struct otus_softc *);
Static void otus_free_tx_cmd(struct otus_softc *);
Static int otus_alloc_tx_data_list(struct otus_softc *);
Static void otus_free_tx_data_list(struct otus_softc *);
Static int otus_alloc_rx_data_list(struct otus_softc *);
Static void otus_free_rx_data_list(struct otus_softc *);
Static void otus_next_scan(void *);
Static void otus_task(void *);
Static void otus_do_async(struct otus_softc *,
void (*)(struct otus_softc *, void *), void *, int);
Static int otus_newstate(struct ieee80211com *, enum ieee80211_state,
int);
Static void otus_newstate_cb(struct otus_softc *, void *);
Static int otus_cmd(struct otus_softc *, uint8_t, const void *, int,
void *);
Static void otus_write(struct otus_softc *, uint32_t, uint32_t);
Static int otus_write_barrier(struct otus_softc *);
Static struct ieee80211_node *otus_node_alloc(struct ieee80211_node_table *);
Static int otus_media_change(struct ifnet *);
Static int otus_read_eeprom(struct otus_softc *);
Static void otus_newassoc(struct ieee80211_node *, int);
Static void otus_intr(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static void otus_cmd_rxeof(struct otus_softc *, uint8_t *, int);
Static void otus_sub_rxeof(struct otus_softc *, uint8_t *, int);
Static void otus_rxeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static void otus_txeof(usbd_xfer_handle, usbd_private_handle, usbd_status);
Static int otus_tx(struct otus_softc *, struct mbuf *,
struct ieee80211_node *);
Static void otus_start(struct ifnet *);
Static void otus_watchdog(struct ifnet *);
Static int otus_ioctl(struct ifnet *, u_long, void *);
Static int otus_set_multi(struct otus_softc *);
#ifdef HAVE_EDCA
Static void otus_updateedca(struct ieee80211com *);
Static void otus_updateedca_cb(struct otus_softc *, void *);
#endif
Static void otus_updateedca_cb_locked(struct otus_softc *);
Static void otus_updateslot(struct ifnet *);
Static void otus_updateslot_cb(struct otus_softc *, void *);
Static void otus_updateslot_cb_locked(struct otus_softc *);
Static int otus_init_mac(struct otus_softc *);
Static uint32_t otus_phy_get_def(struct otus_softc *, uint32_t);
Static int otus_set_board_values(struct otus_softc *,
struct ieee80211_channel *);
Static int otus_program_phy(struct otus_softc *,
struct ieee80211_channel *);
Static int otus_set_rf_bank4(struct otus_softc *,
struct ieee80211_channel *);
Static void otus_get_delta_slope(uint32_t, uint32_t *, uint32_t *);
Static int otus_set_chan(struct otus_softc *, struct ieee80211_channel *,
int);
#ifdef notyet
Static int otus_set_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
Static void otus_set_key_cb(struct otus_softc *, void *);
Static void otus_delete_key(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_key *);
Static void otus_delete_key_cb(struct otus_softc *, void *);
#endif /* notyet */
Static void otus_calibrate_to(void *);
Static int otus_set_bssid(struct otus_softc *, const uint8_t *);
Static int otus_set_macaddr(struct otus_softc *, const uint8_t *);
#ifdef notyet
Static void otus_led_newstate_type1(struct otus_softc *);
Static void otus_led_newstate_type2(struct otus_softc *);
#endif /* notyet */
Static void otus_led_newstate_type3(struct otus_softc *);
Static int otus_init(struct ifnet *);
Static void otus_stop(struct ifnet *);
/* List of supported channels. */
static const uint8_t ar_chans[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124,
128, 132, 136, 140, 149, 153, 157, 161, 165, 34, 38, 42, 46
};
/*
* This data is automatically generated from the "otus.ini" file.
* It is stored in a different way though, to reduce kernel's .rodata
* section overhead (5.1KB instead of 8.5KB).
*/
/* NB: apply AR_PHY(). */
static const uint16_t ar5416_phy_regs[] = {
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008,
0x009, 0x00a, 0x00b, 0x00c, 0x00d, 0x00e, 0x00f, 0x010, 0x011,
0x012, 0x013, 0x014, 0x015, 0x016, 0x017, 0x018, 0x01a, 0x01b,
0x040, 0x041, 0x042, 0x043, 0x045, 0x046, 0x047, 0x048, 0x049,
0x04a, 0x04b, 0x04d, 0x04e, 0x04f, 0x051, 0x052, 0x053, 0x055,
0x056, 0x058, 0x059, 0x05c, 0x05d, 0x05e, 0x05f, 0x060, 0x061,
0x062, 0x063, 0x064, 0x065, 0x066, 0x067, 0x068, 0x069, 0x06a,
0x06b, 0x06c, 0x06d, 0x070, 0x071, 0x072, 0x073, 0x074, 0x075,
0x076, 0x077, 0x078, 0x079, 0x07a, 0x07b, 0x07c, 0x07f, 0x080,
0x081, 0x082, 0x083, 0x084, 0x085, 0x086, 0x087, 0x088, 0x089,
0x08a, 0x08b, 0x08c, 0x08d, 0x08e, 0x08f, 0x090, 0x091, 0x092,
0x093, 0x094, 0x095, 0x096, 0x097, 0x098, 0x099, 0x09a, 0x09b,
0x09c, 0x09d, 0x09e, 0x09f, 0x0a0, 0x0a1, 0x0a2, 0x0a3, 0x0a4,
0x0a5, 0x0a6, 0x0a7, 0x0a8, 0x0a9, 0x0aa, 0x0ab, 0x0ac, 0x0ad,
0x0ae, 0x0af, 0x0b0, 0x0b1, 0x0b2, 0x0b3, 0x0b4, 0x0b5, 0x0b6,
0x0b7, 0x0b8, 0x0b9, 0x0ba, 0x0bb, 0x0bc, 0x0bd, 0x0be, 0x0bf,
0x0c0, 0x0c1, 0x0c2, 0x0c3, 0x0c4, 0x0c5, 0x0c6, 0x0c7, 0x0c8,
0x0c9, 0x0ca, 0x0cb, 0x0cc, 0x0cd, 0x0ce, 0x0cf, 0x0d0, 0x0d1,
0x0d2, 0x0d3, 0x0d4, 0x0d5, 0x0d6, 0x0d7, 0x0d8, 0x0d9, 0x0da,
0x0db, 0x0dc, 0x0dd, 0x0de, 0x0df, 0x0e0, 0x0e1, 0x0e2, 0x0e3,
0x0e4, 0x0e5, 0x0e6, 0x0e7, 0x0e8, 0x0e9, 0x0ea, 0x0eb, 0x0ec,
0x0ed, 0x0ee, 0x0ef, 0x0f0, 0x0f1, 0x0f2, 0x0f3, 0x0f4, 0x0f5,
0x0f6, 0x0f7, 0x0f8, 0x0f9, 0x0fa, 0x0fb, 0x0fc, 0x0fd, 0x0fe,
0x0ff, 0x100, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, 0x109,
0x10a, 0x10b, 0x10c, 0x10d, 0x10e, 0x10f, 0x13c, 0x13d, 0x13e,
0x13f, 0x280, 0x281, 0x282, 0x283, 0x284, 0x285, 0x286, 0x287,
0x288, 0x289, 0x28a, 0x28b, 0x28c, 0x28d, 0x28e, 0x28f, 0x290,
0x291, 0x292, 0x293, 0x294, 0x295, 0x296, 0x297, 0x298, 0x299,
0x29a, 0x29b, 0x29d, 0x29e, 0x29f, 0x2c0, 0x2c1, 0x2c2, 0x2c3,
0x2c4, 0x2c5, 0x2c6, 0x2c7, 0x2c8, 0x2c9, 0x2ca, 0x2cb, 0x2cc,
0x2cd, 0x2ce, 0x2cf, 0x2d0, 0x2d1, 0x2d2, 0x2d3, 0x2d4, 0x2d5,
0x2d6, 0x2e2, 0x2e3, 0x2e4, 0x2e5, 0x2e6, 0x2e7, 0x2e8, 0x2e9,
0x2ea, 0x2eb, 0x2ec, 0x2ed, 0x2ee, 0x2ef, 0x2f0, 0x2f1, 0x2f2,
0x2f3, 0x2f4, 0x2f5, 0x2f6, 0x2f7, 0x2f8, 0x412, 0x448, 0x458,
0x683, 0x69b, 0x812, 0x848, 0x858, 0xa83, 0xa9b, 0xc19, 0xc57,
0xc5a, 0xc6f, 0xe9c, 0xed7, 0xed8, 0xed9, 0xeda, 0xedb, 0xedc,
0xedd, 0xede, 0xedf, 0xee0, 0xee1
};
static const uint32_t ar5416_phy_vals_5ghz_20mhz[] = {
0x00000007, 0x00000300, 0x00000000, 0xad848e19, 0x7d14e000,
0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e,
0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007,
0x00200400, 0x206a002e, 0x1372161e, 0x001a6a65, 0x1284233c,
0x6c48b4e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd10,
0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x000007d0, 0x00000118, 0x10000fff, 0x0510081c,
0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f,
0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188,
0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000,
0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000,
0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8,
0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042,
0x00000000, 0x00000040, 0x00000080, 0x000001a1, 0x000001e1,
0x00000021, 0x00000061, 0x00000168, 0x000001a8, 0x000001e8,
0x00000028, 0x00000068, 0x00000189, 0x000001c9, 0x00000009,
0x00000049, 0x00000089, 0x00000170, 0x000001b0, 0x000001f0,
0x00000030, 0x00000070, 0x00000191, 0x000001d1, 0x00000011,
0x00000051, 0x00000091, 0x000001b8, 0x000001f8, 0x00000038,
0x00000078, 0x00000199, 0x000001d9, 0x00000019, 0x00000059,
0x00000099, 0x000000d9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000,
0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005,
0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c,
0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013,
0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a,
0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021,
0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028,
0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d,
0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000008, 0x00000440, 0xd6be4788, 0x012e8160,
0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6,
0x00000400, 0x000009b5, 0x00000000, 0x00000108, 0x3f3f3f3f,
0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc,
0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01,
0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a9caa,
0x1ce739ce, 0x051701ce, 0x18010000, 0x30032602, 0x48073e06,
0x560b4c0a, 0x641a600f, 0x7a4f6e1b, 0x8c5b7e5a, 0x9d0f96cf,
0xb51fa69f, 0xcb3fbd07, 0x0000d7bf, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f,
0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce,
0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f,
0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a65, 0x0510001c,
0x00009b40, 0x012e8160, 0x09249126, 0x00180a65, 0x0510001c,
0x00009b40, 0x012e8160, 0x09249126, 0x0001c600, 0x004b6a8e,
0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207,
0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803,
0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0
};
#ifdef notyet
static const uint32_t ar5416_phy_vals_5ghz_40mhz[] = {
0x00000007, 0x000003c4, 0x00000000, 0xad848e19, 0x7d14e000,
0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e,
0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007,
0x00200400, 0x206a002e, 0x13721c1e, 0x001a6a65, 0x1284233c,
0x6c48b4e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd10,
0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x000007d0, 0x00000230, 0x10000fff, 0x0510081c,
0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f,
0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188,
0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000,
0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000,
0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8,
0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042,
0x00000000, 0x00000040, 0x00000080, 0x000001a1, 0x000001e1,
0x00000021, 0x00000061, 0x00000168, 0x000001a8, 0x000001e8,
0x00000028, 0x00000068, 0x00000189, 0x000001c9, 0x00000009,
0x00000049, 0x00000089, 0x00000170, 0x000001b0, 0x000001f0,
0x00000030, 0x00000070, 0x00000191, 0x000001d1, 0x00000011,
0x00000051, 0x00000091, 0x000001b8, 0x000001f8, 0x00000038,
0x00000078, 0x00000199, 0x000001d9, 0x00000019, 0x00000059,
0x00000099, 0x000000d9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000,
0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005,
0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c,
0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013,
0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a,
0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021,
0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028,
0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d,
0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000008, 0x00000440, 0xd6be4788, 0x012e8160,
0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6,
0x00000400, 0x000009b5, 0x00000000, 0x00000210, 0x3f3f3f3f,
0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc,
0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01,
0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a9caa,
0x1ce739ce, 0x051701ce, 0x18010000, 0x30032602, 0x48073e06,
0x560b4c0a, 0x641a600f, 0x7a4f6e1b, 0x8c5b7e5a, 0x9d0f96cf,
0xb51fa69f, 0xcb3fbcbf, 0x0000d7bf, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f,
0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce,
0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f,
0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a65, 0x0510001c,
0x00009b40, 0x012e8160, 0x09249126, 0x00180a65, 0x0510001c,
0x00009b40, 0x012e8160, 0x09249126, 0x0001c600, 0x004b6a8e,
0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207,
0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803,
0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0
};
#endif
#ifdef notyet
static const uint32_t ar5416_phy_vals_2ghz_40mhz[] = {
0x00000007, 0x000003c4, 0x00000000, 0xad848e19, 0x7d14e000,
0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e,
0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007,
0x00200400, 0x206a002e, 0x13721c24, 0x00197a68, 0x1284233c,
0x6c48b0e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd20,
0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000898, 0x00000268, 0x10000fff, 0x0510001c,
0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f,
0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188,
0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000,
0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000,
0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8,
0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042,
0x00000000, 0x00000040, 0x00000080, 0x00000141, 0x00000181,
0x000001c1, 0x00000001, 0x00000041, 0x000001a8, 0x000001e8,
0x00000028, 0x00000068, 0x000000a8, 0x00000169, 0x000001a9,
0x000001e9, 0x00000029, 0x00000069, 0x00000190, 0x000001d0,
0x00000010, 0x00000050, 0x00000090, 0x00000151, 0x00000191,
0x000001d1, 0x00000011, 0x00000051, 0x00000198, 0x000001d8,
0x00000018, 0x00000058, 0x00000098, 0x00000159, 0x00000199,
0x000001d9, 0x00000019, 0x00000059, 0x00000099, 0x000000d9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000,
0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005,
0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c,
0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013,
0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a,
0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021,
0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028,
0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d,
0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x0000000e, 0x00000440, 0xd03e4788, 0x012a8160,
0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6,
0x00000400, 0x000009b5, 0x00000000, 0x00000210, 0x3f3f3f3f,
0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc,
0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01,
0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a7caa,
0x1ce739ce, 0x051701ce, 0x18010000, 0x2e032402, 0x4a0a3c06,
0x621a540b, 0x764f6c1b, 0x845b7a5a, 0x950f8ccf, 0xa5cf9b4f,
0xbddfaf1f, 0xd1ffc93f, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f,
0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce,
0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f,
0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a68, 0x0510001c,
0x00009b40, 0x012a8160, 0x09249126, 0x00180a68, 0x0510001c,
0x00009b40, 0x012a8160, 0x09249126, 0x0001c600, 0x004b6a8e,
0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207,
0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803,
0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0
};
#endif
static const uint32_t ar5416_phy_vals_2ghz_20mhz[] = {
0x00000007, 0x00000300, 0x00000000, 0xad848e19, 0x7d14e000,
0x9c0a9f6b, 0x00000090, 0x00000000, 0x02020200, 0x00000e0e,
0x0a020001, 0x0000a000, 0x00000000, 0x00000e0e, 0x00000007,
0x00200400, 0x206a002e, 0x137216a4, 0x00197a68, 0x1284233c,
0x6c48b0e4, 0x00000859, 0x7ec80d2e, 0x31395c5e, 0x0004dd20,
0x409a4190, 0x050cb081, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000898, 0x00000134, 0x10000fff, 0x0510001c,
0xd0058a15, 0x00000001, 0x00000004, 0x3f3f3f3f, 0x3f3f3f3f,
0x0000007f, 0xdfb81020, 0x9280b212, 0x00020028, 0x5d50e188,
0x00081fff, 0x00009b40, 0x00001120, 0x190fb515, 0x00000000,
0x00000001, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000007, 0x001fff00, 0x006f00c4, 0x03051000,
0x00000820, 0x038919be, 0x06336f77, 0x60f6532c, 0x08f186c8,
0x00046384, 0x00000000, 0x00000000, 0x00000000, 0x00000200,
0x64646464, 0x3c787878, 0x000000aa, 0x00000000, 0x00001042,
0x00000000, 0x00000040, 0x00000080, 0x00000141, 0x00000181,
0x000001c1, 0x00000001, 0x00000041, 0x000001a8, 0x000001e8,
0x00000028, 0x00000068, 0x000000a8, 0x00000169, 0x000001a9,
0x000001e9, 0x00000029, 0x00000069, 0x00000190, 0x000001d0,
0x00000010, 0x00000050, 0x00000090, 0x00000151, 0x00000191,
0x000001d1, 0x00000011, 0x00000051, 0x00000198, 0x000001d8,
0x00000018, 0x00000058, 0x00000098, 0x00000159, 0x00000199,
0x000001d9, 0x00000019, 0x00000059, 0x00000099, 0x000000d9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9,
0x000000f9, 0x000000f9, 0x000000f9, 0x000000f9, 0x00000000,
0x00000001, 0x00000002, 0x00000003, 0x00000004, 0x00000005,
0x00000008, 0x00000009, 0x0000000a, 0x0000000b, 0x0000000c,
0x0000000d, 0x00000010, 0x00000011, 0x00000012, 0x00000013,
0x00000014, 0x00000015, 0x00000018, 0x00000019, 0x0000001a,
0x0000001b, 0x0000001c, 0x0000001d, 0x00000020, 0x00000021,
0x00000022, 0x00000023, 0x00000024, 0x00000025, 0x00000028,
0x00000029, 0x0000002a, 0x0000002b, 0x0000002c, 0x0000002d,
0x00000030, 0x00000031, 0x00000032, 0x00000033, 0x00000034,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000035, 0x00000035, 0x00000035, 0x00000035,
0x00000035, 0x00000010, 0x0000001a, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x0000000e, 0x00000440, 0xd03e4788, 0x012a8160,
0x40806333, 0x00106c10, 0x009c4060, 0x1883800a, 0x018830c6,
0x00000400, 0x000009b5, 0x00000000, 0x00000108, 0x3f3f3f3f,
0x3f3f3f3f, 0x13c889af, 0x38490a20, 0x00007bb6, 0x0fff3ffc,
0x00000001, 0x0000a000, 0x00000000, 0x0cc75380, 0x0f0f0f01,
0xdfa91f01, 0x00418a11, 0x00000000, 0x09249126, 0x0a1a7caa,
0x1ce739ce, 0x051701ce, 0x18010000, 0x2e032402, 0x4a0a3c06,
0x621a540b, 0x764f6c1b, 0x845b7a5a, 0x950f8ccf, 0xa5cf9b4f,
0xbddfaf1f, 0xd1ffc93f, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x3fffffff, 0x3fffffff, 0x3fffffff, 0x0003ffff, 0x79a8aa1f,
0x08000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x1ce739ce, 0x000001ce,
0x00000007, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00000000, 0x3f3f3f3f, 0x3f3f3f3f, 0x3f3f3f3f,
0x00000000, 0x1ce739ce, 0x000000c0, 0x00180a68, 0x0510001c,
0x00009b40, 0x012a8160, 0x09249126, 0x00180a68, 0x0510001c,
0x00009b40, 0x012a8160, 0x09249126, 0x0001c600, 0x004b6a8e,
0x000003ce, 0x00181400, 0x00820820, 0x066c420f, 0x0f282207,
0x17601685, 0x1f801104, 0x37a00c03, 0x3fc40883, 0x57c00803,
0x5fd80682, 0x7fe00482, 0x7f3c7bba, 0xf3307ff0
};
/* NB: apply AR_PHY(). */
static const uint8_t ar5416_banks_regs[] = {
0x2c, 0x38, 0x2c, 0x3b, 0x2c, 0x38, 0x3c, 0x2c, 0x3a, 0x2c, 0x39,
0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,
0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,
0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,
0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c,
0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x2c, 0x38, 0x2c, 0x2c,
0x2c, 0x3c
};
static const uint32_t ar5416_banks_vals_5ghz[] = {
0x1e5795e5, 0x02008020, 0x02108421, 0x00000008, 0x0e73ff17,
0x00000420, 0x01400018, 0x000001a1, 0x00000001, 0x00000013,
0x00000002, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00004000, 0x00006c00, 0x00002c00, 0x00004800,
0x00004000, 0x00006000, 0x00001000, 0x00004000, 0x00007c00,
0x00007c00, 0x00007c00, 0x00007c00, 0x00007c00, 0x00087c00,
0x00007c00, 0x00005400, 0x00000c00, 0x00001800, 0x00007c00,
0x00006c00, 0x00006c00, 0x00007c00, 0x00002c00, 0x00003c00,
0x00003800, 0x00001c00, 0x00000800, 0x00000408, 0x00004c15,
0x00004188, 0x0000201e, 0x00010408, 0x00000801, 0x00000c08,
0x0000181e, 0x00001016, 0x00002800, 0x00004010, 0x0000081c,
0x00000115, 0x00000015, 0x00000066, 0x0000001c, 0x00000000,
0x00000004, 0x00000015, 0x0000001f, 0x00000000, 0x000000a0,
0x00000000, 0x00000040, 0x0000001c
};
static const uint32_t ar5416_banks_vals_2ghz[] = {
0x1e5795e5, 0x02008020, 0x02108421, 0x00000008, 0x0e73ff17,
0x00000420, 0x01c00018, 0x000001a1, 0x00000001, 0x00000013,
0x00000002, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
0x00000000, 0x00004000, 0x00006c00, 0x00002c00, 0x00004800,
0x00004000, 0x00006000, 0x00001000, 0x00004000, 0x00007c00,
0x00007c00, 0x00007c00, 0x00007c00, 0x00007c00, 0x00087c00,
0x00007c00, 0x00005400, 0x00000c00, 0x00001800, 0x00007c00,
0x00006c00, 0x00006c00, 0x00007c00, 0x00002c00, 0x00003c00,
0x00003800, 0x00001c00, 0x00000800, 0x00000408, 0x00004c15,
0x00004188, 0x0000201e, 0x00010408, 0x00000801, 0x00000c08,
0x0000181e, 0x00001016, 0x00002800, 0x00004010, 0x0000081c,
0x00000115, 0x00000015, 0x00000066, 0x0000001c, 0x00000000,
0x00000004, 0x00000015, 0x0000001f, 0x00000400, 0x000000a0,
0x00000000, 0x00000040, 0x0000001c
};
static const struct usb_devno otus_devs[] = {
{ USB_VENDOR_ACCTON, USB_PRODUCT_ACCTON_WN7512 },
{ USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_3CRUSBN275 },
{ USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_TG121N },
{ USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_AR9170 },
{ USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN612 },
{ USB_VENDOR_ATHEROS2, USB_PRODUCT_ATHEROS2_WN821NV2 },
{ USB_VENDOR_AVM, USB_PRODUCT_AVM_FRITZWLAN },
{ USB_VENDOR_CACE, USB_PRODUCT_CACE_AIRPCAPNX },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA130D1 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A1 },
{ USB_VENDOR_DLINK2, USB_PRODUCT_DLINK2_DWA160A2 },
{ USB_VENDOR_IODATA, USB_PRODUCT_IODATA_WNGDNUS2 },
{ USB_VENDOR_NEC, USB_PRODUCT_NEC_WL300NUG },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WN111V2 },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNA1000 },
{ USB_VENDOR_NETGEAR, USB_PRODUCT_NETGEAR_WNDA3100 },
{ USB_VENDOR_PLANEX2, USB_PRODUCT_PLANEX2_GW_US300 },
{ USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_O8494 },
{ USB_VENDOR_WISTRONNEWEB, USB_PRODUCT_WISTRONNEWEB_WNC0600 },
{ USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB81 },
{ USB_VENDOR_ZCOM, USB_PRODUCT_ZCOM_UB82 },
{ USB_VENDOR_ZYDAS, USB_PRODUCT_ZYDAS_ZD1221 },
{ USB_VENDOR_ZYXEL, USB_PRODUCT_ZYXEL_NWD271N }
};
CFATTACH_DECL_NEW(otus, sizeof(struct otus_softc), otus_match, otus_attach,
otus_detach, otus_activate);
Static int
otus_match(device_t parent, cfdata_t match, void *aux)
{
struct usb_attach_arg *uaa = aux;
DPRINTF("otus_match: vendor=0x%x product=0x%x revision=0x%x\n",
uaa->vendor, uaa->product, uaa->release);
return usb_lookup(otus_devs, uaa->vendor, uaa->product) != NULL ?
UMATCH_VENDOR_PRODUCT : UMATCH_NONE;
}
Static void
otus_attach(device_t parent, device_t self, void *aux)
{
struct otus_softc *sc = device_private(self);
struct usb_attach_arg *uaa = aux;
char *devinfop;
int error;
DPRINTF("otus_attach\n");
sc->sc_dev = self;
sc->sc_udev = uaa->device;
mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_task_mtx, MUTEX_DEFAULT, IPL_NET);
mutex_init(&sc->sc_write_mtx, MUTEX_DEFAULT, IPL_NONE);
devinfop = usbd_devinfo_alloc(sc->sc_udev, 0);
aprint_normal_dev(sc->sc_dev, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
usb_init_task(&sc->sc_task, otus_task, sc);
callout_init(&sc->sc_scan_to, 0);
callout_setfunc(&sc->sc_scan_to, otus_next_scan, sc);
callout_init(&sc->sc_calib_to, 0);
callout_setfunc(&sc->sc_calib_to, otus_calibrate_to, sc);
sc->sc_amrr.amrr_min_success_threshold = 1;
sc->sc_amrr.amrr_max_success_threshold = 10;
if (usbd_set_config_no(sc->sc_udev, 1, 0) != 0) {
aprint_error_dev(sc->sc_dev,
"could not set configuration no\n");
return;
}
/* Get the first interface handle. */
error = usbd_device2interface_handle(sc->sc_udev, 0, &sc->sc_iface);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not get interface handle\n");
return;
}
if ((error = otus_open_pipes(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not open pipes\n");
return;
}
/*
* We need the firmware loaded from file system to complete the attach.
*/
config_mountroot(self, otus_attachhook);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
}
Static int
otus_detach(device_t self, int flags)
{
struct otus_softc *sc = device_private(self);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
int s;
DPRINTF("otus_detach\n");
if (ifp != NULL) /* Failed to attach properly */
otus_stop(ifp);
s = splnet();
/* Wait for all queued asynchronous commands to complete. */
if (ifp != NULL) {
while (sc->sc_cmdq.queued > 0)
tsleep(&sc->sc_cmdq, 0, "sc_cmdq", 0);
}
usb_rem_task(sc->sc_udev, &sc->sc_task);
callout_destroy(&sc->sc_scan_to);
callout_destroy(&sc->sc_calib_to);
if (ifp && ifp->if_flags != 0) { /* if_attach() has been called. */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
bpf_detach(ifp);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
}
otus_close_pipes(sc);
splx(s);
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
mutex_destroy(&sc->sc_write_mtx);
mutex_destroy(&sc->sc_task_mtx);
mutex_destroy(&sc->sc_cmd_mtx);
return 0;
}
Static int
otus_activate(device_t self, devact_t act)
{
struct otus_softc *sc = device_private(self);
DPRINTF("otus_activate: %d\n", act);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(sc->sc_ic.ic_ifp);
return 0;
default:
return EOPNOTSUPP;
}
}
Static void
otus_attachhook(device_t arg)
{
struct otus_softc *sc = device_private(arg);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
usb_device_request_t req;
uint32_t in, out;
int error;
DPRINTF("otus_attachhook\n");
error = otus_load_firmware(sc, "otus-init", AR_FW_INIT_ADDR);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load init firmware\n");
return;
}
usbd_delay_ms(sc->sc_udev, 1000);
error = otus_load_firmware(sc, "otus-main", AR_FW_MAIN_ADDR);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load main firmware\n");
return;
}
/* Tell device that firmware transfer is complete. */
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AR_FW_DOWNLOAD_COMPLETE;
USETW(req.wValue, 0);
USETW(req.wIndex, 0);
USETW(req.wLength, 0);
if (usbd_do_request(sc->sc_udev, &req, NULL) != 0) {
aprint_error_dev(sc->sc_dev,
"firmware initialization failed\n");
return;
}
/* Send an ECHO command to check that everything is settled. */
in = 0xbadc0ffe;
if (otus_cmd(sc, AR_CMD_ECHO, &in, sizeof(in), &out) != 0) {
aprint_error_dev(sc->sc_dev, "echo command failed\n");
return;
}
if (in != out) {
aprint_error_dev(sc->sc_dev,
"echo reply mismatch: 0x%08x!=0x%08x\n", in, out);
return;
}
/* Read entire EEPROM. */
if (otus_read_eeprom(sc) != 0) {
aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
return;
}
sc->sc_txmask = sc->sc_eeprom.baseEepHeader.txMask;
sc->sc_rxmask = sc->sc_eeprom.baseEepHeader.rxMask;
sc->sc_capflags = sc->sc_eeprom.baseEepHeader.opCapFlags;
IEEE80211_ADDR_COPY(ic->ic_myaddr, sc->sc_eeprom.baseEepHeader.macAddr);
sc->sc_led_newstate = otus_led_newstate_type3; /* XXX */
aprint_normal_dev(sc->sc_dev,
"MAC/BBP AR9170, RF AR%X, MIMO %dT%dR, address %s\n",
(sc->sc_capflags & AR5416_OPFLAGS_11A) ?
0x9104 : ((sc->sc_txmask == 0x5) ? 0x9102 : 0x9101),
(sc->sc_txmask == 0x5) ? 2 : 1, (sc->sc_rxmask == 0x5) ? 2 : 1,
ether_sprintf(ic->ic_myaddr));
/*
* Setup the 802.11 device.
*/
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_WPA; /* WPA1+WPA2 */
if (sc->sc_eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
/* Set supported .11b and .11g rates. */
ic->ic_sup_rates[IEEE80211_MODE_11B] =
ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] =
ieee80211_std_rateset_11g;
}
if (sc->sc_eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
/* Set supported .11a rates. */
ic->ic_sup_rates[IEEE80211_MODE_11A] =
ieee80211_std_rateset_11a;
}
/* Build the list of supported channels. */
otus_get_chanlist(sc);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = otus_init;
ifp->if_ioctl = otus_ioctl;
ifp->if_start = otus_start;
ifp->if_watchdog = otus_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
ic->ic_node_alloc = otus_node_alloc;
ic->ic_newassoc = otus_newassoc;
ic->ic_updateslot = otus_updateslot;
#ifdef HAVE_EDCA
ic->ic_updateedca = otus_updateedca;
#endif /* HAVE_EDCA */
#ifdef notyet
ic->ic_set_key = otus_set_key;
ic->ic_delete_key = otus_delete_key;
#endif /* notyet */
/* Override state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = otus_newstate;
ieee80211_media_init(ic, otus_media_change, ieee80211_media_status);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(OTUS_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(OTUS_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
}
Static void
otus_get_chanlist(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint16_t domain;
uint8_t chan;
int i;
/* XXX regulatory domain. */
domain = le16toh(sc->sc_eeprom.baseEepHeader.regDmn[0]);
DPRINTF("regdomain=0x%04x\n", domain);
if (sc->sc_eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11G) {
for (i = 0; i < 14; i++) {
chan = ar_chans[i];
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
}
if (sc->sc_eeprom.baseEepHeader.opCapFlags & AR5416_OPFLAGS_11A) {
for (i = 14; i < __arraycount(ar_chans); i++) {
chan = ar_chans[i];
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
}
}
}
Static int
otus_load_firmware(struct otus_softc *sc, const char *name, uint32_t addr)
{
usb_device_request_t req;
firmware_handle_t fh;
uint8_t *ptr;
uint8_t *fw;
size_t size;
int mlen, error;
if ((error = firmware_open("if_otus", name, &fh)) != 0)
return error;
size = firmware_get_size(fh);
if ((fw = firmware_malloc(size)) == NULL) {
firmware_close(fh);
return ENOMEM;
}
if ((error = firmware_read(fh, 0, fw, size)) != 0)
firmware_free(fw, size);
firmware_close(fh);
if (error)
return error;
req.bmRequestType = UT_WRITE_VENDOR_DEVICE;
req.bRequest = AR_FW_DOWNLOAD;
USETW(req.wIndex, 0);
ptr = fw;
addr >>= 8;
while (size > 0) {
mlen = MIN(size, 4096);
USETW(req.wValue, addr);
USETW(req.wLength, mlen);
if (usbd_do_request(sc->sc_udev, &req, ptr) != 0) {
error = EIO;
break;
}
addr += mlen >> 8;
ptr += mlen;
size -= mlen;
}
free(fw, M_DEVBUF);
return error;
}
Static int
otus_open_pipes(struct otus_softc *sc)
{
usb_endpoint_descriptor_t *ed;
int i, isize, error;
error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_RX_NO, 0,
&sc->sc_data_rx_pipe);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open Rx bulk pipe\n");
goto fail;
}
ed = usbd_get_endpoint_descriptor(sc->sc_iface, AR_EPT_INTR_RX_NO);
if (ed == NULL) {
aprint_error_dev(sc->sc_dev,
"could not retrieve Rx intr pipe descriptor\n");
goto fail;
}
isize = UGETW(ed->wMaxPacketSize);
if (isize == 0) {
aprint_error_dev(sc->sc_dev,
"invalid Rx intr pipe descriptor\n");
goto fail;
}
sc->sc_ibuf = malloc(isize, M_USBDEV, M_NOWAIT);
if (sc->sc_ibuf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate Rx intr buffer\n");
goto fail;
}
error = usbd_open_pipe_intr(sc->sc_iface, AR_EPT_INTR_RX_NO,
USBD_SHORT_XFER_OK, &sc->sc_cmd_rx_pipe, sc, sc->sc_ibuf, isize,
otus_intr, USBD_DEFAULT_INTERVAL);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open Rx intr pipe\n");
goto fail;
}
error = usbd_open_pipe(sc->sc_iface, AR_EPT_BULK_TX_NO, 0,
&sc->sc_data_tx_pipe);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open Tx bulk pipe\n");
goto fail;
}
error = usbd_open_pipe(sc->sc_iface, AR_EPT_INTR_TX_NO, 0,
&sc->sc_cmd_tx_pipe);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not open Tx intr pipe\n");
goto fail;
}
if (otus_alloc_tx_cmd(sc) != 0) {
aprint_error_dev(sc->sc_dev,
"could not allocate command xfer\n");
goto fail;
}
if (otus_alloc_tx_data_list(sc) != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate Tx xfers\n");
goto fail;
}
if (otus_alloc_rx_data_list(sc) != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate Rx xfers\n");
goto fail;
}
for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
struct otus_rx_data *data = &sc->sc_rx_data[i];
usbd_setup_xfer(data->xfer, sc->sc_data_rx_pipe, data, data->buf,
OTUS_RXBUFSZ, USBD_SHORT_XFER_OK | USBD_NO_COPY,
USBD_NO_TIMEOUT, otus_rxeof);
error = usbd_transfer(data->xfer);
if (error != USBD_IN_PROGRESS && error != 0) {
aprint_error_dev(sc->sc_dev,
"could not queue Rx xfer\n");
goto fail;
}
}
return 0;
fail: otus_close_pipes(sc);
return error;
}
Static void
otus_close_pipes(struct otus_softc *sc)
{
otus_free_tx_cmd(sc);
otus_free_tx_data_list(sc);
otus_free_rx_data_list(sc);
if (sc->sc_data_rx_pipe != NULL)
usbd_close_pipe(sc->sc_data_rx_pipe);
if (sc->sc_cmd_rx_pipe != NULL) {
usbd_abort_pipe(sc->sc_cmd_rx_pipe);
usbd_close_pipe(sc->sc_cmd_rx_pipe);
}
if (sc->sc_ibuf != NULL)
free(sc->sc_ibuf, M_USBDEV);
if (sc->sc_data_tx_pipe != NULL)
usbd_close_pipe(sc->sc_data_tx_pipe);
if (sc->sc_cmd_tx_pipe != NULL)
usbd_close_pipe(sc->sc_cmd_tx_pipe);
}
Static int
otus_alloc_tx_cmd(struct otus_softc *sc)
{
struct otus_tx_cmd *cmd = &sc->sc_tx_cmd;
cmd->xfer = usbd_alloc_xfer(sc->sc_udev);
if (cmd->xfer == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
return ENOMEM;
}
cmd->buf = usbd_alloc_buffer(cmd->xfer, OTUS_MAX_TXCMDSZ);
if (cmd->buf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer buffer\n");
usbd_free_xfer(cmd->xfer);
return ENOMEM;
}
return 0;
}
Static void
otus_free_tx_cmd(struct otus_softc *sc)
{
/* Make sure no transfers are pending. */
usbd_abort_pipe(sc->sc_cmd_tx_pipe);
mutex_enter(&sc->sc_cmd_mtx);
if (sc->sc_tx_cmd.xfer != NULL)
usbd_free_xfer(sc->sc_tx_cmd.xfer);
sc->sc_tx_cmd.xfer = NULL;
sc->sc_tx_cmd.buf = NULL;
mutex_exit(&sc->sc_cmd_mtx);
}
Static int
otus_alloc_tx_data_list(struct otus_softc *sc)
{
struct otus_tx_data *data;
int i, error;
for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++) {
data = &sc->sc_tx_data[i];
data->sc = sc; /* Backpointer for callbacks. */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, OTUS_TXBUFSZ);
if (data->buf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer buffer\n");
error = ENOMEM;
goto fail;
}
}
return 0;
fail: otus_free_tx_data_list(sc);
return error;
}
Static void
otus_free_tx_data_list(struct otus_softc *sc)
{
int i;
/* Make sure no transfers are pending. */
usbd_abort_pipe(sc->sc_data_tx_pipe);
for (i = 0; i < OTUS_TX_DATA_LIST_COUNT; i++)
if (sc->sc_tx_data[i].xfer != NULL)
usbd_free_xfer(sc->sc_tx_data[i].xfer);
}
Static int
otus_alloc_rx_data_list(struct otus_softc *sc)
{
struct otus_rx_data *data;
int i, error;
for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++) {
data = &sc->sc_rx_data[i];
data->sc = sc; /* Backpointer for callbacks. */
data->xfer = usbd_alloc_xfer(sc->sc_udev);
if (data->xfer == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer\n");
error = ENOMEM;
goto fail;
}
data->buf = usbd_alloc_buffer(data->xfer, OTUS_RXBUFSZ);
if (data->buf == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate xfer buffer\n");
error = ENOMEM;
goto fail;
}
}
return 0;
fail: otus_free_rx_data_list(sc);
return error;
}
Static void
otus_free_rx_data_list(struct otus_softc *sc)
{
int i;
/* Make sure no transfers are pending. */
usbd_abort_pipe(sc->sc_data_rx_pipe);
for (i = 0; i < OTUS_RX_DATA_LIST_COUNT; i++)
if (sc->sc_rx_data[i].xfer != NULL)
usbd_free_xfer(sc->sc_rx_data[i].xfer);
}
Static void
otus_next_scan(void *arg)
{
struct otus_softc *sc = arg;
if (sc->sc_ic.ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(&sc->sc_ic);
}
Static void
otus_task(void *arg)
{
struct otus_softc *sc = arg;
struct otus_host_cmd_ring *ring = &sc->sc_cmdq;
struct otus_host_cmd *cmd;
int s;
/* Process host commands. */
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);;
while (ring->next != ring->cur) {
cmd = &ring->cmd[ring->next];
mutex_spin_exit(&sc->sc_task_mtx);;
splx(s);
/* Callback. */
DPRINTFN(2, "otus_task: cb=%p queued=%d\n",
cmd->cb, ring->queued);
cmd->cb(sc, cmd->data);
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);;
ring->queued--;
ring->next = (ring->next + 1) % OTUS_HOST_CMD_RING_COUNT;
}
mutex_spin_exit(&sc->sc_task_mtx);;
wakeup(ring);
splx(s);
}
Static void
otus_do_async(struct otus_softc *sc, void (*cb)(struct otus_softc *, void *),
void *arg, int len)
{
struct otus_host_cmd_ring *ring = &sc->sc_cmdq;
struct otus_host_cmd *cmd;
int s;
DPRINTF("otus_do_async: cb=%p\n", cb);
s = splusb();
mutex_spin_enter(&sc->sc_task_mtx);;
cmd = &ring->cmd[ring->cur];
cmd->cb = cb;
KASSERT(len <= sizeof(cmd->data));
memcpy(cmd->data, arg, len);
ring->cur = (ring->cur + 1) % OTUS_HOST_CMD_RING_COUNT;
/* If there is no pending command already, schedule a task. */
if (++ring->queued == 1) {
mutex_spin_exit(&sc->sc_task_mtx);;
usb_add_task(sc->sc_udev, &sc->sc_task, USB_TASKQ_DRIVER);
}
else
mutex_spin_exit(&sc->sc_task_mtx);;
wakeup(ring);
splx(s);
}
Static int
otus_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct otus_softc *sc = ic->ic_ifp->if_softc;
struct otus_cmd_newstate cmd;
DPRINTF("otus_newstate\n");
/* Do it in a process context. */
cmd.state = nstate;
cmd.arg = arg;
otus_do_async(sc, otus_newstate_cb, &cmd, sizeof(cmd));
return 0;
}
Static void
otus_newstate_cb(struct otus_softc *sc, void *arg)
{
struct otus_cmd_newstate *cmd = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
int s;
s = splnet();
callout_halt(&sc->sc_scan_to, NULL);
callout_halt(&sc->sc_calib_to, NULL);
mutex_enter(&sc->sc_write_mtx);
switch (cmd->state) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
(void)otus_set_chan(sc, ic->ic_curchan, 0);
callout_schedule(&sc->sc_scan_to, hz / 5);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 0);
break;
case IEEE80211_S_RUN:
(void)otus_set_chan(sc, ic->ic_bss->ni_chan, 1);
ni = ic->ic_bss;
if (ic->ic_opmode == IEEE80211_M_STA) {
otus_updateslot_cb_locked(sc);
otus_set_bssid(sc, ni->ni_bssid);
/* Fake a join to init the Tx rate. */
otus_newassoc(ni, 1);
/* Start calibration timer. */
callout_schedule(&sc->sc_calib_to, hz);
}
break;
}
(void)sc->sc_newstate(ic, cmd->state, cmd->arg);
sc->sc_led_newstate(sc);
mutex_exit(&sc->sc_write_mtx);
splx(s);
}
Static int
otus_cmd(struct otus_softc *sc, uint8_t code, const void *idata, int ilen,
void *odata)
{
struct otus_tx_cmd *cmd;
struct ar_cmd_hdr *hdr;
int s, xferlen, error;
cmd = &sc->sc_tx_cmd;
mutex_enter(&sc->sc_cmd_mtx);
/* Always bulk-out a multiple of 4 bytes. */
xferlen = roundup2(sizeof(*hdr) + ilen, 4);
hdr = (struct ar_cmd_hdr *)cmd->buf;
if (hdr == NULL) { /* we may have been freed while detaching */
mutex_exit(&sc->sc_cmd_mtx);
DPRINTF("otus_cmd: tx_cmd freed with commands pending\n");
return 0;
}
hdr->code = code;
hdr->len = ilen;
hdr->token = ++cmd->token; /* Don't care about endianness. */
KASSERT(sizeof(hdr) + ilen <= OTUS_MAX_TXCMDSZ);
memcpy(cmd->buf + sizeof(hdr[0]), idata, ilen);
DPRINTFN(2, "sending command code=0x%02x len=%d token=%d\n",
code, ilen, hdr->token);
s = splusb();
cmd->odata = odata;
cmd->done = 0;
usbd_setup_xfer(cmd->xfer, sc->sc_cmd_tx_pipe, cmd, cmd->buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_CMD_TIMEOUT, NULL);
error = usbd_sync_transfer(cmd->xfer);
if (error != 0) {
splx(s);
mutex_exit(&sc->sc_cmd_mtx);
aprint_error_dev(sc->sc_dev,
"could not send command 0x%x (error=%s)\n",
code, usbd_errstr(error));
return EIO;
}
if (!cmd->done)
error = tsleep(cmd, PCATCH, "otuscmd", hz);
cmd->odata = NULL; /* In case answer is received too late. */
splx(s);
mutex_exit(&sc->sc_cmd_mtx);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for command 0x%02x reply\n", code);
}
return error;
}
Static void
otus_write(struct otus_softc *sc, uint32_t reg, uint32_t val)
{
KASSERT(mutex_owned(&sc->sc_write_mtx));
KASSERT(sc->sc_write_idx < __arraycount(sc->sc_write_buf));
sc->sc_write_buf[sc->sc_write_idx].reg = htole32(reg);
sc->sc_write_buf[sc->sc_write_idx].val = htole32(val);
if (++sc->sc_write_idx >= __arraycount(sc->sc_write_buf))
(void)otus_write_barrier(sc);
}
Static int
otus_write_barrier(struct otus_softc *sc)
{
int error;
KASSERT(mutex_owned(&sc->sc_write_mtx));
KASSERT(sc->sc_write_idx <= __arraycount(sc->sc_write_buf));
if (sc->sc_write_idx == 0)
return 0; /* Nothing to flush. */
error = otus_cmd(sc, AR_CMD_WREG, sc->sc_write_buf,
sizeof(sc->sc_write_buf[0]) * sc->sc_write_idx, NULL);
sc->sc_write_idx = 0;
if (error)
DPRINTF("otus_write_barrier: error=%d\n", error);
return error;
}
Static struct ieee80211_node *
otus_node_alloc(struct ieee80211_node_table *ntp)
{
struct otus_node *on;
DPRINTF("otus_node_alloc\n");
on = malloc(sizeof(struct otus_node), M_DEVBUF, M_NOWAIT | M_ZERO);
return &on->ni;
}
Static int
otus_media_change(struct ifnet *ifp)
{
struct otus_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int error;
DPRINTF("otus_media_change\n");
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
if (otus_rates[ridx].rate == rate)
break;
sc->sc_fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
error = otus_init(ifp);
return error;
}
Static int
otus_read_eeprom(struct otus_softc *sc)
{
uint32_t regs[8], reg;
uint8_t *eep;
int i, j, error;
KASSERT(sizeof(sc->sc_eeprom) % 32 == 0);
/* Read EEPROM by blocks of 32 bytes. */
eep = (uint8_t *)&sc->sc_eeprom;
reg = AR_EEPROM_OFFSET;
for (i = 0; i < sizeof(sc->sc_eeprom) / 32; i++) {
for (j = 0; j < 8; j++, reg += 4)
regs[j] = htole32(reg);
error = otus_cmd(sc, AR_CMD_RREG, regs, sizeof(regs), eep);
if (error != 0)
break;
eep += 32;
}
return error;
}
Static void
otus_newassoc(struct ieee80211_node *ni, int isnew)
{
struct otus_softc *sc = ni->ni_ic->ic_ifp->if_softc;
struct otus_node *on = (void *)ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
uint8_t rate;
int ridx, i;
DPRINTF("new assoc isnew=%d addr=%s\n",
isnew, ether_sprintf(ni->ni_macaddr));
ieee80211_amrr_node_init(&sc->sc_amrr, &on->amn);
/* Start at lowest available bit-rate, AMRR will raise. */
ni->ni_txrate = 0;
for (i = 0; i < rs->rs_nrates; i++) {
rate = rs->rs_rates[i] & IEEE80211_RATE_VAL;
/* Convert 802.11 rate to hardware rate index. */
for (ridx = 0; ridx <= OTUS_RIDX_MAX; ridx++)
if (otus_rates[ridx].rate == rate)
break;
on->ridx[i] = ridx;
DPRINTF("rate=0x%02x ridx=%d\n",
rs->rs_rates[i], on->ridx[i]);
}
}
/* ARGSUSED */
Static void
otus_intr(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
#if 0
struct otus_softc *sc = priv;
int len;
/*
* The Rx intr pipe is unused with current firmware. Notifications
* and replies to commands are sent through the Rx bulk pipe instead
* (with a magic PLCP header.)
*/
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF("intr status=%d\n", status);
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_cmd_rx_pipe);
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
otus_cmd_rxeof(sc, sc->sc_ibuf, len);
#endif
}
Static void
otus_cmd_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct otus_tx_cmd *cmd;
struct ar_cmd_hdr *hdr;
int s;
if (__predict_false(len < sizeof(*hdr))) {
DPRINTF("cmd too small %d\n", len);
return;
}
hdr = (struct ar_cmd_hdr *)buf;
if (__predict_false(sizeof(*hdr) + hdr->len > len ||
sizeof(*hdr) + hdr->len > 64)) {
DPRINTF("cmd too large %d\n", hdr->len);
return;
}
if ((hdr->code & 0xc0) != 0xc0) {
DPRINTFN(2, "received reply code=0x%02x len=%d token=%d\n",
hdr->code, hdr->len, hdr->token);
cmd = &sc->sc_tx_cmd;
if (__predict_false(hdr->token != cmd->token))
return;
/* Copy answer into caller's supplied buffer. */
if (cmd->odata != NULL)
memcpy(cmd->odata, &hdr[1], hdr->len);
cmd->done = 1;
wakeup(cmd);
return;
}
/* Received unsolicited notification. */
DPRINTF("received notification code=0x%02x len=%d\n",
hdr->code, hdr->len);
switch (hdr->code & 0x3f) {
case AR_EVT_BEACON:
break;
case AR_EVT_TX_COMP:
{
struct ar_evt_tx_comp *tx = (struct ar_evt_tx_comp *)&hdr[1];
struct ieee80211_node *ni;
struct otus_node *on;
DPRINTF("tx completed %s status=%d phy=0x%x\n",
ether_sprintf(tx->macaddr), le16toh(tx->status),
le32toh(tx->phy));
s = splnet();
#ifdef notyet
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode != IEEE80211_M_STA) {
ni = ieee80211_find_node(ic, tx->macaddr);
if (__predict_false(ni == NULL)) {
splx(s);
break;
}
} else
#endif
#endif
ni = ic->ic_bss;
/* Update rate control statistics. */
on = (void *)ni;
/* NB: we do not set the TX_MAC_RATE_PROBING flag. */
if (__predict_true(tx->status != 0))
on->amn.amn_retrycnt++;
splx(s);
break;
}
case AR_EVT_TBTT:
break;
}
}
Static void
otus_sub_rxeof(struct otus_softc *sc, uint8_t *buf, int len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct ieee80211_node *ni;
struct ar_rx_tail *tail;
struct ieee80211_frame *wh;
struct mbuf *m;
uint8_t *plcp;
int s, mlen, align;
if (__predict_false(len < AR_PLCP_HDR_LEN)) {
DPRINTF("sub-xfer too short %d\n", len);
return;
}
plcp = buf;
/* All bits in the PLCP header are set to 1 for non-MPDU. */
if (memcmp(plcp, AR_PLCP_HDR_INTR, AR_PLCP_HDR_LEN) == 0) {
otus_cmd_rxeof(sc, plcp + AR_PLCP_HDR_LEN,
len - AR_PLCP_HDR_LEN);
return;
}
/* Received MPDU. */
if (__predict_false(len < AR_PLCP_HDR_LEN + sizeof(*tail))) {
DPRINTF("MPDU too short %d\n", len);
ifp->if_ierrors++;
return;
}
tail = (struct ar_rx_tail *)(plcp + len - sizeof(*tail));
wh = (struct ieee80211_frame *)(plcp + AR_PLCP_HDR_LEN);
/* Discard error frames. */
if (__predict_false(tail->error != 0)) {
DPRINTF("error frame 0x%02x\n", tail->error);
if (tail->error & AR_RX_ERROR_FCS) {
DPRINTFN(3, "bad FCS\n");
} else if (tail->error & AR_RX_ERROR_MMIC) {
/* Report Michael MIC failures to net80211. */
ieee80211_notify_michael_failure(ic, wh, 0 /* XXX: keyix */);
}
ifp->if_ierrors++;
return;
}
/* Compute MPDU's length. */
mlen = len - AR_PLCP_HDR_LEN - sizeof(*tail);
/* Make sure there's room for an 802.11 header + FCS. */
if (__predict_false(mlen < IEEE80211_MIN_LEN)) {
ifp->if_ierrors++;
return;
}
mlen -= IEEE80211_CRC_LEN; /* strip 802.11 FCS */
/* Provide a 32-bit aligned protocol header to the stack. */
align = (ieee80211_has_qos(wh) ^ ieee80211_has_addr4(wh)) ? 2 : 0;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (__predict_false(m == NULL)) {
ifp->if_ierrors++;
return;
}
if (align + mlen > MHLEN) {
MCLGET(m, M_DONTWAIT);
if (__predict_false(!(m->m_flags & M_EXT))) {
ifp->if_ierrors++;
m_freem(m);
return;
}
}
/* Finalize mbuf. */
m->m_pkthdr.rcvif = ifp;
m->m_data += align;
memcpy(mtod(m, void *), wh, mlen);
m->m_pkthdr.len = m->m_len = mlen;
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct otus_rx_radiotap_header *tap = &sc->sc_rxtap;
struct mbuf mb;
tap->wr_flags = 0;
tap->wr_chan_freq = htole16(ic->ic_ibss_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_ibss_chan->ic_flags);
tap->wr_antsignal = tail->rssi;
tap->wr_rate = 2; /* In case it can't be found below. */
switch (tail->status & AR_RX_STATUS_MT_MASK) {
case AR_RX_STATUS_MT_CCK:
switch (plcp[0]) {
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
}
if (tail->status & AR_RX_STATUS_SHPREAMBLE)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
break;
case AR_RX_STATUS_MT_OFDM:
switch (plcp[0] & 0xf) {
case 0xb: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0xa: tap->wr_rate = 24; break;
case 0xe: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xd: tap->wr_rate = 72; break;
case 0x8: tap->wr_rate = 96; break;
case 0xc: tap->wr_rate = 108; break;
}
break;
}
mb.m_data = (void *)tap;
mb.m_len = sc->sc_rxtap_len;
mb.m_next = m;
mb.m_nextpkt = NULL;
mb.m_type = 0;
mb.m_flags = 0;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
s = splnet();
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* push the frame up to the 802.11 stack */
ieee80211_input(ic, m, ni, tail->rssi, 0);
/* Node is no longer needed. */
ieee80211_free_node(ni);
splx(s);
}
Static void
otus_rxeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct otus_rx_data *data = priv;
struct otus_softc *sc = data->sc;
uint8_t *buf = data->buf;
struct ar_rx_head *head;
uint16_t hlen;
int len;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF("RX status=%d\n", status);
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_data_rx_pipe);
if (status != USBD_CANCELLED) {
DPRINTFN(3, "otus_rxeof: goto resubmit: status=%d\n",
status);
goto resubmit;
}
return;
}
usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL);
while (len >= sizeof(*head)) {
head = (struct ar_rx_head *)buf;
if (__predict_false(head->tag != htole16(AR_RX_HEAD_TAG))) {
DPRINTF("tag not valid 0x%x\n", le16toh(head->tag));
break;
}
hlen = le16toh(head->len);
if (__predict_false(sizeof(*head) + hlen > len)) {
DPRINTF("xfer too short %d/%d\n", len, hlen);
break;
}
/* Process sub-xfer. */
otus_sub_rxeof(sc, (uint8_t *)&head[1], hlen);
/* Next sub-xfer is aligned on a 32-bit boundary. */
hlen = roundup2(sizeof(*head) + hlen, 4);
buf += hlen;
len -= hlen;
}
resubmit:
usbd_setup_xfer(xfer, sc->sc_data_rx_pipe, data, data->buf, OTUS_RXBUFSZ,
USBD_SHORT_XFER_OK, USBD_NO_TIMEOUT, otus_rxeof);
(void)usbd_transfer(data->xfer);
}
Static void
otus_txeof(usbd_xfer_handle xfer, usbd_private_handle priv, usbd_status status)
{
struct otus_tx_data *data = priv;
struct otus_softc *sc = data->sc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
int s;
if (__predict_false(status != USBD_NORMAL_COMPLETION)) {
DPRINTF("TX status=%d\n", status);
if (status == USBD_STALLED)
usbd_clear_endpoint_stall_async(sc->sc_data_tx_pipe);
ifp->if_oerrors++;
return;
}
s = splnet();
sc->sc_tx_queued--;
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
otus_start(ifp);
splx(s);
}
Static int
otus_tx(struct otus_softc *sc, struct mbuf *m, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct otus_node *on = (void *)ni;
struct otus_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ar_tx_head *head;
uint32_t phyctl;
uint16_t macctl, qos;
uint8_t qid;
int error, ridx, hasqos, xferlen;
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
/* XXX: derived from upgt_tx_task() and ural_tx_data() */
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL) {
m_freem(m);
return ENOBUFS;
}
wh = mtod(m, struct ieee80211_frame *);
}
#ifdef HAVE_EDCA
if ((hasqos = ieee80211_has_qos(wh))) {
qos = ieee80211_get_qos(wh);
qid = ieee80211_up_to_ac(ic, qos & IEEE80211_QOS_TID);
} else {
qos = 0;
qid = EDCA_AC_BE;
}
#else
hasqos = 0;
qos = 0;
qid = EDCA_AC_BE;
#endif
/* Pickup a rate index. */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_DATA)
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
OTUS_RIDX_OFDM6 : OTUS_RIDX_CCK1;
else if (ic->ic_fixed_rate != -1)
ridx = sc->sc_fixed_ridx;
else
ridx = on->ridx[ni->ni_txrate];
phyctl = 0;
macctl = AR_TX_MAC_BACKOFF | AR_TX_MAC_HW_DUR | AR_TX_MAC_QID(qid);
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(hasqos && ((qos & IEEE80211_QOS_ACK_POLICY_MASK) ==
IEEE80211_QOS_ACK_POLICY_NOACK)))
macctl |= AR_TX_MAC_NOACK;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
if (m->m_pkthdr.len + IEEE80211_CRC_LEN >= ic->ic_rtsthreshold)
macctl |= AR_TX_MAC_RTS;
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
ridx >= OTUS_RIDX_OFDM6) {
if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
macctl |= AR_TX_MAC_CTS;
else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
macctl |= AR_TX_MAC_RTS;
}
}
phyctl |= AR_TX_PHY_MCS(otus_rates[ridx].mcs);
if (ridx >= OTUS_RIDX_OFDM6) {
phyctl |= AR_TX_PHY_MT_OFDM;
if (ridx <= OTUS_RIDX_OFDM24)
phyctl |= AR_TX_PHY_ANTMSK(sc->sc_txmask);
else
phyctl |= AR_TX_PHY_ANTMSK(1);
} else { /* CCK */
phyctl |= AR_TX_PHY_MT_CCK;
phyctl |= AR_TX_PHY_ANTMSK(sc->sc_txmask);
}
/* Update rate control stats for frames that are ACK'ed. */
if (!(macctl & AR_TX_MAC_NOACK))
((struct otus_node *)ni)->amn.amn_txcnt++;
data = &sc->sc_tx_data[sc->sc_tx_cur];
/* Fill Tx descriptor. */
head = (struct ar_tx_head *)data->buf;
head->len = htole16(m->m_pkthdr.len + IEEE80211_CRC_LEN);
head->macctl = htole16(macctl);
head->phyctl = htole32(phyctl);
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct otus_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_rate = otus_rates[ridx].rate;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
xferlen = sizeof(*head) + m->m_pkthdr.len;
m_copydata(m, 0, m->m_pkthdr.len, (void *)&head[1]);
m_freem(m);
ieee80211_free_node(ni);
DPRINTFN(5, "tx queued=%d len=%d mac=0x%04x phy=0x%08x rate=%d\n",
sc->sc_tx_queued, head->len, head->macctl, head->phyctl,
otus_rates[ridx].rate);
usbd_setup_xfer(data->xfer, sc->sc_data_tx_pipe, data, data->buf, xferlen,
USBD_FORCE_SHORT_XFER | USBD_NO_COPY, OTUS_TX_TIMEOUT, otus_txeof);
error = usbd_transfer(data->xfer);
if (__predict_false(error != USBD_IN_PROGRESS && error != 0))
return error;
sc->sc_tx_queued++;
sc->sc_tx_cur = (sc->sc_tx_cur + 1) % OTUS_TX_DATA_LIST_COUNT;
return 0;
}
Static void
otus_start(struct ifnet *ifp)
{
struct otus_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct mbuf *m;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
DPRINTF(("otus_start\n"));
for (;;) {
if (sc->sc_tx_queued >= OTUS_TX_DATA_LIST_COUNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* Send pending management frames first. */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
ni = (void *)m->m_pkthdr.rcvif;
m->m_pkthdr.rcvif = NULL;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* Encapsulate and send data frames. */
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (m->m_len < sizeof(struct ether_header) &&
!(m = m_pullup(m, sizeof(struct ether_header))))
continue;
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
continue;
}
if (ifp->if_bpf != NULL)
bpf_mtap(ifp, m);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
continue;
}
sendit:
if (ic->ic_rawbpf != NULL)
bpf_mtap3(ic->ic_rawbpf, m);
if (otus_tx(sc, m, ni) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
Static void
otus_watchdog(struct ifnet *ifp)
{
struct otus_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
/* otus_init(ifp); XXX needs a process context! */
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
Static int
otus_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct otus_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifaddr *ifa;
int s, error = 0;
DPRINTF("otus_ioctl: 0x%lx\n", cmd);
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
#ifdef INET
if (ifa->ifa_addr->sa_family == AF_INET)
arp_ifinit(&ic->ic_ac, ifa);
#endif
/* FALLTHROUGH */
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) &&
((ifp->if_flags ^ sc->sc_if_flags) &
(IFF_ALLMULTI | IFF_PROMISC)) != 0) {
otus_set_multi(sc);
} else if (!(ifp->if_flags & IFF_RUNNING)) {
otus_init(ifp);
}
} else if (ifp->if_flags & IFF_RUNNING)
otus_stop(ifp);
sc->sc_if_flags = ifp->if_flags;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
/* XXX: ??? */
error = 0;
}
break;
case SIOCS80211CHANNEL:
error = ieee80211_ioctl(ic, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
mutex_enter(&sc->sc_write_mtx);
otus_set_chan(sc, ic->ic_ibss_chan, 0);
mutex_exit(&sc->sc_write_mtx);
}
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
otus_init(ifp);
}
error = 0;
}
splx(s);
return error;
}
Static int
otus_set_multi(struct otus_softc *sc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
struct ether_multi *enm;
struct ether_multistep step;
uint32_t lo, hi;
uint8_t bit;
int error;
if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
lo = hi = 0xffffffff;
goto done;
}
lo = hi = 0;
ETHER_FIRST_MULTI(step, &sc->sc_ec, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
ifp->if_flags |= IFF_ALLMULTI;
lo = hi = 0xffffffff;
goto done;
}
bit = enm->enm_addrlo[5] >> 2;
if (bit < 32)
lo |= 1 << bit;
else
hi |= 1 << (bit - 32);
ETHER_NEXT_MULTI(step, enm);
}
done:
mutex_enter(&sc->sc_write_mtx);
hi |= 1 << 31; /* Make sure the broadcast bit is set. */
otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_L, lo);
otus_write(sc, AR_MAC_REG_GROUP_HASH_TBL_H, hi);
error = otus_write_barrier(sc);
mutex_exit(&sc->sc_write_mtx);
return error;
}
#ifdef HAVE_EDCA
Static void
otus_updateedca(struct ieee80211com *ic)
{
/* Do it in a process context. */
otus_do_async(ic->ic_ifp->if_softc, otus_updateedca_cb, NULL, 0);
}
Static void
otus_updateedca_cb(struct otus_softc *sc, void *arg __used)
{
mutex_enter(&sc->sc_write_mtx);
otus_updateedca_cb_locked(sc);
mutex_exit(&sc->sc_write_mtx);
}
#endif
Static void
otus_updateedca_cb_locked(struct otus_softc *sc)
{
#ifdef HAVE_EDCA
struct ieee80211com *ic = &sc->sc_ic;
#endif
const struct ieee80211_edca_ac_params *edca;
int s;
KASSERT(&sc->sc_write_mtx);
s = splnet();
#ifdef HAVE_EDCA
edca = (ic->ic_flags & IEEE80211_F_QOS) ?
ic->ic_edca_ac : otus_edca_def;
#else
edca = otus_edca_def;
#endif /* HAVE_EDCA */
#define EXP2(val) ((1 << (val)) - 1)
#define AIFS(val) ((val) * 9 + 10)
/* Set CWmin/CWmax values. */
otus_write(sc, AR_MAC_REG_AC0_CW,
EXP2(edca[EDCA_AC_BE].ac_ecwmax) << 16 |
EXP2(edca[EDCA_AC_BE].ac_ecwmin));
otus_write(sc, AR_MAC_REG_AC1_CW,
EXP2(edca[EDCA_AC_BK].ac_ecwmax) << 16 |
EXP2(edca[EDCA_AC_BK].ac_ecwmin));
otus_write(sc, AR_MAC_REG_AC2_CW,
EXP2(edca[EDCA_AC_VI].ac_ecwmax) << 16 |
EXP2(edca[EDCA_AC_VI].ac_ecwmin));
otus_write(sc, AR_MAC_REG_AC3_CW,
EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
EXP2(edca[EDCA_AC_VO].ac_ecwmin));
otus_write(sc, AR_MAC_REG_AC4_CW, /* Special TXQ. */
EXP2(edca[EDCA_AC_VO].ac_ecwmax) << 16 |
EXP2(edca[EDCA_AC_VO].ac_ecwmin));
/* Set AIFSN values. */
otus_write(sc, AR_MAC_REG_AC1_AC0_AIFS,
AIFS(edca[EDCA_AC_VI].ac_aifsn) << 24 |
AIFS(edca[EDCA_AC_BK].ac_aifsn) << 12 |
AIFS(edca[EDCA_AC_BE].ac_aifsn));
otus_write(sc, AR_MAC_REG_AC3_AC2_AIFS,
AIFS(edca[EDCA_AC_VO].ac_aifsn) << 16 | /* Special TXQ. */
AIFS(edca[EDCA_AC_VO].ac_aifsn) << 4 |
AIFS(edca[EDCA_AC_VI].ac_aifsn) >> 8);
/* Set TXOP limit. */
otus_write(sc, AR_MAC_REG_AC1_AC0_TXOP,
edca[EDCA_AC_BK].ac_txoplimit << 16 |
edca[EDCA_AC_BE].ac_txoplimit);
otus_write(sc, AR_MAC_REG_AC3_AC2_TXOP,
edca[EDCA_AC_VO].ac_txoplimit << 16 |
edca[EDCA_AC_VI].ac_txoplimit);
#undef AIFS
#undef EXP2
splx(s);
(void)otus_write_barrier(sc);
}
Static void
otus_updateslot(struct ifnet *ifp)
{
struct otus_softc *sc = ifp->if_softc;
/* Do it in a process context. */
otus_do_async(sc, otus_updateslot_cb, NULL, 0);
}
/* ARGSUSED */
Static void
otus_updateslot_cb(struct otus_softc *sc, void *arg)
{
mutex_enter(&sc->sc_write_mtx);
otus_updateslot_cb_locked(sc);
mutex_exit(&sc->sc_write_mtx);
}
Static void
otus_updateslot_cb_locked(struct otus_softc *sc)
{
uint32_t slottime;
KASSERT(&sc->sc_write_mtx);
slottime = (sc->sc_ic.ic_flags & IEEE80211_F_SHSLOT) ? 9 : 20;
otus_write(sc, AR_MAC_REG_SLOT_TIME, slottime << 10);
(void)otus_write_barrier(sc);
}
Static int
otus_init_mac(struct otus_softc *sc)
{
int error;
DPRINTF("otus_init_mac\n");
otus_write(sc, AR_MAC_REG_ACK_EXTENSION, 0x40);
otus_write(sc, AR_MAC_REG_RETRY_MAX, 0);
otus_write(sc, AR_MAC_REG_SNIFFER, 0x2000000);
otus_write(sc, AR_MAC_REG_RX_THRESHOLD, 0xc1f80);
otus_write(sc, AR_MAC_REG_RX_PE_DELAY, 0x70);
otus_write(sc, AR_MAC_REG_EIFS_AND_SIFS, 0xa144000);
otus_write(sc, AR_MAC_REG_SLOT_TIME, 9 << 10);
otus_write(sc, 0x1c3b2c, 0x19000000);
/* NAV protects ACK only (in TXOP). */
otus_write(sc, 0x1c3b38, 0x201);
/* Set beacon Tx power to 0x7. */
otus_write(sc, AR_MAC_REG_BCN_HT1, 0x8000170);
otus_write(sc, AR_MAC_REG_BACKOFF_PROTECT, 0x105);
otus_write(sc, 0x1c3b9c, 0x10000a);
/* Filter any control frames, BAR is bit 24. */
otus_write(sc, 0x1c368c, 0x0500ffff);
otus_write(sc, 0x1c3c40, 0x1);
otus_write(sc, AR_MAC_REG_BASIC_RATE, 0x150f);
otus_write(sc, AR_MAC_REG_MANDATORY_RATE, 0x150f);
otus_write(sc, AR_MAC_REG_RTS_CTS_RATE, 0x10b01bb);
otus_write(sc, 0x1c3694, 0x4003c1e);
/* Enable LED0 and LED1. */
otus_write(sc, 0x1d0100, AR_LED0_ON | AR_LED1_ON);
otus_write(sc, 0x1d0104, AR_LED0_ON | AR_LED1_ON);
/* Switch MAC to OTUS interface. */
otus_write(sc, 0x1c3600, 0x3);
otus_write(sc, 0x1c3c50, 0xffff);
otus_write(sc, 0x1c3680, 0xf00008);
/* Disable Rx timeout (workaround). */
otus_write(sc, 0x1c362c, 0);
/* Set USB Rx stream mode maximum frame number to 2. */
otus_write(sc, 0x1e1110, 0x4);
/* Set USB Rx stream mode timeout to 10us. */
otus_write(sc, 0x1e1114, 0x80);
/* Set clock frequency to 88/80MHz. */
otus_write(sc, 0x1d4008, 0x73);
/* Set WLAN DMA interrupt mode: generate intr per packet. */
otus_write(sc, 0x1c3d7c, 0x110011);
otus_write(sc, 0x1c3bb0, 0x4);
otus_write(sc, AR_MAC_REG_TXOP_NOT_ENOUGH_INDICATION, 0x141e0f48);
/* Disable HW decryption for now. */
otus_write(sc, 0x1c3678, 0x78);
if ((error = otus_write_barrier(sc)) != 0)
return error;
/* Set default EDCA parameters. */
otus_updateedca_cb_locked(sc);
return 0;
}
/*
* Return default value for PHY register based on current operating mode.
*/
Static uint32_t
otus_phy_get_def(struct otus_softc *sc, uint32_t reg)
{
int i;
for (i = 0; i < __arraycount(ar5416_phy_regs); i++)
if (AR_PHY(ar5416_phy_regs[i]) == reg)
return sc->sc_phy_vals[i];
return 0; /* Register not found. */
}
/*
* Update PHY's programming based on vendor-specific data stored in EEPROM.
* This is for FEM-type devices only.
*/
Static int
otus_set_board_values(struct otus_softc *sc, struct ieee80211_channel *c)
{
const struct ModalEepHeader *eep;
uint32_t tmp, offset;
if (IEEE80211_IS_CHAN_5GHZ(c))
eep = &sc->sc_eeprom.modalHeader[0];
else
eep = &sc->sc_eeprom.modalHeader[1];
/* Offset of chain 2. */
offset = 2 * 0x1000;
tmp = le32toh(eep->antCtrlCommon);
otus_write(sc, AR_PHY_SWITCH_COM, tmp);
tmp = le32toh(eep->antCtrlChain[0]);
otus_write(sc, AR_PHY_SWITCH_CHAIN_0, tmp);
tmp = le32toh(eep->antCtrlChain[1]);
otus_write(sc, AR_PHY_SWITCH_CHAIN_0 + offset, tmp);
if (1 /* sc->sc_sco == AR_SCO_SCN */) {
tmp = otus_phy_get_def(sc, AR_PHY_SETTLING);
tmp &= ~(0x7f << 7);
tmp |= (eep->switchSettling & 0x7f) << 7;
otus_write(sc, AR_PHY_SETTLING, tmp);
}
tmp = otus_phy_get_def(sc, AR_PHY_DESIRED_SZ);
tmp &= ~0xffff;
tmp |= eep->pgaDesiredSize << 8 | eep->adcDesiredSize;
otus_write(sc, AR_PHY_DESIRED_SZ, tmp);
tmp = eep->txEndToXpaOff << 24 | eep->txEndToXpaOff << 16 |
eep->txFrameToXpaOn << 8 | eep->txFrameToXpaOn;
otus_write(sc, AR_PHY_RF_CTL4, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_RF_CTL3);
tmp &= ~(0xff << 16);
tmp |= eep->txEndToRxOn << 16;
otus_write(sc, AR_PHY_RF_CTL3, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_CCA);
tmp &= ~(0x7f << 12);
tmp |= (eep->thresh62 & 0x7f) << 12;
otus_write(sc, AR_PHY_CCA, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN);
tmp &= ~(0x3f << 12);
tmp |= (eep->txRxAttenCh[0] & 0x3f) << 12;
otus_write(sc, AR_PHY_RXGAIN, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_RXGAIN + offset);
tmp &= ~(0x3f << 12);
tmp |= (eep->txRxAttenCh[1] & 0x3f) << 12;
otus_write(sc, AR_PHY_RXGAIN + offset, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ);
tmp &= ~(0x3f << 18);
tmp |= (eep->rxTxMarginCh[0] & 0x3f) << 18;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
tmp &= ~(0xf << 10);
tmp |= (eep->bswMargin[0] & 0xf) << 10;
}
otus_write(sc, AR_PHY_GAIN_2GHZ, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_GAIN_2GHZ + offset);
tmp &= ~(0x3f << 18);
tmp |= (eep->rxTxMarginCh[1] & 0x3f) << 18;
otus_write(sc, AR_PHY_GAIN_2GHZ + offset, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4);
tmp &= ~(0x3f << 5 | 0x1f);
tmp |= (eep->iqCalICh[0] & 0x3f) << 5 | (eep->iqCalQCh[0] & 0x1f);
otus_write(sc, AR_PHY_TIMING_CTRL4, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_TIMING_CTRL4 + offset);
tmp &= ~(0x3f << 5 | 0x1f);
tmp |= (eep->iqCalICh[1] & 0x3f) << 5 | (eep->iqCalQCh[1] & 0x1f);
otus_write(sc, AR_PHY_TIMING_CTRL4 + offset, tmp);
tmp = otus_phy_get_def(sc, AR_PHY_TPCRG1);
tmp &= ~(0xf << 16);
tmp |= (eep->xpd & 0xf) << 16;
otus_write(sc, AR_PHY_TPCRG1, tmp);
return otus_write_barrier(sc);
}
Static int
otus_program_phy(struct otus_softc *sc, struct ieee80211_channel *c)
{
const uint32_t *vals;
int error, i;
/* Select PHY programming based on band and bandwidth. */
if (IEEE80211_IS_CHAN_2GHZ(c))
vals = ar5416_phy_vals_2ghz_20mhz;
else
vals = ar5416_phy_vals_5ghz_20mhz;
for (i = 0; i < __arraycount(ar5416_phy_regs); i++)
otus_write(sc, AR_PHY(ar5416_phy_regs[i]), vals[i]);
sc->sc_phy_vals = vals;
if (sc->sc_eeprom.baseEepHeader.deviceType == 0x80) /* FEM */
if ((error = otus_set_board_values(sc, c)) != 0)
return error;
/* Initial Tx power settings. */
otus_write(sc, AR_PHY_POWER_TX_RATE_MAX, 0x7f);
otus_write(sc, AR_PHY_POWER_TX_RATE1, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE2, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE3, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE4, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE5, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE6, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE7, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE8, 0x3f3f3f3f);
otus_write(sc, AR_PHY_POWER_TX_RATE9, 0x3f3f3f3f);
if (IEEE80211_IS_CHAN_2GHZ(c))
otus_write(sc, 0x1d4014, 0x5163);
else
otus_write(sc, 0x1d4014, 0x5143);
return otus_write_barrier(sc);
}
static __inline uint8_t
otus_reverse_bits(uint8_t v)
{
v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
return v;
}
Static int
otus_set_rf_bank4(struct otus_softc *sc, struct ieee80211_channel *c)
{
uint8_t chansel, d0, d1;
uint16_t data;
int error;
d0 = 0;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chansel = (c->ic_freq - 4800) / 5;
if (chansel & 1)
d0 |= AR_BANK4_AMODE_REFSEL(2);
else
d0 |= AR_BANK4_AMODE_REFSEL(1);
} else {
d0 |= AR_BANK4_AMODE_REFSEL(2);
if (c->ic_freq == 2484) { /* CH 14 */
d0 |= AR_BANK4_BMODE_LF_SYNTH_FREQ;
chansel = 10 + (c->ic_freq - 2274) / 5;
} else
chansel = 16 + (c->ic_freq - 2272) / 5;
chansel <<= 2;
}
d0 |= AR_BANK4_ADDR(1) | AR_BANK4_CHUP;
d1 = otus_reverse_bits(chansel);
/* Write bits 0-4 of d0 and d1. */
data = (d1 & 0x1f) << 5 | (d0 & 0x1f);
otus_write(sc, AR_PHY(44), data);
/* Write bits 5-7 of d0 and d1. */
data = (d1 >> 5) << 5 | (d0 >> 5);
otus_write(sc, AR_PHY(58), data);
if ((error = otus_write_barrier(sc)) == 0)
usbd_delay_ms(sc->sc_udev, 10);
return error;
}
Static void
otus_get_delta_slope(uint32_t coeff, uint32_t *exponent, uint32_t *mantissa)
{
#define COEFF_SCALE_SHIFT 24
uint32_t exp, man;
/* exponent = 14 - floor(log2(coeff)) */
for (exp = 31; exp > 0; exp--)
if (coeff & (1 << exp))
break;
KASSERT(exp != 0);
exp = 14 - (exp - COEFF_SCALE_SHIFT);
/* mantissa = floor(coeff * 2^exponent + 0.5) */
man = coeff + (1 << (COEFF_SCALE_SHIFT - exp - 1));
*mantissa = man >> (COEFF_SCALE_SHIFT - exp);
*exponent = exp - 16;
#undef COEFF_SCALE_SHIFT
}
Static int
otus_set_chan(struct otus_softc *sc, struct ieee80211_channel *c, int assoc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ar_cmd_frequency cmd;
struct ar_rsp_frequency rsp;
const uint32_t *vals;
uint32_t coeff, exp, man, tmp;
uint8_t code;
int error, chan, i;
chan = ieee80211_chan2ieee(ic, c);
DPRINTF("setting channel %d (%dMHz)\n", chan, c->ic_freq);
tmp = IEEE80211_IS_CHAN_2GHZ(c) ? 0x105 : 0x104;
otus_write(sc, AR_MAC_REG_DYNAMIC_SIFS_ACK, tmp);
if ((error = otus_write_barrier(sc)) != 0)
return error;
/* Disable BB Heavy Clip. */
otus_write(sc, AR_PHY_HEAVY_CLIP_ENABLE, 0x200);
if ((error = otus_write_barrier(sc)) != 0)
return error;
/* XXX Is that FREQ_START ? */
error = otus_cmd(sc, AR_CMD_FREQ_STRAT, NULL, 0, NULL);
if (error != 0)
return error;
/* Reprogram PHY and RF on channel band or bandwidth changes. */
if (sc->sc_bb_reset || c->ic_flags != sc->sc_curchan->ic_flags) {
DPRINTF("band switch\n");
/* Cold/Warm reset BB/ADDA. */
otus_write(sc, 0x1d4004, sc->sc_bb_reset ? 0x800 : 0x400);
if ((error = otus_write_barrier(sc)) != 0)
return error;
otus_write(sc, 0x1d4004, 0);
if ((error = otus_write_barrier(sc)) != 0)
return error;
sc->sc_bb_reset = 0;
if ((error = otus_program_phy(sc, c)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not program PHY\n");
return error;
}
/* Select RF programming based on band. */
if (IEEE80211_IS_CHAN_5GHZ(c))
vals = ar5416_banks_vals_5ghz;
else
vals = ar5416_banks_vals_2ghz;
for (i = 0; i < __arraycount(ar5416_banks_regs); i++)
otus_write(sc, AR_PHY(ar5416_banks_regs[i]), vals[i]);
if ((error = otus_write_barrier(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not program RF\n");
return error;
}
code = AR_CMD_RF_INIT;
} else {
code = AR_CMD_FREQUENCY;
}
if ((error = otus_set_rf_bank4(sc, c)) != 0)
return error;
tmp = (sc->sc_txmask == 0x5) ? 0x340 : 0x240;
otus_write(sc, AR_PHY_TURBO, tmp);
if ((error = otus_write_barrier(sc)) != 0)
return error;
/* Send firmware command to set channel. */
cmd.freq = htole32((uint32_t)c->ic_freq * 1000);
cmd.dynht2040 = htole32(0);
cmd.htena = htole32(1);
/* Set Delta Slope (exponent and mantissa). */
coeff = (100 << 24) / c->ic_freq;
otus_get_delta_slope(coeff, &exp, &man);
cmd.dsc_exp = htole32(exp);
cmd.dsc_man = htole32(man);
DPRINTF("ds coeff=%u exp=%u man=%u\n", coeff, exp, man);
/* For Short GI, coeff is 9/10 that of normal coeff. */
coeff = (9 * coeff) / 10;
otus_get_delta_slope(coeff, &exp, &man);
cmd.dsc_shgi_exp = htole32(exp);
cmd.dsc_shgi_man = htole32(man);
DPRINTF("ds shgi coeff=%u exp=%u man=%u\n", coeff, exp, man);
/* Set wait time for AGC and noise calibration (100 or 200ms). */
cmd.check_loop_count = assoc ? htole32(2000) : htole32(1000);
DPRINTF("%s\n", code == AR_CMD_RF_INIT ? "RF_INIT" : "FREQUENCY");
error = otus_cmd(sc, code, &cmd, sizeof(cmd), &rsp);
if (error != 0)
return error;
if ((rsp.status & htole32(AR_CAL_ERR_AGC | AR_CAL_ERR_NF_VAL)) != 0) {
DPRINTF("status=0x%x\n", le32toh(rsp.status));
/* Force cold reset on next channel. */
sc->sc_bb_reset = 1;
}
#ifdef OTUS_DEBUG
if (otus_debug) {
printf("calibration status=0x%x\n", le32toh(rsp.status));
for (i = 0; i < 2; i++) { /* 2 Rx chains */
/* Sign-extend 9-bit NF values. */
printf("noisefloor chain %d=%d\n", i,
(((int32_t)le32toh(rsp.nf[i])) << 4) >> 23);
printf("noisefloor ext chain %d=%d\n", i,
((int32_t)le32toh(rsp.nf_ext[i])) >> 23);
}
}
#endif
sc->sc_curchan = c;
return 0;
}
#ifdef notyet
Static int
otus_set_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct otus_softc *sc = ic->ic_ifp->if_softc;;
struct otus_cmd_key cmd;
/* Defer setting of WEP keys until interface is brought up. */
if ((ic->ic_ifp->if_flags & (IFF_UP | IFF_RUNNING)) !=
(IFF_UP | IFF_RUNNING))
return 0;
/* Do it in a process context. */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
otus_do_async(sc, otus_set_key_cb, &cmd, sizeof(cmd));
return 0;
}
Static void
otus_set_key_cb(struct otus_softc *sc, void *arg)
{
struct otus_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
struct ar_cmd_ekey key;
uint16_t cipher;
int error;
memset(&key, 0, sizeof(key));
if (k->k_flags & IEEE80211_KEY_GROUP) {
key.uid = htole16(k->k_id);
IEEE80211_ADDR_COPY(key.macaddr, sc->sc_ic.ic_myaddr);
key.macaddr[0] |= 0x80;
} else {
key.uid = htole16(OTUS_UID(cmd->associd));
IEEE80211_ADDR_COPY(key.macaddr, ni->ni_macaddr);
}
key.kix = htole16(0);
/* Map net80211 cipher to hardware. */
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
cipher = AR_CIPHER_WEP64;
break;
case IEEE80211_CIPHER_WEP104:
cipher = AR_CIPHER_WEP128;
break;
case IEEE80211_CIPHER_TKIP:
cipher = AR_CIPHER_TKIP;
break;
case IEEE80211_CIPHER_CCMP:
cipher = AR_CIPHER_AES;
break;
default:
return;
}
key.cipher = htole16(cipher);
memcpy(key.key, k->k_key, MIN(k->k_len, 16));
error = otus_cmd(sc, AR_CMD_EKEY, &key, sizeof(key), NULL);
if (error != 0 || k->k_cipher != IEEE80211_CIPHER_TKIP)
return;
/* TKIP: set Tx/Rx MIC Key. */
key.kix = htole16(1);
memcpy(key.key, k->k_key + 16, 16);
(void)otus_cmd(sc, AR_CMD_EKEY, &key, sizeof(key), NULL);
}
Static void
otus_delete_key(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_key *k)
{
struct otus_softc *sc = ic->ic_ifp->if_softc;
struct otus_cmd_key cmd;
if (!(ic->ic_ifp->if_flags & IFF_RUNNING) ||
ic->ic_state != IEEE80211_S_RUN)
return; /* Nothing to do. */
/* Do it in a process context. */
cmd.key = *k;
cmd.associd = (ni != NULL) ? ni->ni_associd : 0;
otus_do_async(sc, otus_delete_key_cb, &cmd, sizeof(cmd));
}
Static void
otus_delete_key_cb(struct otus_softc *sc, void *arg)
{
struct otus_cmd_key *cmd = arg;
struct ieee80211_key *k = &cmd->key;
uint32_t uid;
if (k->k_flags & IEEE80211_KEY_GROUP)
uid = htole32(k->k_id);
else
uid = htole32(OTUS_UID(cmd->associd));
(void)otus_cmd(sc, AR_CMD_DKEY, &uid, sizeof(uid), NULL);
}
#endif /* notyet */
Static void
otus_calibrate_to(void *arg)
{
struct otus_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
int s;
s = splnet();
ni = ic->ic_bss;
ieee80211_amrr_choose(&sc->sc_amrr, ni, &((struct otus_node *)ni)->amn);
splx(s);
callout_schedule(&sc->sc_calib_to, hz);
}
Static int
otus_set_bssid(struct otus_softc *sc, const uint8_t *bssid)
{
otus_write(sc, AR_MAC_REG_BSSID_L,
bssid[0] | bssid[1] << 8 | bssid[2] << 16 | bssid[3] << 24);
otus_write(sc, AR_MAC_REG_BSSID_H,
bssid[4] | bssid[5] << 8);
return otus_write_barrier(sc);
}
Static int
otus_set_macaddr(struct otus_softc *sc, const uint8_t *addr)
{
otus_write(sc, AR_MAC_REG_MAC_ADDR_L,
addr[0] | addr[1] << 8 | addr[2] << 16 | addr[3] << 24);
otus_write(sc, AR_MAC_REG_MAC_ADDR_H,
addr[4] | addr[5] << 8);
return otus_write_barrier(sc);
}
#ifdef notyet
/* Default single-LED. */
Static void
otus_led_newstate_type1(struct otus_softc *sc)
{
/* TBD */
}
/* NETGEAR, dual-LED. */
Static void
otus_led_newstate_type2(struct otus_softc *sc)
{
/* TBD */
}
#endif /* notyet */
/* NETGEAR, single-LED/3 colors (blue, red, purple.) */
Static void
otus_led_newstate_type3(struct otus_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint32_t state = sc->sc_led_state;
switch(ic->ic_state) {
case IEEE80211_S_INIT:
state = 0;
break;
case IEEE80211_S_SCAN:
state ^= AR_LED0_ON | AR_LED1_ON;
state &= ~(IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) ?
AR_LED1_ON : AR_LED0_ON);
break;
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
/* XXX: Turn both LEDs on for AUTH and ASSOC? */
state = AR_LED0_ON | AR_LED1_ON;
break;
case IEEE80211_S_RUN:
state = IEEE80211_IS_CHAN_2GHZ(sc->sc_curchan) ?
AR_LED0_ON : AR_LED1_ON;
break;
}
if (state != sc->sc_led_state) {
otus_write(sc, 0x1d0104, state);
if (otus_write_barrier(sc) == 0)
sc->sc_led_state = state;
}
}
Static int
otus_init(struct ifnet *ifp)
{
struct otus_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error;
DPRINTF("otus_init\n");
mutex_enter(&sc->sc_write_mtx);
/* Init host command ring. */
mutex_enter(&sc->sc_task_mtx);
sc->sc_cmdq.cur = sc->sc_cmdq.next = sc->sc_cmdq.queued = 0;
mutex_exit(&sc->sc_task_mtx);
if ((error = otus_init_mac(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not initialize MAC\n");
mutex_exit(&sc->sc_write_mtx);
return error;
}
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
(void)otus_set_macaddr(sc, ic->ic_myaddr);
switch (ic->ic_opmode) {
#ifdef notyet
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_HOSTAP:
otus_write(sc, 0x1c3700, 0x0f0000a1);
otus_write(sc, 0x1c3c40, 0x1);
break;
case IEEE80211_M_IBSS:
otus_write(sc, 0x1c3700, 0x0f000000);
otus_write(sc, 0x1c3c40, 0x1);
break;
#endif
#endif
case IEEE80211_M_STA:
otus_write(sc, 0x1c3700, 0x0f000002);
otus_write(sc, 0x1c3c40, 0x1);
break;
default:
break;
}
otus_write(sc, AR_MAC_REG_SNIFFER,
ic->ic_opmode == IEEE80211_M_MONITOR ? 0x2000001 : 0x2000000);
(void)otus_write_barrier(sc);
sc->sc_bb_reset = 1; /* Force cold reset. */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
if ((error = otus_set_chan(sc, ic->ic_ibss_chan, 0)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set channel\n");
mutex_exit(&sc->sc_write_mtx);
return error;
}
/* Start Rx. */
otus_write(sc, 0x1c3d30, 0x100);
(void)otus_write_barrier(sc);
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode == IEEE80211_M_MONITOR)
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
else
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
mutex_exit(&sc->sc_write_mtx);
return 0;
}
Static void
otus_stop(struct ifnet *ifp)
{
struct otus_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s;
DPRINTF("otus_stop\n");
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
callout_halt(&sc->sc_scan_to, NULL);
callout_halt(&sc->sc_calib_to, NULL);
s = splusb();
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* Wait for all queued asynchronous commands to complete. */
while (sc->sc_cmdq.queued > 0)
tsleep(&sc->sc_cmdq, 0, "sc_cmdq", 0);
splx(s);
/* Stop Rx. */
mutex_enter(&sc->sc_write_mtx);
otus_write(sc, 0x1c3d30, 0);
(void)otus_write_barrier(sc);
mutex_exit(&sc->sc_write_mtx);
sc->sc_tx_queued = 0;
}