917 lines
24 KiB
C
917 lines
24 KiB
C
/* $NetBSD: minixfs3.c,v 1.7 2014/03/20 03:13:18 christos Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2012
|
|
* Vrije Universiteit, Amsterdam, The Netherlands. All rights reserved.
|
|
*
|
|
* Author: Evgeniy Ivanov (based on libsa/ext2fs.c).
|
|
*
|
|
* This code is derived from src/sys/lib/libsa/ext2fs.c contributed to
|
|
* The NetBSD Foundation, see copyrights below.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS
|
|
* IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1997 Manuel Bouyer.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
*
|
|
* Copyright (c) 1990, 1991 Carnegie Mellon University
|
|
* All Rights Reserved.
|
|
*
|
|
* Author: David Golub
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and its
|
|
* documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
|
|
* ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
/*
|
|
* Stand-alone file reading package for MFS file system.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/time.h>
|
|
#ifdef _STANDALONE
|
|
#include <lib/libkern/libkern.h>
|
|
#else
|
|
#include <string.h>
|
|
#endif
|
|
|
|
#include "stand.h"
|
|
#include "minixfs3.h"
|
|
|
|
#if defined(LIBSA_FS_SINGLECOMPONENT) && !defined(LIBSA_NO_FS_SYMLINK)
|
|
#define LIBSA_NO_FS_SYMLINK
|
|
#endif
|
|
|
|
#if defined(LIBSA_NO_TWIDDLE)
|
|
#define twiddle()
|
|
#endif
|
|
|
|
typedef uint32_t ino32_t;
|
|
#ifndef FSBTODB
|
|
#define FSBTODB(fs, indp) MFS_FSBTODB(fs, indp)
|
|
#endif
|
|
|
|
/*
|
|
* To avoid having a lot of filesystem-block sized buffers lurking (which
|
|
* could be 32k) we only keep a few entries of the indirect block map.
|
|
* With 8k blocks, 2^8 blocks is ~500k so we reread the indirect block
|
|
* ~13 times pulling in a 6M kernel.
|
|
* The cache size must be smaller than the smallest filesystem block,
|
|
* so LN2_IND_CACHE_SZ <= 9 (UFS2 and 4k blocks).
|
|
*/
|
|
#define LN2_IND_CACHE_SZ 6
|
|
#define IND_CACHE_SZ (1 << LN2_IND_CACHE_SZ)
|
|
#define IND_CACHE_MASK (IND_CACHE_SZ - 1)
|
|
|
|
/*
|
|
* In-core open file.
|
|
*/
|
|
struct file {
|
|
off_t f_seekp; /* seek pointer */
|
|
struct mfs_sblock *f_fs; /* pointer to super-block */
|
|
struct mfs_dinode f_di; /* copy of on-disk inode */
|
|
uint f_nishift; /* for blocks in indirect block */
|
|
block_t f_ind_cache_block;
|
|
block_t f_ind_cache[IND_CACHE_SZ];
|
|
|
|
char *f_buf; /* buffer for data block */
|
|
size_t f_buf_size; /* size of data block */
|
|
daddr_t f_buf_blkno; /* block number of data block */
|
|
};
|
|
|
|
static int read_inode(ino32_t, struct open_file *);
|
|
static int block_map(struct open_file *, block_t, block_t *);
|
|
static int buf_read_file(struct open_file *, void *, size_t *);
|
|
static int search_directory(const char *, int, struct open_file *, ino32_t *);
|
|
static int read_sblock(struct open_file *, struct mfs_sblock *);
|
|
|
|
/*
|
|
* Read a new inode into a file structure.
|
|
*/
|
|
static int
|
|
read_inode(ino32_t inumber, struct open_file *f)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
struct mfs_sblock *fs = fp->f_fs;
|
|
char *buf;
|
|
size_t rsize;
|
|
int rc;
|
|
daddr_t inode_sector;
|
|
struct mfs_dinode *dip;
|
|
|
|
inode_sector = FSBTODB(fs, ino_to_fsba(fs, inumber));
|
|
|
|
/*
|
|
* Read inode and save it.
|
|
*/
|
|
buf = fp->f_buf;
|
|
twiddle();
|
|
rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
|
|
inode_sector, fs->mfs_block_size, buf, &rsize);
|
|
if (rc)
|
|
return rc;
|
|
if (rsize != fs->mfs_block_size)
|
|
return EIO;
|
|
|
|
dip = (struct mfs_dinode *)(buf +
|
|
INODE_SIZE * ino_to_fsbo(fs, inumber));
|
|
mfs_iload(dip, &fp->f_di);
|
|
|
|
/*
|
|
* Clear out the old buffers
|
|
*/
|
|
fp->f_ind_cache_block = ~0;
|
|
fp->f_buf_blkno = -1;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Given an offset in a file, find the disk block number (not zone!)
|
|
* that contains that block.
|
|
*/
|
|
static int
|
|
block_map(struct open_file *f, block_t file_block, block_t *disk_block_p)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
struct mfs_sblock *fs = fp->f_fs;
|
|
uint level;
|
|
block_t ind_cache;
|
|
block_t ind_block_num;
|
|
zone_t zone;
|
|
size_t rsize;
|
|
int rc;
|
|
int boff;
|
|
int scale = fs->mfs_log_zone_size; /* for block-zone conversion */
|
|
block_t *buf = (void *)fp->f_buf;
|
|
|
|
/*
|
|
* Index structure of an inode:
|
|
*
|
|
* mdi_blocks[0..NR_DZONES-1]
|
|
* hold zone numbers for zones
|
|
* 0..NR_DZONES-1
|
|
*
|
|
* mdi_blocks[NR_DZONES+0]
|
|
* block NDADDR+0 is the single indirect block
|
|
* holds zone numbers for zones
|
|
* NR_DZONES .. NR_DZONES + MFS_NINDIR(fs)-1
|
|
*
|
|
* mdi_blocks[NR_DZONES+1]
|
|
* block NDADDR+1 is the double indirect block
|
|
* holds zone numbers for INDEX blocks for zones
|
|
* NR_DZONES + MFS_NINDIR(fs) ..
|
|
* NR_TZONES + MFS_NINDIR(fs) + MFS_NINDIR(fs)**2 - 1
|
|
*/
|
|
|
|
zone = file_block >> scale;
|
|
boff = (int) (file_block - (zone << scale) ); /* relative blk in zone */
|
|
|
|
if (zone < NR_DZONES) {
|
|
/* Direct zone */
|
|
zone_t z = fs2h32(fp->f_di.mdi_zone[zone]);
|
|
if (z == NO_ZONE) {
|
|
*disk_block_p = NO_BLOCK;
|
|
return 0;
|
|
}
|
|
*disk_block_p = (block_t) ((z << scale) + boff);
|
|
return 0;
|
|
}
|
|
|
|
zone -= NR_DZONES;
|
|
|
|
ind_cache = zone >> LN2_IND_CACHE_SZ;
|
|
if (ind_cache == fp->f_ind_cache_block) {
|
|
*disk_block_p =
|
|
fs2h32(fp->f_ind_cache[zone & IND_CACHE_MASK]);
|
|
return 0;
|
|
}
|
|
|
|
for (level = 0;;) {
|
|
level += fp->f_nishift;
|
|
|
|
if (zone < (block_t)1 << level)
|
|
break;
|
|
if (level > NIADDR * fp->f_nishift)
|
|
/* Zone number too high */
|
|
return EFBIG;
|
|
zone -= (block_t)1 << level;
|
|
}
|
|
|
|
ind_block_num =
|
|
fs2h32(fp->f_di.mdi_zone[NR_DZONES + (level / fp->f_nishift - 1)]);
|
|
|
|
for (;;) {
|
|
level -= fp->f_nishift;
|
|
if (ind_block_num == 0) {
|
|
*disk_block_p = NO_BLOCK; /* missing */
|
|
return 0;
|
|
}
|
|
|
|
twiddle();
|
|
/*
|
|
* If we were feeling brave, we could work out the number
|
|
* of the disk sector and read a single disk sector instead
|
|
* of a filesystem block.
|
|
* However we don't do this very often anyway...
|
|
*/
|
|
rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
|
|
FSBTODB(fs, ind_block_num), fs->mfs_block_size,
|
|
buf, &rsize);
|
|
if (rc)
|
|
return rc;
|
|
if (rsize != fs->mfs_block_size)
|
|
return EIO;
|
|
|
|
ind_block_num = fs2h32(buf[zone >> level]);
|
|
if (level == 0)
|
|
break;
|
|
zone &= (1 << level) - 1;
|
|
}
|
|
|
|
/* Save the part of the block that contains this sector */
|
|
memcpy(fp->f_ind_cache, &buf[zone & ~IND_CACHE_MASK],
|
|
IND_CACHE_SZ * sizeof fp->f_ind_cache[0]);
|
|
fp->f_ind_cache_block = ind_cache;
|
|
|
|
zone = (zone_t)ind_block_num;
|
|
*disk_block_p = (block_t)((zone << scale) + boff);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read a portion of a file into an internal buffer.
|
|
* Return the location in the buffer and the amount in the buffer.
|
|
*/
|
|
static int
|
|
buf_read_file(struct open_file *f, void *v, size_t *size_p)
|
|
{
|
|
char **buf_p = v;
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
struct mfs_sblock *fs = fp->f_fs;
|
|
long off;
|
|
block_t file_block;
|
|
block_t disk_block = 0; /* XXX: gcc */
|
|
size_t block_size;
|
|
int rc;
|
|
|
|
off = mfs_blkoff(fs, fp->f_seekp);
|
|
file_block = mfs_lblkno(fs, fp->f_seekp);
|
|
block_size = fs->mfs_block_size;
|
|
|
|
if (file_block != fp->f_buf_blkno) {
|
|
rc = block_map(f, file_block, &disk_block);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (disk_block == 0) {
|
|
memset(fp->f_buf, 0, block_size);
|
|
fp->f_buf_size = block_size;
|
|
} else {
|
|
twiddle();
|
|
rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
|
|
FSBTODB(fs, disk_block),
|
|
block_size, fp->f_buf, &fp->f_buf_size);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
|
|
fp->f_buf_blkno = file_block;
|
|
}
|
|
|
|
/*
|
|
* Return address of byte in buffer corresponding to
|
|
* offset, and size of remainder of buffer after that
|
|
* byte.
|
|
*/
|
|
*buf_p = fp->f_buf + off;
|
|
*size_p = block_size - off;
|
|
|
|
/*
|
|
* But truncate buffer at end of file.
|
|
*/
|
|
if (*size_p > fp->f_di.mdi_size - fp->f_seekp)
|
|
*size_p = fp->f_di.mdi_size - fp->f_seekp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Search a directory for a name and return its
|
|
* inode number.
|
|
*/
|
|
static int
|
|
search_directory(const char *name, int length, struct open_file *f,
|
|
ino32_t *inumber_p)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
struct mfs_sblock *fs = fp->f_fs;
|
|
struct mfs_direct *dp;
|
|
struct mfs_direct *dbuf;
|
|
size_t buf_size;
|
|
int namlen;
|
|
int rc;
|
|
|
|
fp->f_seekp = 0;
|
|
|
|
while (fp->f_seekp < (off_t)fp->f_di.mdi_size) {
|
|
rc = buf_read_file(f, (void *)&dbuf, &buf_size);
|
|
if (rc)
|
|
return rc;
|
|
if (buf_size == 0)
|
|
return EIO;
|
|
|
|
/* XXX we assume, that buf_read_file reads an fs block and
|
|
* doesn't truncate buffer. Currently i_size in MFS doesn't
|
|
* the same as size of allocated blocks, it makes buf_read_file
|
|
* to truncate buf_size.
|
|
*/
|
|
if (buf_size < fs->mfs_block_size)
|
|
buf_size = fs->mfs_block_size;
|
|
|
|
for (dp = dbuf; dp < &dbuf[NR_DIR_ENTRIES(fs)]; dp++) {
|
|
char *cp;
|
|
if (fs2h32(dp->mfsd_ino) == (ino32_t) 0)
|
|
continue;
|
|
/* Compute the length of the name */
|
|
cp = memchr(dp->mfsd_name, '\0', sizeof(dp->mfsd_name));
|
|
if (cp == NULL)
|
|
namlen = sizeof(dp->mfsd_name);
|
|
else
|
|
namlen = cp - (dp->mfsd_name);
|
|
|
|
if (namlen == length &&
|
|
!memcmp(name, dp->mfsd_name, length)) {
|
|
/* found entry */
|
|
*inumber_p = fs2h32(dp->mfsd_ino);
|
|
return 0;
|
|
}
|
|
}
|
|
fp->f_seekp += buf_size;
|
|
}
|
|
return ENOENT;
|
|
}
|
|
|
|
int
|
|
read_sblock(struct open_file *f, struct mfs_sblock *fs)
|
|
{
|
|
static uint8_t sbbuf[MINBSIZE];
|
|
size_t buf_size;
|
|
int rc;
|
|
|
|
/* We must read amount multiple of sector size, hence we can't
|
|
* read SBSIZE and read MINBSIZE.
|
|
*/
|
|
if (SBSIZE > MINBSIZE)
|
|
return EINVAL;
|
|
|
|
rc = DEV_STRATEGY(f->f_dev)(f->f_devdata, F_READ,
|
|
SUPER_BLOCK_OFF / DEV_BSIZE, MINBSIZE, sbbuf, &buf_size);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (buf_size != MINBSIZE)
|
|
return EIO;
|
|
|
|
mfs_sbload((void *)sbbuf, fs);
|
|
|
|
if (fs->mfs_magic != SUPER_MAGIC)
|
|
return EINVAL;
|
|
if (fs->mfs_block_size < MINBSIZE)
|
|
return EINVAL;
|
|
if ((fs->mfs_block_size % 512) != 0)
|
|
return EINVAL;
|
|
if (SBSIZE > fs->mfs_block_size)
|
|
return EINVAL;
|
|
if ((fs->mfs_block_size % INODE_SIZE) != 0)
|
|
return EINVAL;
|
|
|
|
/* For even larger disks, a similar problem occurs with s_firstdatazone.
|
|
* If the on-disk field contains zero, we assume that the value was too
|
|
* large to fit, and compute it on the fly.
|
|
*/
|
|
if (fs->mfs_firstdatazone_old == 0) {
|
|
block_t offset;
|
|
offset = START_BLOCK + fs->mfs_imap_blocks + fs->mfs_zmap_blocks;
|
|
offset += (fs->mfs_ninodes + fs->mfs_inodes_per_block - 1) /
|
|
fs->mfs_inodes_per_block;
|
|
|
|
fs->mfs_firstdatazone =
|
|
(offset + (1 << fs->mfs_log_zone_size) - 1) >>
|
|
fs->mfs_log_zone_size;
|
|
} else {
|
|
fs->mfs_firstdatazone = (zone_t) fs->mfs_firstdatazone_old;
|
|
}
|
|
|
|
if (fs->mfs_imap_blocks < 1 || fs->mfs_zmap_blocks < 1
|
|
|| fs->mfs_ninodes < 1 || fs->mfs_zones < 1
|
|
|| fs->mfs_firstdatazone <= 4
|
|
|| fs->mfs_firstdatazone >= fs->mfs_zones
|
|
|| (unsigned) fs->mfs_log_zone_size > 4)
|
|
return EINVAL;
|
|
|
|
/* compute in-memory mfs_sblock values */
|
|
fs->mfs_inodes_per_block = fs->mfs_block_size / INODE_SIZE;
|
|
|
|
|
|
{
|
|
int32_t mult = fs->mfs_block_size >> LOG_MINBSIZE;
|
|
int ln2 = LOG_MINBSIZE;
|
|
|
|
for (; mult != 1; ln2++)
|
|
mult >>= 1;
|
|
|
|
fs->mfs_bshift = ln2;
|
|
/* XXX assume hw bsize = 512 */
|
|
fs->mfs_fsbtodb = ln2 - LOG_MINBSIZE + 1;
|
|
}
|
|
|
|
fs->mfs_qbmask = fs->mfs_block_size - 1;
|
|
fs->mfs_bmask = ~fs->mfs_qbmask;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Open a file.
|
|
*/
|
|
__compactcall int
|
|
minixfs3_open(const char *path, struct open_file *f)
|
|
{
|
|
#ifndef LIBSA_FS_SINGLECOMPONENT
|
|
const char *cp, *ncp;
|
|
int c;
|
|
#endif
|
|
ino32_t inumber;
|
|
struct file *fp;
|
|
struct mfs_sblock *fs;
|
|
int rc;
|
|
#ifndef LIBSA_NO_FS_SYMLINK
|
|
ino32_t parent_inumber;
|
|
int nlinks = 0;
|
|
char namebuf[MAXPATHLEN+1];
|
|
char *buf;
|
|
#endif
|
|
|
|
/* allocate file system specific data structure */
|
|
fp = alloc(sizeof(struct file));
|
|
memset(fp, 0, sizeof(struct file));
|
|
f->f_fsdata = (void *)fp;
|
|
|
|
/* allocate space and read super block */
|
|
fs = alloc(sizeof(*fs));
|
|
memset(fs, 0, sizeof(*fs));
|
|
fp->f_fs = fs;
|
|
twiddle();
|
|
|
|
rc = read_sblock(f, fs);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* alloc a block sized buffer used for all fs transfers */
|
|
fp->f_buf = alloc(fs->mfs_block_size);
|
|
|
|
/*
|
|
* Calculate indirect block levels.
|
|
*/
|
|
{
|
|
int32_t mult;
|
|
int ln2;
|
|
|
|
/*
|
|
* We note that the number of indirect blocks is always
|
|
* a power of 2. This lets us use shifts and masks instead
|
|
* of divide and remainder and avoinds pulling in the
|
|
* 64bit division routine into the boot code.
|
|
*/
|
|
mult = MFS_NINDIR(fs);
|
|
#ifdef DEBUG
|
|
if (!powerof2(mult)) {
|
|
/* Hummm was't a power of 2 */
|
|
rc = EINVAL;
|
|
goto out;
|
|
}
|
|
#endif
|
|
for (ln2 = 0; mult != 1; ln2++)
|
|
mult >>= 1;
|
|
|
|
fp->f_nishift = ln2;
|
|
}
|
|
|
|
inumber = ROOT_INODE;
|
|
if ((rc = read_inode(inumber, f)) != 0)
|
|
goto out;
|
|
|
|
#ifndef LIBSA_FS_SINGLECOMPONENT
|
|
cp = path;
|
|
while (*cp) {
|
|
|
|
/*
|
|
* Remove extra separators
|
|
*/
|
|
while (*cp == '/')
|
|
cp++;
|
|
if (*cp == '\0')
|
|
break;
|
|
|
|
/*
|
|
* Check that current node is a directory.
|
|
*/
|
|
if ((fp->f_di.mdi_mode & I_TYPE) != I_DIRECTORY) {
|
|
rc = ENOTDIR;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Get next component of path name.
|
|
*/
|
|
ncp = cp;
|
|
while ((c = *cp) != '\0' && c != '/')
|
|
cp++;
|
|
|
|
/*
|
|
* Look up component in current directory.
|
|
* Save directory inumber in case we find a
|
|
* symbolic link.
|
|
*/
|
|
#ifndef LIBSA_NO_FS_SYMLINK
|
|
parent_inumber = inumber;
|
|
#endif
|
|
rc = search_directory(ncp, cp - ncp, f, &inumber);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/*
|
|
* Open next component.
|
|
*/
|
|
if ((rc = read_inode(inumber, f)) != 0)
|
|
goto out;
|
|
|
|
#ifndef LIBSA_NO_FS_SYMLINK
|
|
/*
|
|
* Check for symbolic link.
|
|
*/
|
|
if ((fp->f_di.mdi_mode & I_TYPE) == I_SYMBOLIC_LINK) {
|
|
int link_len = fp->f_di.mdi_size;
|
|
int len;
|
|
size_t buf_size;
|
|
block_t disk_block;
|
|
|
|
len = strlen(cp);
|
|
|
|
if (link_len + len > MAXPATHLEN ||
|
|
++nlinks > MAXSYMLINKS) {
|
|
rc = ENOENT;
|
|
goto out;
|
|
}
|
|
|
|
memmove(&namebuf[link_len], cp, len + 1);
|
|
|
|
/*
|
|
* Read file for symbolic link
|
|
*/
|
|
buf = fp->f_buf;
|
|
rc = block_map(f, (block_t)0, &disk_block);
|
|
if (rc)
|
|
goto out;
|
|
|
|
twiddle();
|
|
rc = DEV_STRATEGY(f->f_dev)(f->f_devdata,
|
|
F_READ, FSBTODB(fs, disk_block),
|
|
fs->mfs_block_size, buf, &buf_size);
|
|
if (rc)
|
|
goto out;
|
|
|
|
memcpy(namebuf, buf, link_len);
|
|
|
|
/*
|
|
* If relative pathname, restart at parent directory.
|
|
* If absolute pathname, restart at root.
|
|
*/
|
|
cp = namebuf;
|
|
if (*cp != '/')
|
|
inumber = parent_inumber;
|
|
else
|
|
inumber = (ino32_t) ROOT_INODE;
|
|
|
|
if ((rc = read_inode(inumber, f)) != 0)
|
|
goto out;
|
|
}
|
|
#endif /* !LIBSA_NO_FS_SYMLINK */
|
|
}
|
|
|
|
/*
|
|
* Found terminal component.
|
|
*/
|
|
rc = 0;
|
|
|
|
#else /* !LIBSA_FS_SINGLECOMPONENT */
|
|
|
|
/* look up component in the current (root) directory */
|
|
rc = search_directory(path, strlen(path), f, &inumber);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* open it */
|
|
rc = read_inode(inumber, f);
|
|
|
|
#endif /* !LIBSA_FS_SINGLECOMPONENT */
|
|
|
|
fp->f_seekp = 0; /* reset seek pointer */
|
|
|
|
out:
|
|
if (rc)
|
|
minixfs3_close(f);
|
|
|
|
return rc;
|
|
}
|
|
|
|
__compactcall int
|
|
minixfs3_close(struct open_file *f)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
|
|
f->f_fsdata = NULL;
|
|
if (fp == NULL)
|
|
return 0;
|
|
|
|
if (fp->f_buf)
|
|
dealloc(fp->f_buf, fp->f_fs->mfs_block_size);
|
|
dealloc(fp->f_fs, sizeof(*fp->f_fs));
|
|
dealloc(fp, sizeof(struct file));
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Copy a portion of a file into kernel memory.
|
|
* Cross block boundaries when necessary.
|
|
*/
|
|
__compactcall int
|
|
minixfs3_read(struct open_file *f, void *start, size_t size, size_t *resid)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
size_t csize;
|
|
char *buf;
|
|
size_t buf_size;
|
|
int rc = 0;
|
|
char *addr = start;
|
|
|
|
while (size != 0) {
|
|
if (fp->f_seekp >= (off_t)fp->f_di.mdi_size)
|
|
break;
|
|
|
|
rc = buf_read_file(f, &buf, &buf_size);
|
|
if (rc)
|
|
break;
|
|
|
|
csize = size;
|
|
if (csize > buf_size)
|
|
csize = buf_size;
|
|
|
|
memcpy(addr, buf, csize);
|
|
|
|
fp->f_seekp += csize;
|
|
addr += csize;
|
|
size -= csize;
|
|
}
|
|
|
|
if (resid)
|
|
*resid = size;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Not implemented.
|
|
*/
|
|
#ifndef LIBSA_NO_FS_WRITE
|
|
__compactcall int
|
|
minixfs3_write(struct open_file *f, void *start, size_t size, size_t *resid)
|
|
{
|
|
|
|
return EROFS;
|
|
}
|
|
#endif /* !LIBSA_NO_FS_WRITE */
|
|
|
|
#ifndef LIBSA_NO_FS_SEEK
|
|
__compactcall off_t
|
|
minixfs3_seek(struct open_file *f, off_t offset, int where)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
|
|
switch (where) {
|
|
case SEEK_SET:
|
|
fp->f_seekp = offset;
|
|
break;
|
|
case SEEK_CUR:
|
|
fp->f_seekp += offset;
|
|
break;
|
|
case SEEK_END:
|
|
fp->f_seekp = fp->f_di.mdi_size - offset;
|
|
break;
|
|
default:
|
|
return -1;
|
|
}
|
|
return fp->f_seekp;
|
|
}
|
|
#endif /* !LIBSA_NO_FS_SEEK */
|
|
|
|
__compactcall int
|
|
minixfs3_stat(struct open_file *f, struct stat *sb)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
|
|
/* only important stuff */
|
|
memset(sb, 0, sizeof *sb);
|
|
sb->st_mode = fp->f_di.mdi_mode;
|
|
sb->st_uid = fp->f_di.mdi_uid;
|
|
sb->st_gid = fp->f_di.mdi_gid;
|
|
sb->st_size = fp->f_di.mdi_size;
|
|
return 0;
|
|
}
|
|
|
|
#if defined(LIBSA_ENABLE_LS_OP)
|
|
#include "ls.h"
|
|
__compactcall void
|
|
minixfs3_ls(struct open_file *f, const char *pattern)
|
|
{
|
|
struct file *fp = (struct file *)f->f_fsdata;
|
|
struct mfs_sblock *fs = fp->f_fs;
|
|
struct mfs_direct *dp;
|
|
struct mfs_direct *dbuf;
|
|
size_t buf_size;
|
|
lsentry_t *names = 0;
|
|
|
|
fp->f_seekp = 0;
|
|
while (fp->f_seekp < (off_t)fp->f_di.mdi_size) {
|
|
int rc = buf_read_file(f, &dbuf, &buf_size);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* XXX we assume, that buf_read_file reads an fs block and
|
|
* doesn't truncate buffer. Currently i_size in MFS doesn't
|
|
* the same as size of allocated blocks, it makes buf_read_file
|
|
* to truncate buf_size.
|
|
*/
|
|
if (buf_size < fs->mfs_block_size)
|
|
buf_size = fs->mfs_block_size;
|
|
|
|
for (dp = dbuf; dp < &dbuf[NR_DIR_ENTRIES(fs)]; dp++) {
|
|
char *cp;
|
|
int namlen;
|
|
|
|
if (fs2h32(dp->mfsd_ino) == 0)
|
|
continue;
|
|
|
|
/* Compute the length of the name,
|
|
* We don't use strlen and strcpy, because original MFS
|
|
* code doesn't.
|
|
*/
|
|
cp = memchr(dp->mfsd_name, '\0', sizeof(dp->mfsd_name));
|
|
if (cp == NULL)
|
|
namlen = sizeof(dp->mfsd_name);
|
|
else
|
|
namlen = cp - (dp->mfsd_name);
|
|
|
|
lsadd(&names, pattern, dp->mfsd_name, namlen,
|
|
fs2h32(dp->mfsd_ino), "?");
|
|
}
|
|
fp->f_seekp += buf_size;
|
|
}
|
|
lsprint(names);
|
|
out: lsfree(names);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* byte swap functions for big endian machines
|
|
* (mfs is always little endian)
|
|
*/
|
|
|
|
/* These functions are only needed if native byte order is not big endian */
|
|
#if BYTE_ORDER == BIG_ENDIAN
|
|
void
|
|
minixfs3_sb_bswap(struct mfs_sblock *old, struct mfs_sblock *new)
|
|
{
|
|
new->mfs_ninodes = bswap32(old->mfs_ninodes);
|
|
new->mfs_nzones = bswap16(old->mfs_nzones);
|
|
new->mfs_imap_blocks = bswap16(old->mfs_imap_blocks);
|
|
new->mfs_zmap_blocks = bswap16(old->mfs_zmap_blocks);
|
|
new->mfs_firstdatazone_old = bswap16(old->mfs_firstdatazone_old);
|
|
new->mfs_log_zone_size = bswap16(old->mfs_log_zone_size);
|
|
new->mfs_max_size = bswap32(old->mfs_max_size);
|
|
new->mfs_zones = bswap32(old->mfs_zones);
|
|
new->mfs_magic = bswap16(old->mfs_magic);
|
|
new->mfs_block_size = bswap16(old->mfs_block_size);
|
|
new->mfs_disk_version = old->mfs_disk_version;
|
|
}
|
|
|
|
void minixfs3_i_bswap(struct mfs_dinode *old, struct mfs_dinode *new)
|
|
{
|
|
int i;
|
|
|
|
new->mdi_mode = bswap16(old->mdi_mode);
|
|
new->mdi_nlinks = bswap16(old->mdi_nlinks);
|
|
new->mdi_uid = bswap16(old->mdi_uid);
|
|
new->mdi_gid = bswap16(old->mdi_gid);
|
|
new->mdi_size = bswap32(old->mdi_size);
|
|
new->mdi_atime = bswap32(old->mdi_atime);
|
|
new->mdi_mtime = bswap32(old->mdi_mtime);
|
|
new->mdi_ctime = bswap32(old->mdi_ctime);
|
|
|
|
/* We don't swap here, because indirects must be swapped later
|
|
* anyway, hence everything is done by block_map().
|
|
*/
|
|
for (i = 0; i < NR_TZONES; i++)
|
|
new->mdi_zone[i] = old->mdi_zone[i];
|
|
}
|
|
#endif
|