NetBSD/sys/dev/pci/voyager/pwmclock.c
macallan a1fe73c229 found the missing commit so put this back
am I the only one here with a Gdium?
2013-05-14 09:19:36 +00:00

397 lines
12 KiB
C

/* $NetBSD: pwmclock.c,v 1.10 2013/05/14 09:19:36 macallan Exp $ */
/*
* Copyright (c) 2011 Michael Lorenz
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pwmclock.c,v 1.10 2013/05/14 09:19:36 macallan Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/cpu.h>
#include <sys/timetc.h>
#include <sys/sysctl.h>
#include <dev/pci/voyagervar.h>
#include <dev/ic/sm502reg.h>
#include <mips/mips3_clock.h>
#include <mips/locore.h>
#include <mips/bonito/bonitoreg.h>
#include <mips/bonito/bonitovar.h>
#include "opt_pwmclock.h"
#ifdef PWMCLOCK_DEBUG
#define DPRINTF aprint_error
#else
#define DPRINTF while (0) printf
#endif
int pwmclock_intr(void *);
struct pwmclock_softc {
device_t sc_dev;
bus_space_tag_t sc_memt;
bus_space_handle_t sc_regh;
uint32_t sc_reg, sc_last;
uint32_t sc_scale[8];
uint32_t sc_count; /* should probably be 64 bit */
int sc_step;
int sc_step_wanted;
void *sc_shutdown_cookie;
};
static int pwmclock_match(device_t, cfdata_t, void *);
static void pwmclock_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(pwmclock, sizeof(struct pwmclock_softc),
pwmclock_match, pwmclock_attach, NULL, NULL);
static void pwmclock_start(void);
static u_int get_pwmclock_timecount(struct timecounter *);
struct pwmclock_softc *pwmclock;
extern void (*initclocks_ptr)(void);
extern struct clockframe cf;
/* 0, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1 */
static int scale_m[] = {1, 1, 3, 1, 5, 3, 7, 1};
static int scale_d[] = {0, 4, 8, 2, 8, 4, 8, 1};
#define scale(x, f) (x * scale_d[f] / scale_m[f])
void pwmclock_set_speed(struct pwmclock_softc *, int);
static int pwmclock_cpuspeed_temp(SYSCTLFN_ARGS);
static int pwmclock_cpuspeed_cur(SYSCTLFN_ARGS);
static int pwmclock_cpuspeed_available(SYSCTLFN_ARGS);
static void pwmclock_shutdown(void *);
static struct timecounter pwmclock_timecounter = {
get_pwmclock_timecount, /* get_timecount */
0, /* no poll_pps */
0xffffffff, /* counter_mask */
0, /* frequency */
"pwm", /* name */
100, /* quality */
NULL, /* tc_priv */
NULL /* tc_next */
};
static int
pwmclock_match(device_t parent, cfdata_t match, void *aux)
{
struct voyager_attach_args *vaa = (struct voyager_attach_args *)aux;
if (strcmp(vaa->vaa_name, "pwmclock") == 0) return 100;
return 0;
}
static uint32_t
pwmclock_wait_edge(struct pwmclock_softc *sc)
{
/* clear interrupt */
bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
while ((bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1) &
SM502_PWM_INTR_PENDING) == 0);
return mips3_cp0_count_read();
}
static void
pwmclock_attach(device_t parent, device_t self, void *aux)
{
struct pwmclock_softc *sc = device_private(self);
struct voyager_attach_args *vaa = aux;
const struct sysctlnode *sysctl_node, *me, *freq;
uint32_t reg, last, curr, diff, acc;
int i, clk;
sc->sc_dev = self;
sc->sc_memt = vaa->vaa_tag;
sc->sc_regh = vaa->vaa_regh;
aprint_normal("\n");
voyager_establish_intr(parent, 22, pwmclock_intr, sc);
reg = voyager_set_pwm(100, 100); /* 100Hz, 10% duty cycle */
reg |= SM502_PWM_ENABLE | SM502_PWM_ENABLE_INTR |
SM502_PWM_INTR_PENDING;
sc->sc_reg = reg;
pwmclock = sc;
initclocks_ptr = pwmclock_start;
/*
* Establish a hook so on shutdown we can set the CPU clock back to
* full speed. This is necessary because PMON doesn't change the
* clock scale register on a warm boot, the MIPS clock code gets
* confused if we're too slow and the loongson-specific bits run
* too late in the boot process
*/
sc->sc_shutdown_cookie = shutdownhook_establish(pwmclock_shutdown, sc);
/* ok, let's see how far the cycle counter gets between interrupts */
DPRINTF("calibrating CPU timer...\n");
for (clk = 1; clk < 8; clk++) {
REGVAL(LS2F_CHIPCFG0) =
(REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | clk;
bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1,
sc->sc_reg);
acc = 0;
last = pwmclock_wait_edge(sc);
for (i = 0; i < 16; i++) {
curr = pwmclock_wait_edge(sc);
diff = curr - last;
acc += diff;
last = curr;
}
sc->sc_scale[clk] = (acc >> 4) / 5000;
}
#ifdef PWMCLOCK_DEBUG
for (clk = 1; clk < 8; clk++) {
aprint_normal_dev(sc->sc_dev, "%d/8: %d\n", clk + 1,
sc->sc_scale[clk]);
}
#endif
sc->sc_step = 7;
sc->sc_step_wanted = 7;
/* now setup sysctl */
if (sysctl_createv(NULL, 0, NULL,
&me,
CTLFLAG_READWRITE, CTLTYPE_NODE, "loongson", NULL, NULL,
0, NULL, 0, CTL_MACHDEP, CTL_CREATE, CTL_EOL) != 0)
aprint_error_dev(sc->sc_dev,
"couldn't create 'loongson' node\n");
if (sysctl_createv(NULL, 0, NULL,
&freq,
CTLFLAG_READWRITE, CTLTYPE_NODE, "frequency", NULL, NULL, 0, NULL,
0, CTL_MACHDEP, me->sysctl_num, CTL_CREATE, CTL_EOL) != 0)
aprint_error_dev(sc->sc_dev,
"couldn't create 'frequency' node\n");
if (sysctl_createv(NULL, 0, NULL,
&sysctl_node,
CTLFLAG_READWRITE | CTLFLAG_OWNDESC,
CTLTYPE_INT, "target", "CPU speed", pwmclock_cpuspeed_temp,
0, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
CTL_CREATE, CTL_EOL) == 0) {
} else
aprint_error_dev(sc->sc_dev,
"couldn't create 'target' node\n");
if (sysctl_createv(NULL, 0, NULL,
&sysctl_node,
CTLFLAG_READWRITE,
CTLTYPE_INT, "current", NULL, pwmclock_cpuspeed_cur,
1, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
CTL_CREATE, CTL_EOL) == 0) {
} else
aprint_error_dev(sc->sc_dev,
"couldn't create 'current' node\n");
if (sysctl_createv(NULL, 0, NULL,
&sysctl_node,
CTLFLAG_READWRITE,
CTLTYPE_STRING, "available", NULL, pwmclock_cpuspeed_available,
2, (void *)sc, 0, CTL_MACHDEP, me->sysctl_num, freq->sysctl_num,
CTL_CREATE, CTL_EOL) == 0) {
} else
aprint_error_dev(sc->sc_dev,
"couldn't create 'available' node\n");
}
static void
pwmclock_shutdown(void *cookie)
{
struct pwmclock_softc *sc = cookie;
/* just in case the interrupt handler runs again after this */
sc->sc_step_wanted = 7;
/* set the clock to full speed */
REGVAL(LS2F_CHIPCFG0) =
(REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) | 7;
}
void
pwmclock_set_speed(struct pwmclock_softc *sc, int speed)
{
if ((speed < 1) || (speed > 7))
return;
sc->sc_step_wanted = speed;
DPRINTF("%s: %d\n", __func__, speed);
}
/*
* the PWM interrupt handler
* we don't have a CPU clock independent, high resolution counter so we're
* stuck with a PWM that can't count and a CP0 counter that slows down or
* speeds up with the actual CPU speed. In order to still get halfway
* accurate time we do the following:
* - only change CPU speed in the timer interrupt
* - each timer interrupt we measure how many CP0 cycles passed since last
* time, adjust for CPU speed since we can be sure it didn't change, use
* that to update a separate counter
* - when reading the time counter we take the number of CP0 ticks since
* the last timer interrupt, scale it to CPU clock, return that plus the
* interrupt updated counter mentioned above to get something close to
* CP0 running at full speed
* - when changing CPU speed do it as close to taking the time from CP0 as
* possible to keep the period of time we spend with CP0 running at the
* wrong frequency as short as possible - hopefully short enough to stay
* insignificant compared to other noise since switching speeds isn't
* going to happen all that often
*/
int
pwmclock_intr(void *cookie)
{
struct pwmclock_softc *sc = cookie;
uint32_t reg, now, diff;
/* is it us? */
reg = bus_space_read_4(sc->sc_memt, sc->sc_regh, SM502_PWM1);
if ((reg & SM502_PWM_INTR_PENDING) == 0)
return 0;
/* yes, it's us, so clear the interrupt */
bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
/*
* this looks kinda funny but what we want here is this:
* - reading the counter and changing the CPU clock should be as
* close together as possible in order to remain halfway accurate
* - we need to use the previous sc_step in order to scale the
* interval passed since the last clock interrupt correctly, so
* we only change sc_step after doing that
*/
if (sc->sc_step_wanted != sc->sc_step) {
REGVAL(LS2F_CHIPCFG0) =
(REGVAL(LS2F_CHIPCFG0) & ~LS2FCFG_FREQSCALE_MASK) |
sc->sc_step_wanted;
}
now = mips3_cp0_count_read();
diff = now - sc->sc_last;
sc->sc_count += scale(diff, sc->sc_step);
sc->sc_last = now;
if (sc->sc_step_wanted != sc->sc_step) {
sc->sc_step = sc->sc_step_wanted;
}
hardclock(&cf);
return 1;
}
static void
pwmclock_start(void)
{
struct pwmclock_softc *sc = pwmclock;
sc->sc_count = 0;
sc->sc_last = mips3_cp0_count_read();
pwmclock_timecounter.tc_frequency = curcpu()->ci_cpu_freq / 2;
tc_init(&pwmclock_timecounter);
bus_space_write_4(sc->sc_memt, sc->sc_regh, SM502_PWM1, sc->sc_reg);
}
static u_int
get_pwmclock_timecount(struct timecounter *tc)
{
struct pwmclock_softc *sc = pwmclock;
uint32_t now, diff;
now = mips3_cp0_count_read();
diff = now - sc->sc_last;
return sc->sc_count + scale(diff, sc->sc_step);
}
static int
pwmclock_cpuspeed_temp(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
struct pwmclock_softc *sc = node.sysctl_data;
int mhz, i;
mhz = sc->sc_scale[sc->sc_step_wanted];
node.sysctl_data = &mhz;
if (sysctl_lookup(SYSCTLFN_CALL(&node)) == 0) {
int new_reg;
new_reg = *(int *)node.sysctl_data;
i = 1;
while ((i < 8) && (sc->sc_scale[i] != new_reg))
i++;
if (i > 7)
return EINVAL;
pwmclock_set_speed(sc, i);
return 0;
}
return EINVAL;
}
static int
pwmclock_cpuspeed_cur(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
struct pwmclock_softc *sc = node.sysctl_data;
int mhz;
mhz = sc->sc_scale[sc->sc_step];
node.sysctl_data = &mhz;
return sysctl_lookup(SYSCTLFN_CALL(&node));
}
static int
pwmclock_cpuspeed_available(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
struct pwmclock_softc *sc = node.sysctl_data;
char buf[128];
snprintf(buf, 128, "%d %d %d %d %d %d %d", sc->sc_scale[1],
sc->sc_scale[2], sc->sc_scale[3], sc->sc_scale[4],
sc->sc_scale[5], sc->sc_scale[6], sc->sc_scale[7]);
node.sysctl_data = buf;
return(sysctl_lookup(SYSCTLFN_CALL(&node)));
}
SYSCTL_SETUP(sysctl_ams_setup, "sysctl obio subtree setup")
{
sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_EOL);
}