NetBSD/sys/kern/vfs_vnode.c

2173 lines
54 KiB
C

/* $NetBSD: vfs_vnode.c,v 1.153 2023/11/27 16:13:59 hannken Exp $ */
/*-
* Copyright (c) 1997-2011, 2019, 2020 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, and by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
*/
/*
* The vnode cache subsystem.
*
* Life-cycle
*
* Normally, there are two points where new vnodes are created:
* VOP_CREATE(9) and VOP_LOOKUP(9). The life-cycle of a vnode
* starts in one of the following ways:
*
* - Allocation, via vcache_get(9) or vcache_new(9).
* - Reclamation of inactive vnode, via vcache_vget(9).
*
* Recycle from a free list, via getnewvnode(9) -> getcleanvnode(9)
* was another, traditional way. Currently, only the draining thread
* recycles the vnodes. This behaviour might be revisited.
*
* The life-cycle ends when the last reference is dropped, usually
* in VOP_REMOVE(9). In such case, VOP_INACTIVE(9) is called to inform
* the file system that vnode is inactive. Via this call, file system
* indicates whether vnode can be recycled (usually, it checks its own
* references, e.g. count of links, whether the file was removed).
*
* Depending on indication, vnode can be put into a free list (cache),
* or cleaned via vcache_reclaim, which calls VOP_RECLAIM(9) to
* disassociate underlying file system from the vnode, and finally
* destroyed.
*
* Vnode state
*
* Vnode is always in one of six states:
* - MARKER This is a marker vnode to help list traversal. It
* will never change its state.
* - LOADING Vnode is associating underlying file system and not
* yet ready to use.
* - LOADED Vnode has associated underlying file system and is
* ready to use.
* - BLOCKED Vnode is active but cannot get new references.
* - RECLAIMING Vnode is disassociating from the underlying file
* system.
* - RECLAIMED Vnode has disassociated from underlying file system
* and is dead.
*
* Valid state changes are:
* LOADING -> LOADED
* Vnode has been initialised in vcache_get() or
* vcache_new() and is ready to use.
* BLOCKED -> RECLAIMING
* Vnode starts disassociation from underlying file
* system in vcache_reclaim().
* RECLAIMING -> RECLAIMED
* Vnode finished disassociation from underlying file
* system in vcache_reclaim().
* LOADED -> BLOCKED
* Either vcache_rekey*() is changing the vnode key or
* vrelel() is about to call VOP_INACTIVE().
* BLOCKED -> LOADED
* The block condition is over.
* LOADING -> RECLAIMED
* Either vcache_get() or vcache_new() failed to
* associate the underlying file system or vcache_rekey*()
* drops a vnode used as placeholder.
*
* Of these states LOADING, BLOCKED and RECLAIMING are intermediate
* and it is possible to wait for state change.
*
* State is protected with v_interlock with one exception:
* to change from LOADING both v_interlock and vcache_lock must be held
* so it is possible to check "state == LOADING" without holding
* v_interlock. See vcache_get() for details.
*
* Reference counting
*
* Vnode is considered active, if reference count (vnode_t::v_usecount)
* is non-zero. It is maintained using: vref(9) and vrele(9), as well
* as vput(9), routines. Common points holding references are e.g.
* file openings, current working directory, mount points, etc.
*
* v_usecount is adjusted with atomic operations, however to change
* from a non-zero value to zero the interlock must also be held.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_vnode.c,v 1.153 2023/11/27 16:13:59 hannken Exp $");
#ifdef _KERNEL_OPT
#include "opt_pax.h"
#endif
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/atomic.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/hash.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/pax.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/threadpool.h>
#include <sys/vnode_impl.h>
#include <sys/wapbl.h>
#include <sys/fstrans.h>
#include <miscfs/deadfs/deadfs.h>
#include <miscfs/specfs/specdev.h>
#include <uvm/uvm.h>
#include <uvm/uvm_readahead.h>
#include <uvm/uvm_stat.h>
/* Flags to vrelel. */
#define VRELEL_ASYNC 0x0001 /* Always defer to vrele thread. */
#define LRU_VRELE 0
#define LRU_FREE 1
#define LRU_HOLD 2
#define LRU_COUNT 3
/*
* There are three lru lists: one holds vnodes waiting for async release,
* one is for vnodes which have no buffer/page references and one for those
* which do (i.e. v_holdcnt is non-zero). We put the lists into a single,
* private cache line as vnodes migrate between them while under the same
* lock (vdrain_lock).
*/
typedef struct {
vnode_impl_t *li_marker;
} lru_iter_t;
u_int numvnodes __cacheline_aligned;
static vnodelst_t lru_list[LRU_COUNT] __cacheline_aligned;
static struct threadpool *threadpool;
static struct threadpool_job vdrain_job;
static struct threadpool_job vrele_job;
static kmutex_t vdrain_lock __cacheline_aligned;
SLIST_HEAD(hashhead, vnode_impl);
static kmutex_t vcache_lock __cacheline_aligned;
static kcondvar_t vcache_cv;
static u_int vcache_hashsize;
static u_long vcache_hashmask;
static struct hashhead *vcache_hashtab;
static pool_cache_t vcache_pool;
static void lru_requeue(vnode_t *, vnodelst_t *);
static vnodelst_t * lru_which(vnode_t *);
static vnode_impl_t * lru_iter_first(int, lru_iter_t *);
static vnode_impl_t * lru_iter_next(lru_iter_t *);
static void lru_iter_release(lru_iter_t *);
static vnode_impl_t * vcache_alloc(void);
static void vcache_dealloc(vnode_impl_t *);
static void vcache_free(vnode_impl_t *);
static void vcache_init(void);
static void vcache_reinit(void);
static void vcache_reclaim(vnode_t *);
static void vrele_deferred(vnode_impl_t *);
static void vrelel(vnode_t *, int, int);
static void vnpanic(vnode_t *, const char *, ...)
__printflike(2, 3);
static bool vdrain_one(u_int);
static void vdrain_task(struct threadpool_job *);
static void vrele_task(struct threadpool_job *);
/* Routines having to do with the management of the vnode table. */
/*
* The high bit of v_usecount is a gate for vcache_tryvget(). It's set
* only when the vnode state is LOADED.
* The next bit of v_usecount is a flag for vrelel(). It's set
* from vcache_vget() and vcache_tryvget() whenever the operation succeeds.
*/
#define VUSECOUNT_MASK 0x3fffffff
#define VUSECOUNT_GATE 0x80000000
#define VUSECOUNT_VGET 0x40000000
/*
* Return the current usecount of a vnode.
*/
inline int
vrefcnt(struct vnode *vp)
{
return atomic_load_relaxed(&vp->v_usecount) & VUSECOUNT_MASK;
}
/* Vnode state operations and diagnostics. */
#if defined(DIAGNOSTIC)
#define VSTATE_VALID(state) \
((state) != VS_ACTIVE && (state) != VS_MARKER)
#define VSTATE_GET(vp) \
vstate_assert_get((vp), __func__, __LINE__)
#define VSTATE_CHANGE(vp, from, to) \
vstate_assert_change((vp), (from), (to), __func__, __LINE__)
#define VSTATE_WAIT_STABLE(vp) \
vstate_assert_wait_stable((vp), __func__, __LINE__)
void
_vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
bool has_lock)
{
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
int refcnt = vrefcnt(vp);
if (!has_lock) {
enum vnode_state vstate = atomic_load_relaxed(&vip->vi_state);
if (state == VS_ACTIVE && refcnt > 0 &&
(vstate == VS_LOADED || vstate == VS_BLOCKED))
return;
if (vstate == state)
return;
mutex_enter((vp)->v_interlock);
}
KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
if ((state == VS_ACTIVE && refcnt > 0 &&
(vip->vi_state == VS_LOADED || vip->vi_state == VS_BLOCKED)) ||
vip->vi_state == state) {
if (!has_lock)
mutex_exit((vp)->v_interlock);
return;
}
vnpanic(vp, "state is %s, usecount %d, expected %s at %s:%d",
vstate_name(vip->vi_state), refcnt,
vstate_name(state), func, line);
}
static enum vnode_state
vstate_assert_get(vnode_t *vp, const char *func, int line)
{
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
if (! VSTATE_VALID(vip->vi_state))
vnpanic(vp, "state is %s at %s:%d",
vstate_name(vip->vi_state), func, line);
return vip->vi_state;
}
static void
vstate_assert_wait_stable(vnode_t *vp, const char *func, int line)
{
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
if (! VSTATE_VALID(vip->vi_state))
vnpanic(vp, "state is %s at %s:%d",
vstate_name(vip->vi_state), func, line);
while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
cv_wait(&vp->v_cv, vp->v_interlock);
if (! VSTATE_VALID(vip->vi_state))
vnpanic(vp, "state is %s at %s:%d",
vstate_name(vip->vi_state), func, line);
}
static void
vstate_assert_change(vnode_t *vp, enum vnode_state from, enum vnode_state to,
const char *func, int line)
{
bool gated = (atomic_load_relaxed(&vp->v_usecount) & VUSECOUNT_GATE);
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
KASSERTMSG(mutex_owned(vp->v_interlock), "at %s:%d", func, line);
if (from == VS_LOADING)
KASSERTMSG(mutex_owned(&vcache_lock), "at %s:%d", func, line);
if (! VSTATE_VALID(from))
vnpanic(vp, "from is %s at %s:%d",
vstate_name(from), func, line);
if (! VSTATE_VALID(to))
vnpanic(vp, "to is %s at %s:%d",
vstate_name(to), func, line);
if (vip->vi_state != from)
vnpanic(vp, "from is %s, expected %s at %s:%d\n",
vstate_name(vip->vi_state), vstate_name(from), func, line);
if ((from == VS_LOADED) != gated)
vnpanic(vp, "state is %s, gate %d does not match at %s:%d\n",
vstate_name(vip->vi_state), gated, func, line);
/* Open/close the gate for vcache_tryvget(). */
if (to == VS_LOADED) {
membar_release();
atomic_or_uint(&vp->v_usecount, VUSECOUNT_GATE);
} else {
atomic_and_uint(&vp->v_usecount, ~VUSECOUNT_GATE);
}
atomic_store_relaxed(&vip->vi_state, to);
if (from == VS_LOADING)
cv_broadcast(&vcache_cv);
if (to == VS_LOADED || to == VS_RECLAIMED)
cv_broadcast(&vp->v_cv);
}
#else /* defined(DIAGNOSTIC) */
#define VSTATE_GET(vp) \
(VNODE_TO_VIMPL((vp))->vi_state)
#define VSTATE_CHANGE(vp, from, to) \
vstate_change((vp), (from), (to))
#define VSTATE_WAIT_STABLE(vp) \
vstate_wait_stable((vp))
void
_vstate_assert(vnode_t *vp, enum vnode_state state, const char *func, int line,
bool has_lock)
{
}
static void
vstate_wait_stable(vnode_t *vp)
{
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
while (vip->vi_state != VS_LOADED && vip->vi_state != VS_RECLAIMED)
cv_wait(&vp->v_cv, vp->v_interlock);
}
static void
vstate_change(vnode_t *vp, enum vnode_state from, enum vnode_state to)
{
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
/* Open/close the gate for vcache_tryvget(). */
if (to == VS_LOADED) {
membar_release();
atomic_or_uint(&vp->v_usecount, VUSECOUNT_GATE);
} else {
atomic_and_uint(&vp->v_usecount, ~VUSECOUNT_GATE);
}
atomic_store_relaxed(&vip->vi_state, to);
if (from == VS_LOADING)
cv_broadcast(&vcache_cv);
if (to == VS_LOADED || to == VS_RECLAIMED)
cv_broadcast(&vp->v_cv);
}
#endif /* defined(DIAGNOSTIC) */
void
vfs_vnode_sysinit(void)
{
int error __diagused, i;
dead_rootmount = vfs_mountalloc(&dead_vfsops, NULL);
KASSERT(dead_rootmount != NULL);
dead_rootmount->mnt_iflag |= IMNT_MPSAFE;
mutex_init(&vdrain_lock, MUTEX_DEFAULT, IPL_NONE);
for (i = 0; i < LRU_COUNT; i++) {
TAILQ_INIT(&lru_list[i]);
}
vcache_init();
error = threadpool_get(&threadpool, PRI_NONE);
KASSERTMSG((error == 0), "threadpool_get failed: %d", error);
threadpool_job_init(&vdrain_job, vdrain_task, &vdrain_lock, "vdrain");
threadpool_job_init(&vrele_job, vrele_task, &vdrain_lock, "vrele");
}
/*
* Allocate a new marker vnode.
*/
vnode_t *
vnalloc_marker(struct mount *mp)
{
vnode_impl_t *vip;
vnode_t *vp;
vip = pool_cache_get(vcache_pool, PR_WAITOK);
memset(vip, 0, sizeof(*vip));
vp = VIMPL_TO_VNODE(vip);
uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
vp->v_mount = mp;
vp->v_type = VBAD;
vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
klist_init(&vip->vi_klist.vk_klist);
vp->v_klist = &vip->vi_klist;
vip->vi_state = VS_MARKER;
return vp;
}
/*
* Free a marker vnode.
*/
void
vnfree_marker(vnode_t *vp)
{
vnode_impl_t *vip;
vip = VNODE_TO_VIMPL(vp);
KASSERT(vip->vi_state == VS_MARKER);
mutex_obj_free(vp->v_interlock);
uvm_obj_destroy(&vp->v_uobj, true);
klist_fini(&vip->vi_klist.vk_klist);
pool_cache_put(vcache_pool, vip);
}
/*
* Test a vnode for being a marker vnode.
*/
bool
vnis_marker(vnode_t *vp)
{
return (VNODE_TO_VIMPL(vp)->vi_state == VS_MARKER);
}
/*
* Return the lru list this node should be on.
*/
static vnodelst_t *
lru_which(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
if (vp->v_holdcnt > 0)
return &lru_list[LRU_HOLD];
else
return &lru_list[LRU_FREE];
}
/*
* Put vnode to end of given list.
* Both the current and the new list may be NULL, used on vnode alloc/free.
* Adjust numvnodes and signal vdrain thread if there is work.
*/
static void
lru_requeue(vnode_t *vp, vnodelst_t *listhd)
{
vnode_impl_t *vip;
int d;
/*
* If the vnode is on the correct list, and was put there recently,
* then leave it be, thus avoiding huge cache and lock contention.
*/
vip = VNODE_TO_VIMPL(vp);
if (listhd == vip->vi_lrulisthd &&
(getticks() - vip->vi_lrulisttm) < hz) {
return;
}
mutex_enter(&vdrain_lock);
d = 0;
if (vip->vi_lrulisthd != NULL)
TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
else
d++;
vip->vi_lrulisthd = listhd;
vip->vi_lrulisttm = getticks();
if (vip->vi_lrulisthd != NULL)
TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
else
d--;
if (d != 0) {
/*
* Looks strange? This is not a bug. Don't store
* numvnodes unless there is a change - avoid false
* sharing on MP.
*/
numvnodes += d;
}
if (listhd == &lru_list[LRU_VRELE])
threadpool_schedule_job(threadpool, &vrele_job);
if (d > 0 && numvnodes > desiredvnodes)
threadpool_schedule_job(threadpool, &vdrain_job);
if (d > 0 && numvnodes > desiredvnodes + desiredvnodes / 16)
kpause("vnfull", false, MAX(1, mstohz(10)), &vdrain_lock);
mutex_exit(&vdrain_lock);
}
/*
* LRU list iterator.
* Caller holds vdrain_lock.
*/
static vnode_impl_t *
lru_iter_first(int idx, lru_iter_t *iterp)
{
vnode_impl_t *marker;
KASSERT(mutex_owned(&vdrain_lock));
mutex_exit(&vdrain_lock);
marker = VNODE_TO_VIMPL(vnalloc_marker(NULL));
mutex_enter(&vdrain_lock);
marker->vi_lrulisthd = &lru_list[idx];
iterp->li_marker = marker;
TAILQ_INSERT_HEAD(marker->vi_lrulisthd, marker, vi_lrulist);
return lru_iter_next(iterp);
}
static vnode_impl_t *
lru_iter_next(lru_iter_t *iter)
{
vnode_impl_t *vip, *marker;
vnodelst_t *listhd;
KASSERT(mutex_owned(&vdrain_lock));
marker = iter->li_marker;
listhd = marker->vi_lrulisthd;
while ((vip = TAILQ_NEXT(marker, vi_lrulist))) {
TAILQ_REMOVE(listhd, marker, vi_lrulist);
TAILQ_INSERT_AFTER(listhd, vip, marker, vi_lrulist);
if (!vnis_marker(VIMPL_TO_VNODE(vip)))
break;
}
return vip;
}
static void
lru_iter_release(lru_iter_t *iter)
{
vnode_impl_t *marker;
KASSERT(mutex_owned(&vdrain_lock));
marker = iter->li_marker;
TAILQ_REMOVE(marker->vi_lrulisthd, marker, vi_lrulist);
mutex_exit(&vdrain_lock);
vnfree_marker(VIMPL_TO_VNODE(marker));
mutex_enter(&vdrain_lock);
}
/*
* Release deferred vrele vnodes for this mount.
* Called with file system suspended.
*/
void
vrele_flush(struct mount *mp)
{
lru_iter_t iter;
vnode_impl_t *vip;
KASSERT(fstrans_is_owner(mp));
mutex_enter(&vdrain_lock);
for (vip = lru_iter_first(LRU_VRELE, &iter); vip != NULL;
vip = lru_iter_next(&iter)) {
if (VIMPL_TO_VNODE(vip)->v_mount != mp)
continue;
vrele_deferred(vip);
}
lru_iter_release(&iter);
mutex_exit(&vdrain_lock);
}
/*
* One pass through the LRU lists to keep the number of allocated
* vnodes below target. Returns true if target met.
*/
static bool
vdrain_one(u_int target)
{
int ix, lists[] = { LRU_FREE, LRU_HOLD };
lru_iter_t iter;
vnode_impl_t *vip;
vnode_t *vp;
struct mount *mp;
KASSERT(mutex_owned(&vdrain_lock));
for (ix = 0; ix < __arraycount(lists); ix++) {
for (vip = lru_iter_first(lists[ix], &iter); vip != NULL;
vip = lru_iter_next(&iter)) {
if (numvnodes < target) {
lru_iter_release(&iter);
return true;
}
vp = VIMPL_TO_VNODE(vip);
/* Probe usecount (unlocked). */
if (vrefcnt(vp) > 0)
continue;
/* Try v_interlock -- we lock the wrong direction! */
if (!mutex_tryenter(vp->v_interlock))
continue;
/* Probe usecount and state. */
if (vrefcnt(vp) > 0 || VSTATE_GET(vp) != VS_LOADED) {
mutex_exit(vp->v_interlock);
continue;
}
mutex_exit(&vdrain_lock);
mp = vp->v_mount;
if (fstrans_start_nowait(mp) != 0) {
mutex_exit(vp->v_interlock);
mutex_enter(&vdrain_lock);
continue;
}
if (vcache_vget(vp) == 0) {
if (!vrecycle(vp)) {
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
mutex_enter(vp->v_interlock);
vrelel(vp, 0, LK_EXCLUSIVE);
}
}
fstrans_done(mp);
mutex_enter(&vdrain_lock);
}
lru_iter_release(&iter);
}
return false;
}
/*
* threadpool task to keep the number of vnodes below desiredvnodes.
*/
static void
vdrain_task(struct threadpool_job *job)
{
u_int target;
target = desiredvnodes - desiredvnodes / 16;
mutex_enter(&vdrain_lock);
while (!vdrain_one(target))
kpause("vdrain", false, 1, &vdrain_lock);
threadpool_job_done(job);
mutex_exit(&vdrain_lock);
}
/*
* threadpool task to process asynchronous vrele.
*/
static void
vrele_task(struct threadpool_job *job)
{
int skipped;
lru_iter_t iter;
vnode_impl_t *vip;
struct mount *mp;
mutex_enter(&vdrain_lock);
while ((vip = lru_iter_first(LRU_VRELE, &iter)) != NULL) {
for (skipped = 0; vip != NULL; vip = lru_iter_next(&iter)) {
mp = VIMPL_TO_VNODE(vip)->v_mount;
if (fstrans_start_nowait(mp) == 0) {
vrele_deferred(vip);
fstrans_done(mp);
} else {
skipped++;
}
}
lru_iter_release(&iter);
if (skipped)
kpause("vrele", false, MAX(1, mstohz(10)), &vdrain_lock);
}
threadpool_job_done(job);
lru_iter_release(&iter);
mutex_exit(&vdrain_lock);
}
/*
* Try to drop reference on a vnode. Abort if we are releasing the
* last reference. Note: this _must_ succeed if not the last reference.
*/
static bool
vtryrele(vnode_t *vp)
{
u_int use, next;
membar_release();
for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
if (__predict_false((use & VUSECOUNT_MASK) == 1)) {
return false;
}
KASSERT((use & VUSECOUNT_MASK) > 1);
next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
if (__predict_true(next == use)) {
return true;
}
}
}
/*
* vput: unlock and release the reference.
*/
void
vput(vnode_t *vp)
{
int lktype;
/*
* Do an unlocked check of the usecount. If it looks like we're not
* about to drop the last reference, then unlock the vnode and try
* to drop the reference. If it ends up being the last reference
* after all, vrelel() can fix it all up. Most of the time this
* will all go to plan.
*/
if (vrefcnt(vp) > 1) {
VOP_UNLOCK(vp);
if (vtryrele(vp)) {
return;
}
lktype = LK_NONE;
} else {
lktype = VOP_ISLOCKED(vp);
KASSERT(lktype != LK_NONE);
}
mutex_enter(vp->v_interlock);
vrelel(vp, 0, lktype);
}
/*
* Release a vnode from the deferred list.
*/
static void
vrele_deferred(vnode_impl_t *vip)
{
vnode_t *vp;
KASSERT(mutex_owned(&vdrain_lock));
KASSERT(vip->vi_lrulisthd == &lru_list[LRU_VRELE]);
vp = VIMPL_TO_VNODE(vip);
/*
* First remove the vnode from the vrele list.
* Put it on the last lru list, the last vrele()
* will put it back onto the right list before
* its usecount reaches zero.
*/
TAILQ_REMOVE(vip->vi_lrulisthd, vip, vi_lrulist);
vip->vi_lrulisthd = &lru_list[LRU_HOLD];
vip->vi_lrulisttm = getticks();
TAILQ_INSERT_TAIL(vip->vi_lrulisthd, vip, vi_lrulist);
mutex_exit(&vdrain_lock);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
mutex_enter(vp->v_interlock);
vrelel(vp, 0, LK_EXCLUSIVE);
mutex_enter(&vdrain_lock);
}
/*
* Vnode release. If reference count drops to zero, call inactive
* routine and either return to freelist or free to the pool.
*/
static void
vrelel(vnode_t *vp, int flags, int lktype)
{
const bool async = ((flags & VRELEL_ASYNC) != 0);
bool recycle, defer, objlock_held;
u_int use, next;
int error;
objlock_held = false;
retry:
KASSERT(mutex_owned(vp->v_interlock));
if (__predict_false(vp->v_op == dead_vnodeop_p &&
VSTATE_GET(vp) != VS_RECLAIMED)) {
vnpanic(vp, "dead but not clean");
}
/*
* If not the last reference, just unlock and drop the reference count.
*
* Otherwise make sure we pass a point in time where we hold the
* last reference with VGET flag unset.
*/
for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
if (__predict_false((use & VUSECOUNT_MASK) > 1)) {
if (objlock_held) {
objlock_held = false;
rw_exit(vp->v_uobj.vmobjlock);
}
if (lktype != LK_NONE) {
mutex_exit(vp->v_interlock);
lktype = LK_NONE;
VOP_UNLOCK(vp);
mutex_enter(vp->v_interlock);
}
if (vtryrele(vp)) {
mutex_exit(vp->v_interlock);
return;
}
next = atomic_load_relaxed(&vp->v_usecount);
continue;
}
KASSERT((use & VUSECOUNT_MASK) == 1);
next = use & ~VUSECOUNT_VGET;
if (next != use) {
next = atomic_cas_uint(&vp->v_usecount, use, next);
}
if (__predict_true(next == use)) {
break;
}
}
membar_acquire();
if (vrefcnt(vp) <= 0 || vp->v_writecount != 0) {
vnpanic(vp, "%s: bad ref count", __func__);
}
#ifdef DIAGNOSTIC
if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
vp->v_specnode != NULL && vp->v_specnode->sn_opencnt != 0) {
vprint("vrelel: missing VOP_CLOSE()", vp);
}
#endif
/*
* If already clean there is no need to lock, defer or
* deactivate this node.
*/
if (VSTATE_GET(vp) == VS_RECLAIMED) {
if (objlock_held) {
objlock_held = false;
rw_exit(vp->v_uobj.vmobjlock);
}
if (lktype != LK_NONE) {
mutex_exit(vp->v_interlock);
lktype = LK_NONE;
VOP_UNLOCK(vp);
mutex_enter(vp->v_interlock);
}
goto out;
}
/*
* First try to get the vnode locked for VOP_INACTIVE().
* Defer vnode release to vrele task if caller requests
* it explicitly, is the pagedaemon or the lock failed.
*/
defer = false;
if ((curlwp == uvm.pagedaemon_lwp) || async) {
defer = true;
} else if (lktype == LK_SHARED) {
/* Excellent chance of getting, if the last ref. */
error = vn_lock(vp, LK_UPGRADE | LK_RETRY | LK_NOWAIT);
if (error != 0) {
defer = true;
} else {
lktype = LK_EXCLUSIVE;
}
} else if (lktype == LK_NONE) {
/* Excellent chance of getting, if the last ref. */
error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
if (error != 0) {
defer = true;
} else {
lktype = LK_EXCLUSIVE;
}
}
KASSERT(mutex_owned(vp->v_interlock));
if (defer) {
/*
* Defer reclaim to the vrele task; it's not safe to
* clean it here. We donate it our last reference.
*/
if (lktype != LK_NONE) {
mutex_exit(vp->v_interlock);
VOP_UNLOCK(vp);
mutex_enter(vp->v_interlock);
}
lru_requeue(vp, &lru_list[LRU_VRELE]);
mutex_exit(vp->v_interlock);
return;
}
KASSERT(lktype == LK_EXCLUSIVE);
/* If the node gained another reference, retry. */
use = atomic_load_relaxed(&vp->v_usecount);
if ((use & VUSECOUNT_VGET) != 0) {
goto retry;
}
KASSERT((use & VUSECOUNT_MASK) == 1);
if ((vp->v_iflag & (VI_TEXT|VI_EXECMAP|VI_WRMAP)) != 0 ||
(vp->v_vflag & VV_MAPPED) != 0) {
/* Take care of space accounting. */
if (!objlock_held) {
objlock_held = true;
if (!rw_tryenter(vp->v_uobj.vmobjlock, RW_WRITER)) {
mutex_exit(vp->v_interlock);
rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
mutex_enter(vp->v_interlock);
goto retry;
}
}
if ((vp->v_iflag & VI_EXECMAP) != 0) {
cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
}
vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP|VI_WRMAP);
vp->v_vflag &= ~VV_MAPPED;
}
if (objlock_held) {
objlock_held = false;
rw_exit(vp->v_uobj.vmobjlock);
}
/*
* Deactivate the vnode, but preserve our reference across
* the call to VOP_INACTIVE().
*
* If VOP_INACTIVE() indicates that the file has been
* deleted, then recycle the vnode.
*
* Note that VOP_INACTIVE() will not drop the vnode lock.
*/
mutex_exit(vp->v_interlock);
recycle = false;
VOP_INACTIVE(vp, &recycle);
if (!recycle) {
lktype = LK_NONE;
VOP_UNLOCK(vp);
}
mutex_enter(vp->v_interlock);
/*
* Block new references then check again to see if a
* new reference was acquired in the meantime. If
* it was, restore the vnode state and try again.
*/
if (recycle) {
VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
use = atomic_load_relaxed(&vp->v_usecount);
if ((use & VUSECOUNT_VGET) != 0) {
VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
goto retry;
}
KASSERT((use & VUSECOUNT_MASK) == 1);
}
/*
* Recycle the vnode if the file is now unused (unlinked).
*/
if (recycle) {
VSTATE_ASSERT(vp, VS_BLOCKED);
KASSERT(lktype == LK_EXCLUSIVE);
/* vcache_reclaim drops the lock. */
lktype = LK_NONE;
vcache_reclaim(vp);
}
KASSERT(vrefcnt(vp) > 0);
KASSERT(lktype == LK_NONE);
out:
for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
if (__predict_false((use & VUSECOUNT_VGET) != 0 &&
(use & VUSECOUNT_MASK) == 1)) {
/* Gained and released another reference, retry. */
goto retry;
}
next = atomic_cas_uint(&vp->v_usecount, use, use - 1);
if (__predict_true(next == use)) {
if (__predict_false((use & VUSECOUNT_MASK) != 1)) {
/* Gained another reference. */
mutex_exit(vp->v_interlock);
return;
}
break;
}
}
membar_acquire();
if (VSTATE_GET(vp) == VS_RECLAIMED && vp->v_holdcnt == 0) {
/*
* It's clean so destroy it. It isn't referenced
* anywhere since it has been reclaimed.
*/
vcache_free(VNODE_TO_VIMPL(vp));
} else {
/*
* Otherwise, put it back onto the freelist. It
* can't be destroyed while still associated with
* a file system.
*/
lru_requeue(vp, lru_which(vp));
mutex_exit(vp->v_interlock);
}
}
void
vrele(vnode_t *vp)
{
if (vtryrele(vp)) {
return;
}
mutex_enter(vp->v_interlock);
vrelel(vp, 0, LK_NONE);
}
/*
* Asynchronous vnode release, vnode is released in different context.
*/
void
vrele_async(vnode_t *vp)
{
if (vtryrele(vp)) {
return;
}
mutex_enter(vp->v_interlock);
vrelel(vp, VRELEL_ASYNC, LK_NONE);
}
/*
* Vnode reference, where a reference is already held by some other
* object (for example, a file structure).
*
* NB: lockless code sequences may rely on this not blocking.
*/
void
vref(vnode_t *vp)
{
KASSERT(vrefcnt(vp) > 0);
atomic_inc_uint(&vp->v_usecount);
}
/*
* Page or buffer structure gets a reference.
* Called with v_interlock held.
*/
void
vholdl(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
if (vp->v_holdcnt++ == 0 && vrefcnt(vp) == 0)
lru_requeue(vp, lru_which(vp));
}
/*
* Page or buffer structure gets a reference.
*/
void
vhold(vnode_t *vp)
{
mutex_enter(vp->v_interlock);
vholdl(vp);
mutex_exit(vp->v_interlock);
}
/*
* Page or buffer structure frees a reference.
* Called with v_interlock held.
*/
void
holdrelel(vnode_t *vp)
{
KASSERT(mutex_owned(vp->v_interlock));
if (vp->v_holdcnt <= 0) {
vnpanic(vp, "%s: holdcnt vp %p", __func__, vp);
}
vp->v_holdcnt--;
if (vp->v_holdcnt == 0 && vrefcnt(vp) == 0)
lru_requeue(vp, lru_which(vp));
}
/*
* Page or buffer structure frees a reference.
*/
void
holdrele(vnode_t *vp)
{
mutex_enter(vp->v_interlock);
holdrelel(vp);
mutex_exit(vp->v_interlock);
}
/*
* Recycle an unused vnode if caller holds the last reference.
*/
bool
vrecycle(vnode_t *vp)
{
int error __diagused;
mutex_enter(vp->v_interlock);
/* If the vnode is already clean we're done. */
VSTATE_WAIT_STABLE(vp);
if (VSTATE_GET(vp) != VS_LOADED) {
VSTATE_ASSERT(vp, VS_RECLAIMED);
vrelel(vp, 0, LK_NONE);
return true;
}
/* Prevent further references until the vnode is locked. */
VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
/* Make sure we hold the last reference. */
if (vrefcnt(vp) != 1) {
VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
mutex_exit(vp->v_interlock);
return false;
}
mutex_exit(vp->v_interlock);
/*
* On a leaf file system this lock will always succeed as we hold
* the last reference and prevent further references.
* On layered file systems waiting for the lock would open a can of
* deadlocks as the lower vnodes may have other active references.
*/
error = vn_lock(vp, LK_EXCLUSIVE | LK_RETRY | LK_NOWAIT);
mutex_enter(vp->v_interlock);
if (error) {
VSTATE_CHANGE(vp, VS_BLOCKED, VS_LOADED);
mutex_exit(vp->v_interlock);
return false;
}
KASSERT(vrefcnt(vp) == 1);
vcache_reclaim(vp);
vrelel(vp, 0, LK_NONE);
return true;
}
/*
* Helper for vrevoke() to propagate suspension from lastmp
* to thismp. Both args may be NULL.
* Returns the currently suspended file system or NULL.
*/
static struct mount *
vrevoke_suspend_next(struct mount *lastmp, struct mount *thismp)
{
int error;
if (lastmp == thismp)
return thismp;
if (lastmp != NULL)
vfs_resume(lastmp);
if (thismp == NULL)
return NULL;
do {
error = vfs_suspend(thismp, 0);
} while (error == EINTR || error == ERESTART);
if (error == 0)
return thismp;
KASSERT(error == EOPNOTSUPP || error == ENOENT);
return NULL;
}
/*
* Eliminate all activity associated with the requested vnode
* and with all vnodes aliased to the requested vnode.
*/
void
vrevoke(vnode_t *vp)
{
struct mount *mp;
vnode_t *vq;
enum vtype type;
dev_t dev;
KASSERT(vrefcnt(vp) > 0);
mp = vrevoke_suspend_next(NULL, vp->v_mount);
mutex_enter(vp->v_interlock);
VSTATE_WAIT_STABLE(vp);
if (VSTATE_GET(vp) == VS_RECLAIMED) {
mutex_exit(vp->v_interlock);
} else if (vp->v_type != VBLK && vp->v_type != VCHR) {
atomic_inc_uint(&vp->v_usecount);
mutex_exit(vp->v_interlock);
vgone(vp);
} else {
dev = vp->v_rdev;
type = vp->v_type;
mutex_exit(vp->v_interlock);
while (spec_node_lookup_by_dev(type, dev, VDEAD_NOWAIT, &vq)
== 0) {
mp = vrevoke_suspend_next(mp, vq->v_mount);
vgone(vq);
}
}
vrevoke_suspend_next(mp, NULL);
}
/*
* Eliminate all activity associated with a vnode in preparation for
* reuse. Drops a reference from the vnode.
*/
void
vgone(vnode_t *vp)
{
int lktype;
KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
lktype = LK_EXCLUSIVE;
mutex_enter(vp->v_interlock);
VSTATE_WAIT_STABLE(vp);
if (VSTATE_GET(vp) == VS_LOADED) {
VSTATE_CHANGE(vp, VS_LOADED, VS_BLOCKED);
vcache_reclaim(vp);
lktype = LK_NONE;
}
VSTATE_ASSERT(vp, VS_RECLAIMED);
vrelel(vp, 0, lktype);
}
static inline uint32_t
vcache_hash(const struct vcache_key *key)
{
uint32_t hash = HASH32_BUF_INIT;
KASSERT(key->vk_key_len > 0);
hash = hash32_buf(&key->vk_mount, sizeof(struct mount *), hash);
hash = hash32_buf(key->vk_key, key->vk_key_len, hash);
return hash;
}
static int
vcache_stats(struct hashstat_sysctl *hs, bool fill)
{
vnode_impl_t *vip;
uint64_t chain;
strlcpy(hs->hash_name, "vcache", sizeof(hs->hash_name));
strlcpy(hs->hash_desc, "vnode cache hash", sizeof(hs->hash_desc));
if (!fill)
return 0;
hs->hash_size = vcache_hashmask + 1;
for (size_t i = 0; i < hs->hash_size; i++) {
chain = 0;
mutex_enter(&vcache_lock);
SLIST_FOREACH(vip, &vcache_hashtab[i], vi_hash) {
chain++;
}
mutex_exit(&vcache_lock);
if (chain > 0) {
hs->hash_used++;
hs->hash_items += chain;
if (chain > hs->hash_maxchain)
hs->hash_maxchain = chain;
}
preempt_point();
}
return 0;
}
static void
vcache_init(void)
{
vcache_pool = pool_cache_init(sizeof(vnode_impl_t), coherency_unit,
0, 0, "vcachepl", NULL, IPL_NONE, NULL, NULL, NULL);
KASSERT(vcache_pool != NULL);
mutex_init(&vcache_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&vcache_cv, "vcache");
vcache_hashsize = desiredvnodes;
vcache_hashtab = hashinit(desiredvnodes, HASH_SLIST, true,
&vcache_hashmask);
hashstat_register("vcache", vcache_stats);
}
static void
vcache_reinit(void)
{
int i;
uint32_t hash;
u_long oldmask, newmask;
struct hashhead *oldtab, *newtab;
vnode_impl_t *vip;
newtab = hashinit(desiredvnodes, HASH_SLIST, true, &newmask);
mutex_enter(&vcache_lock);
oldtab = vcache_hashtab;
oldmask = vcache_hashmask;
vcache_hashsize = desiredvnodes;
vcache_hashtab = newtab;
vcache_hashmask = newmask;
for (i = 0; i <= oldmask; i++) {
while ((vip = SLIST_FIRST(&oldtab[i])) != NULL) {
SLIST_REMOVE(&oldtab[i], vip, vnode_impl, vi_hash);
hash = vcache_hash(&vip->vi_key);
SLIST_INSERT_HEAD(&newtab[hash & vcache_hashmask],
vip, vi_hash);
}
}
mutex_exit(&vcache_lock);
hashdone(oldtab, HASH_SLIST, oldmask);
}
static inline vnode_impl_t *
vcache_hash_lookup(const struct vcache_key *key, uint32_t hash)
{
struct hashhead *hashp;
vnode_impl_t *vip;
KASSERT(mutex_owned(&vcache_lock));
hashp = &vcache_hashtab[hash & vcache_hashmask];
SLIST_FOREACH(vip, hashp, vi_hash) {
if (key->vk_mount != vip->vi_key.vk_mount)
continue;
if (key->vk_key_len != vip->vi_key.vk_key_len)
continue;
if (memcmp(key->vk_key, vip->vi_key.vk_key, key->vk_key_len))
continue;
return vip;
}
return NULL;
}
/*
* Allocate a new, uninitialized vcache node.
*/
static vnode_impl_t *
vcache_alloc(void)
{
vnode_impl_t *vip;
vnode_t *vp;
vip = pool_cache_get(vcache_pool, PR_WAITOK);
vp = VIMPL_TO_VNODE(vip);
memset(vip, 0, sizeof(*vip));
rw_init(&vip->vi_lock);
vp->v_interlock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
uvm_obj_init(&vp->v_uobj, &uvm_vnodeops, true, 1);
klist_init(&vip->vi_klist.vk_klist);
vp->v_klist = &vip->vi_klist;
cv_init(&vp->v_cv, "vnode");
cache_vnode_init(vp);
vp->v_usecount = 1;
vp->v_type = VNON;
vp->v_size = vp->v_writesize = VSIZENOTSET;
vip->vi_state = VS_LOADING;
lru_requeue(vp, &lru_list[LRU_FREE]);
return vip;
}
/*
* Deallocate a vcache node in state VS_LOADING.
*
* vcache_lock held on entry and released on return.
*/
static void
vcache_dealloc(vnode_impl_t *vip)
{
vnode_t *vp;
KASSERT(mutex_owned(&vcache_lock));
vp = VIMPL_TO_VNODE(vip);
vfs_ref(dead_rootmount);
vfs_insmntque(vp, dead_rootmount);
mutex_enter(vp->v_interlock);
vp->v_op = dead_vnodeop_p;
VSTATE_CHANGE(vp, VS_LOADING, VS_RECLAIMED);
mutex_exit(&vcache_lock);
vrelel(vp, 0, LK_NONE);
}
/*
* Free an unused, unreferenced vcache node.
* v_interlock locked on entry.
*/
static void
vcache_free(vnode_impl_t *vip)
{
vnode_t *vp;
vp = VIMPL_TO_VNODE(vip);
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(vrefcnt(vp) == 0);
KASSERT(vp->v_holdcnt == 0);
KASSERT(vp->v_writecount == 0);
lru_requeue(vp, NULL);
mutex_exit(vp->v_interlock);
vfs_insmntque(vp, NULL);
if (vp->v_type == VBLK || vp->v_type == VCHR)
spec_node_destroy(vp);
mutex_obj_free(vp->v_interlock);
rw_destroy(&vip->vi_lock);
uvm_obj_destroy(&vp->v_uobj, true);
KASSERT(vp->v_klist == &vip->vi_klist);
klist_fini(&vip->vi_klist.vk_klist);
cv_destroy(&vp->v_cv);
cache_vnode_fini(vp);
pool_cache_put(vcache_pool, vip);
}
/*
* Try to get an initial reference on this cached vnode.
* Returns zero on success or EBUSY if the vnode state is not LOADED.
*
* NB: lockless code sequences may rely on this not blocking.
*/
int
vcache_tryvget(vnode_t *vp)
{
u_int use, next;
for (use = atomic_load_relaxed(&vp->v_usecount);; use = next) {
if (__predict_false((use & VUSECOUNT_GATE) == 0)) {
return EBUSY;
}
next = atomic_cas_uint(&vp->v_usecount,
use, (use + 1) | VUSECOUNT_VGET);
if (__predict_true(next == use)) {
membar_acquire();
return 0;
}
}
}
/*
* Try to get an initial reference on this cached vnode.
* Returns zero on success and ENOENT if the vnode has been reclaimed.
* Will wait for the vnode state to be stable.
*
* v_interlock locked on entry and unlocked on exit.
*/
int
vcache_vget(vnode_t *vp)
{
int error;
KASSERT(mutex_owned(vp->v_interlock));
/* Increment hold count to prevent vnode from disappearing. */
vp->v_holdcnt++;
VSTATE_WAIT_STABLE(vp);
vp->v_holdcnt--;
/* If this was the last reference to a reclaimed vnode free it now. */
if (__predict_false(VSTATE_GET(vp) == VS_RECLAIMED)) {
if (vp->v_holdcnt == 0 && vrefcnt(vp) == 0)
vcache_free(VNODE_TO_VIMPL(vp));
else
mutex_exit(vp->v_interlock);
return ENOENT;
}
VSTATE_ASSERT(vp, VS_LOADED);
error = vcache_tryvget(vp);
KASSERT(error == 0);
mutex_exit(vp->v_interlock);
return 0;
}
/*
* Get a vnode / fs node pair by key and return it referenced through vpp.
*/
int
vcache_get(struct mount *mp, const void *key, size_t key_len,
struct vnode **vpp)
{
int error;
uint32_t hash;
const void *new_key;
struct vnode *vp;
struct vcache_key vcache_key;
vnode_impl_t *vip, *new_vip;
new_key = NULL;
*vpp = NULL;
vcache_key.vk_mount = mp;
vcache_key.vk_key = key;
vcache_key.vk_key_len = key_len;
hash = vcache_hash(&vcache_key);
again:
mutex_enter(&vcache_lock);
vip = vcache_hash_lookup(&vcache_key, hash);
/* If found, take a reference or retry. */
if (__predict_true(vip != NULL)) {
/*
* If the vnode is loading we cannot take the v_interlock
* here as it might change during load (see uvm_obj_setlock()).
* As changing state from VS_LOADING requires both vcache_lock
* and v_interlock it is safe to test with vcache_lock held.
*
* Wait for vnodes changing state from VS_LOADING and retry.
*/
if (__predict_false(vip->vi_state == VS_LOADING)) {
cv_wait(&vcache_cv, &vcache_lock);
mutex_exit(&vcache_lock);
goto again;
}
vp = VIMPL_TO_VNODE(vip);
mutex_enter(vp->v_interlock);
mutex_exit(&vcache_lock);
error = vcache_vget(vp);
if (error == ENOENT)
goto again;
if (error == 0)
*vpp = vp;
KASSERT((error != 0) == (*vpp == NULL));
return error;
}
mutex_exit(&vcache_lock);
/* Allocate and initialize a new vcache / vnode pair. */
error = vfs_busy(mp);
if (error)
return error;
new_vip = vcache_alloc();
new_vip->vi_key = vcache_key;
vp = VIMPL_TO_VNODE(new_vip);
mutex_enter(&vcache_lock);
vip = vcache_hash_lookup(&vcache_key, hash);
if (vip == NULL) {
SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
new_vip, vi_hash);
vip = new_vip;
}
/* If another thread beat us inserting this node, retry. */
if (vip != new_vip) {
vcache_dealloc(new_vip);
vfs_unbusy(mp);
goto again;
}
mutex_exit(&vcache_lock);
/* Load the fs node. Exclusive as new_node is VS_LOADING. */
error = VFS_LOADVNODE(mp, vp, key, key_len, &new_key);
if (error) {
mutex_enter(&vcache_lock);
SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
new_vip, vnode_impl, vi_hash);
vcache_dealloc(new_vip);
vfs_unbusy(mp);
KASSERT(*vpp == NULL);
return error;
}
KASSERT(new_key != NULL);
KASSERT(memcmp(key, new_key, key_len) == 0);
KASSERT(vp->v_op != NULL);
vfs_insmntque(vp, mp);
if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
vp->v_vflag |= VV_MPSAFE;
vfs_ref(mp);
vfs_unbusy(mp);
/* Finished loading, finalize node. */
mutex_enter(&vcache_lock);
new_vip->vi_key.vk_key = new_key;
mutex_enter(vp->v_interlock);
VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
mutex_exit(vp->v_interlock);
mutex_exit(&vcache_lock);
*vpp = vp;
return 0;
}
/*
* Create a new vnode / fs node pair and return it referenced through vpp.
*/
int
vcache_new(struct mount *mp, struct vnode *dvp, struct vattr *vap,
kauth_cred_t cred, void *extra, struct vnode **vpp)
{
int error;
uint32_t hash;
struct vnode *vp, *ovp;
vnode_impl_t *vip, *ovip;
*vpp = NULL;
/* Allocate and initialize a new vcache / vnode pair. */
error = vfs_busy(mp);
if (error)
return error;
vip = vcache_alloc();
vip->vi_key.vk_mount = mp;
vp = VIMPL_TO_VNODE(vip);
/* Create and load the fs node. */
error = VFS_NEWVNODE(mp, dvp, vp, vap, cred, extra,
&vip->vi_key.vk_key_len, &vip->vi_key.vk_key);
if (error) {
mutex_enter(&vcache_lock);
vcache_dealloc(vip);
vfs_unbusy(mp);
KASSERT(*vpp == NULL);
return error;
}
KASSERT(vp->v_op != NULL);
KASSERT((vip->vi_key.vk_key_len == 0) == (mp == dead_rootmount));
if (vip->vi_key.vk_key_len > 0) {
KASSERT(vip->vi_key.vk_key != NULL);
hash = vcache_hash(&vip->vi_key);
/*
* Wait for previous instance to be reclaimed,
* then insert new node.
*/
mutex_enter(&vcache_lock);
while ((ovip = vcache_hash_lookup(&vip->vi_key, hash))) {
ovp = VIMPL_TO_VNODE(ovip);
mutex_enter(ovp->v_interlock);
mutex_exit(&vcache_lock);
error = vcache_vget(ovp);
KASSERT(error == ENOENT);
mutex_enter(&vcache_lock);
}
SLIST_INSERT_HEAD(&vcache_hashtab[hash & vcache_hashmask],
vip, vi_hash);
mutex_exit(&vcache_lock);
}
vfs_insmntque(vp, mp);
if ((mp->mnt_iflag & IMNT_MPSAFE) != 0)
vp->v_vflag |= VV_MPSAFE;
vfs_ref(mp);
vfs_unbusy(mp);
/* Finished loading, finalize node. */
mutex_enter(&vcache_lock);
mutex_enter(vp->v_interlock);
VSTATE_CHANGE(vp, VS_LOADING, VS_LOADED);
mutex_exit(&vcache_lock);
mutex_exit(vp->v_interlock);
*vpp = vp;
return 0;
}
/*
* Prepare key change: update old cache nodes key and lock new cache node.
* Return an error if the new node already exists.
*/
int
vcache_rekey_enter(struct mount *mp, struct vnode *vp,
const void *old_key, size_t old_key_len,
const void *new_key, size_t new_key_len)
{
uint32_t old_hash, new_hash;
struct vcache_key old_vcache_key, new_vcache_key;
vnode_impl_t *vip, *new_vip;
old_vcache_key.vk_mount = mp;
old_vcache_key.vk_key = old_key;
old_vcache_key.vk_key_len = old_key_len;
old_hash = vcache_hash(&old_vcache_key);
new_vcache_key.vk_mount = mp;
new_vcache_key.vk_key = new_key;
new_vcache_key.vk_key_len = new_key_len;
new_hash = vcache_hash(&new_vcache_key);
new_vip = vcache_alloc();
new_vip->vi_key = new_vcache_key;
/* Insert locked new node used as placeholder. */
mutex_enter(&vcache_lock);
vip = vcache_hash_lookup(&new_vcache_key, new_hash);
if (vip != NULL) {
vcache_dealloc(new_vip);
return EEXIST;
}
SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
new_vip, vi_hash);
/* Replace old nodes key with the temporary copy. */
vip = vcache_hash_lookup(&old_vcache_key, old_hash);
KASSERT(vip != NULL);
KASSERT(VIMPL_TO_VNODE(vip) == vp);
KASSERT(vip->vi_key.vk_key != old_vcache_key.vk_key);
vip->vi_key = old_vcache_key;
mutex_exit(&vcache_lock);
return 0;
}
/*
* Key change complete: update old node and remove placeholder.
*/
void
vcache_rekey_exit(struct mount *mp, struct vnode *vp,
const void *old_key, size_t old_key_len,
const void *new_key, size_t new_key_len)
{
uint32_t old_hash, new_hash;
struct vcache_key old_vcache_key, new_vcache_key;
vnode_impl_t *vip, *new_vip;
struct vnode *new_vp;
old_vcache_key.vk_mount = mp;
old_vcache_key.vk_key = old_key;
old_vcache_key.vk_key_len = old_key_len;
old_hash = vcache_hash(&old_vcache_key);
new_vcache_key.vk_mount = mp;
new_vcache_key.vk_key = new_key;
new_vcache_key.vk_key_len = new_key_len;
new_hash = vcache_hash(&new_vcache_key);
mutex_enter(&vcache_lock);
/* Lookup old and new node. */
vip = vcache_hash_lookup(&old_vcache_key, old_hash);
KASSERT(vip != NULL);
KASSERT(VIMPL_TO_VNODE(vip) == vp);
new_vip = vcache_hash_lookup(&new_vcache_key, new_hash);
KASSERT(new_vip != NULL);
KASSERT(new_vip->vi_key.vk_key_len == new_key_len);
new_vp = VIMPL_TO_VNODE(new_vip);
mutex_enter(new_vp->v_interlock);
VSTATE_ASSERT(VIMPL_TO_VNODE(new_vip), VS_LOADING);
mutex_exit(new_vp->v_interlock);
/* Rekey old node and put it onto its new hashlist. */
vip->vi_key = new_vcache_key;
if (old_hash != new_hash) {
SLIST_REMOVE(&vcache_hashtab[old_hash & vcache_hashmask],
vip, vnode_impl, vi_hash);
SLIST_INSERT_HEAD(&vcache_hashtab[new_hash & vcache_hashmask],
vip, vi_hash);
}
/* Remove new node used as placeholder. */
SLIST_REMOVE(&vcache_hashtab[new_hash & vcache_hashmask],
new_vip, vnode_impl, vi_hash);
vcache_dealloc(new_vip);
}
/*
* Disassociate the underlying file system from a vnode.
*
* Must be called with vnode locked and will return unlocked.
* Must be called with the interlock held, and will return with it held.
*/
static void
vcache_reclaim(vnode_t *vp)
{
lwp_t *l = curlwp;
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
struct mount *mp = vp->v_mount;
uint32_t hash;
uint8_t temp_buf[64], *temp_key;
size_t temp_key_len;
bool recycle;
int error;
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
KASSERT(mutex_owned(vp->v_interlock));
KASSERT(vrefcnt(vp) != 0);
temp_key_len = vip->vi_key.vk_key_len;
/*
* Prevent the vnode from being recycled or brought into use
* while we clean it out.
*/
VSTATE_CHANGE(vp, VS_BLOCKED, VS_RECLAIMING);
/*
* Send NOTE_REVOKE now, before we call VOP_RECLAIM(),
* because VOP_RECLAIM() could cause vp->v_klist to
* become invalid. Don't check for interest in NOTE_REVOKE
* here; it's always posted because it sets EV_EOF.
*
* Once it's been posted, reset vp->v_klist to point to
* our own local storage, in case we were sharing with
* someone else.
*/
KNOTE(&vp->v_klist->vk_klist, NOTE_REVOKE);
vp->v_klist = &vip->vi_klist;
mutex_exit(vp->v_interlock);
rw_enter(vp->v_uobj.vmobjlock, RW_WRITER);
mutex_enter(vp->v_interlock);
if ((vp->v_iflag & VI_EXECMAP) != 0) {
cpu_count(CPU_COUNT_EXECPAGES, -vp->v_uobj.uo_npages);
}
vp->v_iflag &= ~(VI_TEXT|VI_EXECMAP);
vp->v_iflag |= VI_DEADCHECK; /* for genfs_getpages() */
mutex_exit(vp->v_interlock);
rw_exit(vp->v_uobj.vmobjlock);
/*
* With vnode state set to reclaiming, purge name cache immediately
* to prevent new handles on vnode, and wait for existing threads
* trying to get a handle to notice VS_RECLAIMED status and abort.
*/
cache_purge(vp);
/* Replace the vnode key with a temporary copy. */
if (vip->vi_key.vk_key_len > sizeof(temp_buf)) {
temp_key = kmem_alloc(temp_key_len, KM_SLEEP);
} else {
temp_key = temp_buf;
}
if (vip->vi_key.vk_key_len > 0) {
mutex_enter(&vcache_lock);
memcpy(temp_key, vip->vi_key.vk_key, temp_key_len);
vip->vi_key.vk_key = temp_key;
mutex_exit(&vcache_lock);
}
fstrans_start(mp);
/*
* Clean out any cached data associated with the vnode.
*/
error = vinvalbuf(vp, V_SAVE, NOCRED, l, 0, 0);
if (error != 0) {
if (wapbl_vphaswapbl(vp))
WAPBL_DISCARD(wapbl_vptomp(vp));
error = vinvalbuf(vp, 0, NOCRED, l, 0, 0);
}
KASSERTMSG((error == 0), "vinvalbuf failed: %d", error);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
if (vp->v_type == VBLK || vp->v_type == VCHR) {
spec_node_revoke(vp);
}
/*
* Disassociate the underlying file system from the vnode.
* VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
* the vnode, and may destroy the vnode so that VOP_UNLOCK
* would no longer function.
*/
VOP_INACTIVE(vp, &recycle);
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
if (VOP_RECLAIM(vp)) {
vnpanic(vp, "%s: cannot reclaim", __func__);
}
KASSERT(vp->v_data == NULL);
KASSERT((vp->v_iflag & VI_PAGES) == 0);
if (vp->v_type == VREG && vp->v_ractx != NULL) {
uvm_ra_freectx(vp->v_ractx);
vp->v_ractx = NULL;
}
if (vip->vi_key.vk_key_len > 0) {
/* Remove from vnode cache. */
hash = vcache_hash(&vip->vi_key);
mutex_enter(&vcache_lock);
KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
vip, vnode_impl, vi_hash);
mutex_exit(&vcache_lock);
}
if (temp_key != temp_buf)
kmem_free(temp_key, temp_key_len);
/* Done with purge, notify sleepers of the grim news. */
mutex_enter(vp->v_interlock);
vp->v_op = dead_vnodeop_p;
VSTATE_CHANGE(vp, VS_RECLAIMING, VS_RECLAIMED);
vp->v_tag = VT_NON;
mutex_exit(vp->v_interlock);
/*
* Move to dead mount. Must be after changing the operations
* vector as vnode operations enter the mount before using the
* operations vector. See sys/kern/vnode_if.c.
*/
vp->v_vflag &= ~VV_ROOT;
vfs_ref(dead_rootmount);
vfs_insmntque(vp, dead_rootmount);
#ifdef PAX_SEGVGUARD
pax_segvguard_cleanup(vp);
#endif /* PAX_SEGVGUARD */
mutex_enter(vp->v_interlock);
fstrans_done(mp);
KASSERT((vp->v_iflag & VI_ONWORKLST) == 0);
}
/*
* Disassociate the underlying file system from an open device vnode
* and make it anonymous.
*
* Vnode unlocked on entry, drops a reference to the vnode.
*/
void
vcache_make_anon(vnode_t *vp)
{
vnode_impl_t *vip = VNODE_TO_VIMPL(vp);
uint32_t hash;
bool recycle;
KASSERT(vp->v_type == VBLK || vp->v_type == VCHR);
KASSERT(vp->v_mount == dead_rootmount || fstrans_is_owner(vp->v_mount));
VSTATE_ASSERT_UNLOCKED(vp, VS_ACTIVE);
/* Remove from vnode cache. */
hash = vcache_hash(&vip->vi_key);
mutex_enter(&vcache_lock);
KASSERT(vip == vcache_hash_lookup(&vip->vi_key, hash));
SLIST_REMOVE(&vcache_hashtab[hash & vcache_hashmask],
vip, vnode_impl, vi_hash);
vip->vi_key.vk_mount = dead_rootmount;
vip->vi_key.vk_key_len = 0;
vip->vi_key.vk_key = NULL;
mutex_exit(&vcache_lock);
/*
* Disassociate the underlying file system from the vnode.
* VOP_INACTIVE leaves the vnode locked; VOP_RECLAIM unlocks
* the vnode, and may destroy the vnode so that VOP_UNLOCK
* would no longer function.
*/
if (vn_lock(vp, LK_EXCLUSIVE)) {
vnpanic(vp, "%s: cannot lock", __func__);
}
VOP_INACTIVE(vp, &recycle);
KASSERT(VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
if (VOP_RECLAIM(vp)) {
vnpanic(vp, "%s: cannot reclaim", __func__);
}
/* Purge name cache. */
cache_purge(vp);
/* Done with purge, change operations vector. */
mutex_enter(vp->v_interlock);
vp->v_op = spec_vnodeop_p;
vp->v_vflag |= VV_MPSAFE;
mutex_exit(vp->v_interlock);
/*
* Move to dead mount. Must be after changing the operations
* vector as vnode operations enter the mount before using the
* operations vector. See sys/kern/vnode_if.c.
*/
vfs_ref(dead_rootmount);
vfs_insmntque(vp, dead_rootmount);
vrele(vp);
}
/*
* Update outstanding I/O count and do wakeup if requested.
*/
void
vwakeup(struct buf *bp)
{
vnode_t *vp;
if ((vp = bp->b_vp) == NULL)
return;
KASSERT(bp->b_objlock == vp->v_interlock);
KASSERT(mutex_owned(bp->b_objlock));
if (--vp->v_numoutput < 0)
vnpanic(vp, "%s: neg numoutput, vp %p", __func__, vp);
if (vp->v_numoutput == 0)
cv_broadcast(&vp->v_cv);
}
/*
* Test a vnode for being or becoming dead. Returns one of:
* EBUSY: vnode is becoming dead, with "flags == VDEAD_NOWAIT" only.
* ENOENT: vnode is dead.
* 0: otherwise.
*
* Whenever this function returns a non-zero value all future
* calls will also return a non-zero value.
*/
int
vdead_check(struct vnode *vp, int flags)
{
KASSERT(mutex_owned(vp->v_interlock));
if (! ISSET(flags, VDEAD_NOWAIT))
VSTATE_WAIT_STABLE(vp);
if (VSTATE_GET(vp) == VS_RECLAIMING) {
KASSERT(ISSET(flags, VDEAD_NOWAIT));
return EBUSY;
} else if (VSTATE_GET(vp) == VS_RECLAIMED) {
return ENOENT;
}
return 0;
}
int
vfs_drainvnodes(void)
{
mutex_enter(&vdrain_lock);
if (!vdrain_one(desiredvnodes)) {
mutex_exit(&vdrain_lock);
return EBUSY;
}
mutex_exit(&vdrain_lock);
if (vcache_hashsize != desiredvnodes)
vcache_reinit();
return 0;
}
void
vnpanic(vnode_t *vp, const char *fmt, ...)
{
va_list ap;
#ifdef DIAGNOSTIC
vprint(NULL, vp);
#endif
va_start(ap, fmt);
vpanic(fmt, ap);
va_end(ap);
}
void
vshareilock(vnode_t *tvp, vnode_t *fvp)
{
kmutex_t *oldlock;
oldlock = tvp->v_interlock;
mutex_obj_hold(fvp->v_interlock);
tvp->v_interlock = fvp->v_interlock;
mutex_obj_free(oldlock);
}
void
vshareklist(vnode_t *tvp, vnode_t *fvp)
{
/*
* If two vnodes share klist state, they must also share
* an interlock.
*/
KASSERT(tvp->v_interlock == fvp->v_interlock);
/*
* We make the following assumptions:
*
* ==> Some other synchronization is happening outside of
* our view to make this safe.
*
* ==> That the "to" vnode will have the necessary references
* on the "from" vnode so that the storage for the klist
* won't be yanked out from beneath us (the vnode_impl).
*
* ==> If "from" is also sharing, we then assume that "from"
* has the necessary references, and so on.
*/
tvp->v_klist = fvp->v_klist;
}