1200 lines
27 KiB
C
1200 lines
27 KiB
C
/* $NetBSD: sys_pipe.c,v 1.166 2023/11/02 10:31:55 martin Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2003, 2007, 2008, 2009, 2023 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Paul Kranenburg, and by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1996 John S. Dyson
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice immediately at the beginning of the file, without modification,
|
|
* this list of conditions, and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Absolutely no warranty of function or purpose is made by the author
|
|
* John S. Dyson.
|
|
* 4. Modifications may be freely made to this file if the above conditions
|
|
* are met.
|
|
*/
|
|
|
|
/*
|
|
* This file contains a high-performance replacement for the socket-based
|
|
* pipes scheme originally used. It does not support all features of
|
|
* sockets, but does do everything that pipes normally do.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sys_pipe.c,v 1.166 2023/11/02 10:31:55 martin Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/file.h>
|
|
#include <sys/filedesc.h>
|
|
#include <sys/filio.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/ttycom.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/uio.h>
|
|
#include <sys/select.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/pipe.h>
|
|
|
|
static int pipe_read(file_t *, off_t *, struct uio *, kauth_cred_t, int);
|
|
static int pipe_write(file_t *, off_t *, struct uio *, kauth_cred_t, int);
|
|
static int pipe_close(file_t *);
|
|
static int pipe_poll(file_t *, int);
|
|
static int pipe_kqfilter(file_t *, struct knote *);
|
|
static int pipe_stat(file_t *, struct stat *);
|
|
static int pipe_ioctl(file_t *, u_long, void *);
|
|
static void pipe_restart(file_t *);
|
|
static int pipe_fpathconf(file_t *, int, register_t *);
|
|
static int pipe_posix_fadvise(file_t *, off_t, off_t, int);
|
|
|
|
static const struct fileops pipeops = {
|
|
.fo_name = "pipe",
|
|
.fo_read = pipe_read,
|
|
.fo_write = pipe_write,
|
|
.fo_ioctl = pipe_ioctl,
|
|
.fo_fcntl = fnullop_fcntl,
|
|
.fo_poll = pipe_poll,
|
|
.fo_stat = pipe_stat,
|
|
.fo_close = pipe_close,
|
|
.fo_kqfilter = pipe_kqfilter,
|
|
.fo_restart = pipe_restart,
|
|
.fo_fpathconf = pipe_fpathconf,
|
|
.fo_posix_fadvise = pipe_posix_fadvise,
|
|
};
|
|
|
|
/*
|
|
* Default pipe buffer size(s), this can be kind-of large now because pipe
|
|
* space is pageable. The pipe code will try to maintain locality of
|
|
* reference for performance reasons, so small amounts of outstanding I/O
|
|
* will not wipe the cache.
|
|
*/
|
|
#define MINPIPESIZE (PIPE_SIZE / 3)
|
|
#define MAXPIPESIZE (2 * PIPE_SIZE / 3)
|
|
|
|
/*
|
|
* Limit the number of "big" pipes
|
|
*/
|
|
#define LIMITBIGPIPES 32
|
|
static u_int maxbigpipes __read_mostly = LIMITBIGPIPES;
|
|
static u_int nbigpipe = 0;
|
|
|
|
/*
|
|
* Amount of KVA consumed by pipe buffers.
|
|
*/
|
|
static u_int amountpipekva = 0;
|
|
|
|
static void pipeclose(struct pipe *);
|
|
static void pipe_free_kmem(struct pipe *);
|
|
static int pipe_create(struct pipe **, pool_cache_t, struct timespec *);
|
|
static int pipelock(struct pipe *, bool);
|
|
static inline void pipeunlock(struct pipe *);
|
|
static void pipeselwakeup(struct pipe *, struct pipe *, int);
|
|
static int pipespace(struct pipe *, int);
|
|
static int pipe_ctor(void *, void *, int);
|
|
static void pipe_dtor(void *, void *);
|
|
|
|
static pool_cache_t pipe_wr_cache;
|
|
static pool_cache_t pipe_rd_cache;
|
|
|
|
void
|
|
pipe_init(void)
|
|
{
|
|
|
|
/* Writer side is not automatically allocated KVA. */
|
|
pipe_wr_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "pipewr",
|
|
NULL, IPL_NONE, pipe_ctor, pipe_dtor, NULL);
|
|
KASSERT(pipe_wr_cache != NULL);
|
|
|
|
/* Reader side gets preallocated KVA. */
|
|
pipe_rd_cache = pool_cache_init(sizeof(struct pipe), 0, 0, 0, "piperd",
|
|
NULL, IPL_NONE, pipe_ctor, pipe_dtor, (void *)1);
|
|
KASSERT(pipe_rd_cache != NULL);
|
|
}
|
|
|
|
static int
|
|
pipe_ctor(void *arg, void *obj, int flags)
|
|
{
|
|
struct pipe *pipe;
|
|
vaddr_t va;
|
|
|
|
pipe = obj;
|
|
|
|
memset(pipe, 0, sizeof(struct pipe));
|
|
if (arg != NULL) {
|
|
/* Preallocate space. */
|
|
va = uvm_km_alloc(kernel_map, PIPE_SIZE, 0,
|
|
UVM_KMF_PAGEABLE | UVM_KMF_WAITVA);
|
|
KASSERT(va != 0);
|
|
pipe->pipe_kmem = va;
|
|
atomic_add_int(&amountpipekva, PIPE_SIZE);
|
|
}
|
|
cv_init(&pipe->pipe_rcv, "pipe_rd");
|
|
cv_init(&pipe->pipe_wcv, "pipe_wr");
|
|
cv_init(&pipe->pipe_draincv, "pipe_drn");
|
|
cv_init(&pipe->pipe_lkcv, "pipe_lk");
|
|
selinit(&pipe->pipe_sel);
|
|
pipe->pipe_state = PIPE_SIGNALR;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
pipe_dtor(void *arg, void *obj)
|
|
{
|
|
struct pipe *pipe;
|
|
|
|
pipe = obj;
|
|
|
|
cv_destroy(&pipe->pipe_rcv);
|
|
cv_destroy(&pipe->pipe_wcv);
|
|
cv_destroy(&pipe->pipe_draincv);
|
|
cv_destroy(&pipe->pipe_lkcv);
|
|
seldestroy(&pipe->pipe_sel);
|
|
if (pipe->pipe_kmem != 0) {
|
|
uvm_km_free(kernel_map, pipe->pipe_kmem, PIPE_SIZE,
|
|
UVM_KMF_PAGEABLE);
|
|
atomic_add_int(&amountpipekva, -PIPE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The pipe system call for the DTYPE_PIPE type of pipes
|
|
*/
|
|
int
|
|
pipe1(struct lwp *l, int *fildes, int flags)
|
|
{
|
|
struct pipe *rpipe, *wpipe;
|
|
struct timespec nt;
|
|
file_t *rf, *wf;
|
|
int fd, error;
|
|
proc_t *p;
|
|
|
|
if (flags & ~(O_CLOEXEC|O_NONBLOCK|O_NOSIGPIPE))
|
|
return EINVAL;
|
|
p = curproc;
|
|
rpipe = wpipe = NULL;
|
|
getnanotime(&nt);
|
|
if ((error = pipe_create(&rpipe, pipe_rd_cache, &nt)) ||
|
|
(error = pipe_create(&wpipe, pipe_wr_cache, &nt))) {
|
|
goto free2;
|
|
}
|
|
rpipe->pipe_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NONE);
|
|
wpipe->pipe_lock = rpipe->pipe_lock;
|
|
mutex_obj_hold(wpipe->pipe_lock);
|
|
|
|
error = fd_allocfile(&rf, &fd);
|
|
if (error)
|
|
goto free2;
|
|
fildes[0] = fd;
|
|
|
|
error = fd_allocfile(&wf, &fd);
|
|
if (error)
|
|
goto free3;
|
|
fildes[1] = fd;
|
|
|
|
rf->f_flag = FREAD | flags;
|
|
rf->f_type = DTYPE_PIPE;
|
|
rf->f_pipe = rpipe;
|
|
rf->f_ops = &pipeops;
|
|
fd_set_exclose(l, fildes[0], (flags & O_CLOEXEC) != 0);
|
|
|
|
wf->f_flag = FWRITE | flags;
|
|
wf->f_type = DTYPE_PIPE;
|
|
wf->f_pipe = wpipe;
|
|
wf->f_ops = &pipeops;
|
|
fd_set_exclose(l, fildes[1], (flags & O_CLOEXEC) != 0);
|
|
|
|
rpipe->pipe_peer = wpipe;
|
|
wpipe->pipe_peer = rpipe;
|
|
|
|
fd_affix(p, rf, fildes[0]);
|
|
fd_affix(p, wf, fildes[1]);
|
|
return (0);
|
|
free3:
|
|
fd_abort(p, rf, fildes[0]);
|
|
free2:
|
|
pipeclose(wpipe);
|
|
pipeclose(rpipe);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Allocate kva for pipe circular buffer, the space is pageable
|
|
* This routine will 'realloc' the size of a pipe safely, if it fails
|
|
* it will retain the old buffer.
|
|
* If it fails it will return ENOMEM.
|
|
*/
|
|
static int
|
|
pipespace(struct pipe *pipe, int size)
|
|
{
|
|
void *buffer;
|
|
|
|
/*
|
|
* Allocate pageable virtual address space. Physical memory is
|
|
* allocated on demand.
|
|
*/
|
|
if (size == PIPE_SIZE && pipe->pipe_kmem != 0) {
|
|
buffer = (void *)pipe->pipe_kmem;
|
|
} else {
|
|
buffer = (void *)uvm_km_alloc(kernel_map, round_page(size),
|
|
0, UVM_KMF_PAGEABLE);
|
|
if (buffer == NULL)
|
|
return (ENOMEM);
|
|
atomic_add_int(&amountpipekva, size);
|
|
}
|
|
|
|
/* free old resources if we're resizing */
|
|
pipe_free_kmem(pipe);
|
|
pipe->pipe_buffer.buffer = buffer;
|
|
pipe->pipe_buffer.size = size;
|
|
pipe->pipe_buffer.in = 0;
|
|
pipe->pipe_buffer.out = 0;
|
|
pipe->pipe_buffer.cnt = 0;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Initialize and allocate VM and memory for pipe.
|
|
*/
|
|
static int
|
|
pipe_create(struct pipe **pipep, pool_cache_t cache, struct timespec *nt)
|
|
{
|
|
struct pipe *pipe;
|
|
int error;
|
|
|
|
pipe = pool_cache_get(cache, PR_WAITOK);
|
|
KASSERT(pipe != NULL);
|
|
*pipep = pipe;
|
|
error = 0;
|
|
pipe->pipe_atime = pipe->pipe_mtime = pipe->pipe_btime = *nt;
|
|
pipe->pipe_lock = NULL;
|
|
if (cache == pipe_rd_cache) {
|
|
error = pipespace(pipe, PIPE_SIZE);
|
|
} else {
|
|
pipe->pipe_buffer.buffer = NULL;
|
|
pipe->pipe_buffer.size = 0;
|
|
pipe->pipe_buffer.in = 0;
|
|
pipe->pipe_buffer.out = 0;
|
|
pipe->pipe_buffer.cnt = 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Lock a pipe for I/O, blocking other access
|
|
* Called with pipe spin lock held.
|
|
*/
|
|
static int
|
|
pipelock(struct pipe *pipe, bool catch_p)
|
|
{
|
|
int error;
|
|
|
|
KASSERT(mutex_owned(pipe->pipe_lock));
|
|
|
|
while (pipe->pipe_state & PIPE_LOCKFL) {
|
|
if (catch_p) {
|
|
error = cv_wait_sig(&pipe->pipe_lkcv, pipe->pipe_lock);
|
|
if (error != 0) {
|
|
return error;
|
|
}
|
|
} else
|
|
cv_wait(&pipe->pipe_lkcv, pipe->pipe_lock);
|
|
}
|
|
|
|
pipe->pipe_state |= PIPE_LOCKFL;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* unlock a pipe I/O lock
|
|
*/
|
|
static inline void
|
|
pipeunlock(struct pipe *pipe)
|
|
{
|
|
|
|
KASSERT(pipe->pipe_state & PIPE_LOCKFL);
|
|
|
|
pipe->pipe_state &= ~PIPE_LOCKFL;
|
|
cv_signal(&pipe->pipe_lkcv);
|
|
}
|
|
|
|
/*
|
|
* Select/poll wakup. This also sends SIGIO to peer connected to
|
|
* 'sigpipe' side of pipe.
|
|
*/
|
|
static void
|
|
pipeselwakeup(struct pipe *selp, struct pipe *sigp, int code)
|
|
{
|
|
int band;
|
|
|
|
switch (code) {
|
|
case POLL_IN:
|
|
band = POLLIN|POLLRDNORM;
|
|
break;
|
|
case POLL_OUT:
|
|
band = POLLOUT|POLLWRNORM;
|
|
break;
|
|
case POLL_HUP:
|
|
band = POLLHUP;
|
|
break;
|
|
case POLL_ERR:
|
|
band = POLLERR;
|
|
break;
|
|
default:
|
|
band = 0;
|
|
#ifdef DIAGNOSTIC
|
|
printf("bad siginfo code %d in pipe notification.\n", code);
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
selnotify(&selp->pipe_sel, band, NOTE_SUBMIT);
|
|
|
|
if (sigp == NULL || (sigp->pipe_state & PIPE_ASYNC) == 0)
|
|
return;
|
|
|
|
fownsignal(sigp->pipe_pgid, SIGIO, code, band, selp);
|
|
}
|
|
|
|
static int
|
|
pipe_read(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
|
|
int flags)
|
|
{
|
|
struct pipe *rpipe = fp->f_pipe;
|
|
struct pipebuf *bp = &rpipe->pipe_buffer;
|
|
kmutex_t *lock = rpipe->pipe_lock;
|
|
int error;
|
|
size_t nread = 0;
|
|
size_t size;
|
|
size_t ocnt;
|
|
unsigned int wakeup_state = 0;
|
|
|
|
/*
|
|
* Try to avoid locking the pipe if we have nothing to do.
|
|
*
|
|
* There are programs which share one pipe amongst multiple processes
|
|
* and perform non-blocking reads in parallel, even if the pipe is
|
|
* empty. This in particular is the case with BSD make, which when
|
|
* spawned with a high -j number can find itself with over half of the
|
|
* calls failing to find anything.
|
|
*/
|
|
if ((fp->f_flag & FNONBLOCK) != 0) {
|
|
if (__predict_false(uio->uio_resid == 0))
|
|
return (0);
|
|
if (atomic_load_relaxed(&bp->cnt) == 0 &&
|
|
(atomic_load_relaxed(&rpipe->pipe_state) & PIPE_EOF) == 0)
|
|
return (EAGAIN);
|
|
}
|
|
|
|
mutex_enter(lock);
|
|
++rpipe->pipe_busy;
|
|
ocnt = bp->cnt;
|
|
|
|
again:
|
|
error = pipelock(rpipe, true);
|
|
if (error)
|
|
goto unlocked_error;
|
|
|
|
while (uio->uio_resid) {
|
|
/*
|
|
* Normal pipe buffer receive.
|
|
*/
|
|
if (bp->cnt > 0) {
|
|
size = bp->size - bp->out;
|
|
if (size > bp->cnt)
|
|
size = bp->cnt;
|
|
if (size > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
|
|
mutex_exit(lock);
|
|
error = uiomove((char *)bp->buffer + bp->out, size, uio);
|
|
mutex_enter(lock);
|
|
if (error)
|
|
break;
|
|
|
|
bp->out += size;
|
|
if (bp->out >= bp->size)
|
|
bp->out = 0;
|
|
|
|
bp->cnt -= size;
|
|
|
|
/*
|
|
* If there is no more to read in the pipe, reset
|
|
* its pointers to the beginning. This improves
|
|
* cache hit stats.
|
|
*/
|
|
if (bp->cnt == 0) {
|
|
bp->in = 0;
|
|
bp->out = 0;
|
|
}
|
|
nread += size;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Break if some data was read.
|
|
*/
|
|
if (nread > 0)
|
|
break;
|
|
|
|
/*
|
|
* Detect EOF condition.
|
|
* Read returns 0 on EOF, no need to set error.
|
|
*/
|
|
if (rpipe->pipe_state & PIPE_EOF)
|
|
break;
|
|
|
|
/*
|
|
* Don't block on non-blocking I/O.
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Unlock the pipe buffer for our remaining processing.
|
|
* We will either break out with an error or we will
|
|
* sleep and relock to loop.
|
|
*/
|
|
pipeunlock(rpipe);
|
|
|
|
#if 1 /* XXX (dsl) I'm sure these aren't needed here ... */
|
|
/*
|
|
* We want to read more, wake up select/poll.
|
|
*/
|
|
pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
|
|
|
|
/*
|
|
* If the "write-side" is blocked, wake it up now.
|
|
*/
|
|
cv_broadcast(&rpipe->pipe_wcv);
|
|
#endif
|
|
|
|
if (wakeup_state & PIPE_RESTART) {
|
|
error = ERESTART;
|
|
goto unlocked_error;
|
|
}
|
|
|
|
/* Now wait until the pipe is filled */
|
|
error = cv_wait_sig(&rpipe->pipe_rcv, lock);
|
|
if (error != 0)
|
|
goto unlocked_error;
|
|
wakeup_state = rpipe->pipe_state;
|
|
goto again;
|
|
}
|
|
|
|
if (error == 0)
|
|
getnanotime(&rpipe->pipe_atime);
|
|
pipeunlock(rpipe);
|
|
|
|
unlocked_error:
|
|
--rpipe->pipe_busy;
|
|
if (rpipe->pipe_busy == 0) {
|
|
rpipe->pipe_state &= ~PIPE_RESTART;
|
|
cv_broadcast(&rpipe->pipe_draincv);
|
|
}
|
|
if (bp->cnt < MINPIPESIZE) {
|
|
cv_broadcast(&rpipe->pipe_wcv);
|
|
}
|
|
|
|
/*
|
|
* If anything was read off the buffer, signal to the writer it's
|
|
* possible to write more data. Also send signal if we are here for the
|
|
* first time after last write.
|
|
*/
|
|
if ((bp->size - bp->cnt) >= PIPE_BUF
|
|
&& (ocnt != bp->cnt || (rpipe->pipe_state & PIPE_SIGNALR))) {
|
|
pipeselwakeup(rpipe, rpipe->pipe_peer, POLL_OUT);
|
|
rpipe->pipe_state &= ~PIPE_SIGNALR;
|
|
}
|
|
|
|
mutex_exit(lock);
|
|
return (error);
|
|
}
|
|
|
|
static int
|
|
pipe_write(file_t *fp, off_t *offset, struct uio *uio, kauth_cred_t cred,
|
|
int flags)
|
|
{
|
|
struct pipe *wpipe, *rpipe;
|
|
struct pipebuf *bp;
|
|
kmutex_t *lock;
|
|
int error;
|
|
unsigned int wakeup_state = 0;
|
|
|
|
/* We want to write to our peer */
|
|
rpipe = fp->f_pipe;
|
|
lock = rpipe->pipe_lock;
|
|
error = 0;
|
|
|
|
mutex_enter(lock);
|
|
wpipe = rpipe->pipe_peer;
|
|
|
|
/*
|
|
* Detect loss of pipe read side, issue SIGPIPE if lost.
|
|
*/
|
|
if (wpipe == NULL || (wpipe->pipe_state & PIPE_EOF) != 0) {
|
|
mutex_exit(lock);
|
|
return EPIPE;
|
|
}
|
|
++wpipe->pipe_busy;
|
|
|
|
/* Acquire the long-term pipe lock */
|
|
if ((error = pipelock(wpipe, true)) != 0) {
|
|
--wpipe->pipe_busy;
|
|
if (wpipe->pipe_busy == 0) {
|
|
wpipe->pipe_state &= ~PIPE_RESTART;
|
|
cv_broadcast(&wpipe->pipe_draincv);
|
|
}
|
|
mutex_exit(lock);
|
|
return (error);
|
|
}
|
|
|
|
bp = &wpipe->pipe_buffer;
|
|
|
|
/*
|
|
* If it is advantageous to resize the pipe buffer, do so.
|
|
*/
|
|
if ((uio->uio_resid > PIPE_SIZE) &&
|
|
(nbigpipe < maxbigpipes) &&
|
|
(bp->size <= PIPE_SIZE) && (bp->cnt == 0)) {
|
|
|
|
if (pipespace(wpipe, BIG_PIPE_SIZE) == 0)
|
|
atomic_inc_uint(&nbigpipe);
|
|
}
|
|
|
|
while (uio->uio_resid) {
|
|
size_t space;
|
|
|
|
space = bp->size - bp->cnt;
|
|
|
|
/* Writes of size <= PIPE_BUF must be atomic. */
|
|
if ((space < uio->uio_resid) && (uio->uio_resid <= PIPE_BUF))
|
|
space = 0;
|
|
|
|
if (space > 0) {
|
|
int size; /* Transfer size */
|
|
int segsize; /* first segment to transfer */
|
|
|
|
/*
|
|
* Transfer size is minimum of uio transfer
|
|
* and free space in pipe buffer.
|
|
*/
|
|
if (space > uio->uio_resid)
|
|
size = uio->uio_resid;
|
|
else
|
|
size = space;
|
|
/*
|
|
* First segment to transfer is minimum of
|
|
* transfer size and contiguous space in
|
|
* pipe buffer. If first segment to transfer
|
|
* is less than the transfer size, we've got
|
|
* a wraparound in the buffer.
|
|
*/
|
|
segsize = bp->size - bp->in;
|
|
if (segsize > size)
|
|
segsize = size;
|
|
|
|
/* Transfer first segment */
|
|
mutex_exit(lock);
|
|
error = uiomove((char *)bp->buffer + bp->in, segsize,
|
|
uio);
|
|
|
|
if (error == 0 && segsize < size) {
|
|
/*
|
|
* Transfer remaining part now, to
|
|
* support atomic writes. Wraparound
|
|
* happened.
|
|
*/
|
|
KASSERT(bp->in + segsize == bp->size);
|
|
error = uiomove(bp->buffer,
|
|
size - segsize, uio);
|
|
}
|
|
mutex_enter(lock);
|
|
if (error)
|
|
break;
|
|
|
|
bp->in += size;
|
|
if (bp->in >= bp->size) {
|
|
KASSERT(bp->in == size - segsize + bp->size);
|
|
bp->in = size - segsize;
|
|
}
|
|
|
|
bp->cnt += size;
|
|
KASSERT(bp->cnt <= bp->size);
|
|
wakeup_state = 0;
|
|
} else {
|
|
/*
|
|
* If the "read-side" has been blocked, wake it up now.
|
|
*/
|
|
cv_broadcast(&wpipe->pipe_rcv);
|
|
|
|
/*
|
|
* Don't block on non-blocking I/O.
|
|
*/
|
|
if (fp->f_flag & FNONBLOCK) {
|
|
error = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We have no more space and have something to offer,
|
|
* wake up select/poll.
|
|
*/
|
|
if (bp->cnt)
|
|
pipeselwakeup(wpipe, wpipe, POLL_IN);
|
|
|
|
if (wakeup_state & PIPE_RESTART) {
|
|
error = ERESTART;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If read side wants to go away, we just issue a signal
|
|
* to ourselves.
|
|
*/
|
|
if (wpipe->pipe_state & PIPE_EOF) {
|
|
error = EPIPE;
|
|
break;
|
|
}
|
|
|
|
pipeunlock(wpipe);
|
|
error = cv_wait_sig(&wpipe->pipe_wcv, lock);
|
|
(void)pipelock(wpipe, false);
|
|
if (error != 0)
|
|
break;
|
|
wakeup_state = wpipe->pipe_state;
|
|
}
|
|
}
|
|
|
|
--wpipe->pipe_busy;
|
|
if (wpipe->pipe_busy == 0) {
|
|
wpipe->pipe_state &= ~PIPE_RESTART;
|
|
cv_broadcast(&wpipe->pipe_draincv);
|
|
}
|
|
if (bp->cnt > 0) {
|
|
cv_broadcast(&wpipe->pipe_rcv);
|
|
}
|
|
|
|
/*
|
|
* Don't return EPIPE if I/O was successful
|
|
*/
|
|
if (error == EPIPE && bp->cnt == 0 && uio->uio_resid == 0)
|
|
error = 0;
|
|
|
|
if (error == 0)
|
|
getnanotime(&wpipe->pipe_mtime);
|
|
|
|
/*
|
|
* We have something to offer, wake up select/poll.
|
|
*/
|
|
if (bp->cnt)
|
|
pipeselwakeup(wpipe, wpipe, POLL_IN);
|
|
|
|
/*
|
|
* Arrange for next read(2) to do a signal.
|
|
*/
|
|
wpipe->pipe_state |= PIPE_SIGNALR;
|
|
|
|
pipeunlock(wpipe);
|
|
mutex_exit(lock);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* We implement a very minimal set of ioctls for compatibility with sockets.
|
|
*/
|
|
int
|
|
pipe_ioctl(file_t *fp, u_long cmd, void *data)
|
|
{
|
|
struct pipe *pipe = fp->f_pipe;
|
|
kmutex_t *lock = pipe->pipe_lock;
|
|
|
|
switch (cmd) {
|
|
|
|
case FIONBIO:
|
|
return (0);
|
|
|
|
case FIOASYNC:
|
|
mutex_enter(lock);
|
|
if (*(int *)data) {
|
|
pipe->pipe_state |= PIPE_ASYNC;
|
|
} else {
|
|
pipe->pipe_state &= ~PIPE_ASYNC;
|
|
}
|
|
mutex_exit(lock);
|
|
return (0);
|
|
|
|
case FIONREAD:
|
|
mutex_enter(lock);
|
|
*(int *)data = pipe->pipe_buffer.cnt;
|
|
mutex_exit(lock);
|
|
return (0);
|
|
|
|
case FIONWRITE:
|
|
/* Look at other side */
|
|
mutex_enter(lock);
|
|
pipe = pipe->pipe_peer;
|
|
if (pipe == NULL)
|
|
*(int *)data = 0;
|
|
else
|
|
*(int *)data = pipe->pipe_buffer.cnt;
|
|
mutex_exit(lock);
|
|
return (0);
|
|
|
|
case FIONSPACE:
|
|
/* Look at other side */
|
|
mutex_enter(lock);
|
|
pipe = pipe->pipe_peer;
|
|
if (pipe == NULL)
|
|
*(int *)data = 0;
|
|
else
|
|
*(int *)data = pipe->pipe_buffer.size -
|
|
pipe->pipe_buffer.cnt;
|
|
mutex_exit(lock);
|
|
return (0);
|
|
|
|
case TIOCSPGRP:
|
|
case FIOSETOWN:
|
|
return fsetown(&pipe->pipe_pgid, cmd, data);
|
|
|
|
case TIOCGPGRP:
|
|
case FIOGETOWN:
|
|
return fgetown(pipe->pipe_pgid, cmd, data);
|
|
|
|
}
|
|
return (EPASSTHROUGH);
|
|
}
|
|
|
|
int
|
|
pipe_poll(file_t *fp, int events)
|
|
{
|
|
struct pipe *rpipe = fp->f_pipe;
|
|
struct pipe *wpipe;
|
|
int eof = 0;
|
|
int revents = 0;
|
|
|
|
mutex_enter(rpipe->pipe_lock);
|
|
wpipe = rpipe->pipe_peer;
|
|
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
if ((rpipe->pipe_buffer.cnt > 0) ||
|
|
(rpipe->pipe_state & PIPE_EOF))
|
|
revents |= events & (POLLIN | POLLRDNORM);
|
|
|
|
eof |= (rpipe->pipe_state & PIPE_EOF);
|
|
|
|
if (wpipe == NULL)
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
else {
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
if ((wpipe->pipe_state & PIPE_EOF) || (
|
|
(wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt) >= PIPE_BUF))
|
|
revents |= events & (POLLOUT | POLLWRNORM);
|
|
|
|
eof |= (wpipe->pipe_state & PIPE_EOF);
|
|
}
|
|
|
|
if (wpipe == NULL || eof)
|
|
revents |= POLLHUP;
|
|
|
|
if (revents == 0) {
|
|
if (events & (POLLIN | POLLRDNORM))
|
|
selrecord(curlwp, &rpipe->pipe_sel);
|
|
|
|
if (events & (POLLOUT | POLLWRNORM))
|
|
selrecord(curlwp, &wpipe->pipe_sel);
|
|
}
|
|
mutex_exit(rpipe->pipe_lock);
|
|
|
|
return (revents);
|
|
}
|
|
|
|
static int
|
|
pipe_stat(file_t *fp, struct stat *ub)
|
|
{
|
|
struct pipe *pipe = fp->f_pipe;
|
|
|
|
mutex_enter(pipe->pipe_lock);
|
|
memset(ub, 0, sizeof(*ub));
|
|
ub->st_mode = S_IFIFO | S_IRUSR | S_IWUSR;
|
|
ub->st_blksize = pipe->pipe_buffer.size;
|
|
if (ub->st_blksize == 0 && pipe->pipe_peer)
|
|
ub->st_blksize = pipe->pipe_peer->pipe_buffer.size;
|
|
ub->st_size = pipe->pipe_buffer.cnt;
|
|
ub->st_blocks = (ub->st_size) ? 1 : 0;
|
|
ub->st_atimespec = pipe->pipe_atime;
|
|
ub->st_mtimespec = pipe->pipe_mtime;
|
|
ub->st_ctimespec = ub->st_birthtimespec = pipe->pipe_btime;
|
|
ub->st_uid = kauth_cred_geteuid(fp->f_cred);
|
|
ub->st_gid = kauth_cred_getegid(fp->f_cred);
|
|
|
|
/*
|
|
* Left as 0: st_dev, st_ino, st_nlink, st_rdev, st_flags, st_gen.
|
|
* XXX (st_dev, st_ino) should be unique.
|
|
*/
|
|
mutex_exit(pipe->pipe_lock);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pipe_close(file_t *fp)
|
|
{
|
|
struct pipe *pipe = fp->f_pipe;
|
|
|
|
fp->f_pipe = NULL;
|
|
pipeclose(pipe);
|
|
return (0);
|
|
}
|
|
|
|
static void
|
|
pipe_restart(file_t *fp)
|
|
{
|
|
struct pipe *pipe = fp->f_pipe;
|
|
|
|
/*
|
|
* Unblock blocked reads/writes in order to allow close() to complete.
|
|
* System calls return ERESTART so that the fd is revalidated.
|
|
* (Partial writes return the transfer length.)
|
|
*/
|
|
mutex_enter(pipe->pipe_lock);
|
|
pipe->pipe_state |= PIPE_RESTART;
|
|
/* Wakeup both cvs, maybe we only need one, but maybe there are some
|
|
* other paths where wakeup is needed, and it saves deciding which! */
|
|
cv_broadcast(&pipe->pipe_rcv);
|
|
cv_broadcast(&pipe->pipe_wcv);
|
|
mutex_exit(pipe->pipe_lock);
|
|
}
|
|
|
|
static int
|
|
pipe_fpathconf(struct file *fp, int name, register_t *retval)
|
|
{
|
|
|
|
switch (name) {
|
|
case _PC_PIPE_BUF:
|
|
*retval = PIPE_BUF;
|
|
return 0;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
static int
|
|
pipe_posix_fadvise(struct file *fp, off_t offset, off_t len, int advice)
|
|
{
|
|
|
|
return ESPIPE;
|
|
}
|
|
|
|
static void
|
|
pipe_free_kmem(struct pipe *pipe)
|
|
{
|
|
|
|
if (pipe->pipe_buffer.buffer != NULL) {
|
|
if (pipe->pipe_buffer.size > PIPE_SIZE) {
|
|
atomic_dec_uint(&nbigpipe);
|
|
}
|
|
if (pipe->pipe_buffer.buffer != (void *)pipe->pipe_kmem) {
|
|
uvm_km_free(kernel_map,
|
|
(vaddr_t)pipe->pipe_buffer.buffer,
|
|
pipe->pipe_buffer.size, UVM_KMF_PAGEABLE);
|
|
atomic_add_int(&amountpipekva,
|
|
-pipe->pipe_buffer.size);
|
|
}
|
|
pipe->pipe_buffer.buffer = NULL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shutdown the pipe.
|
|
*/
|
|
static void
|
|
pipeclose(struct pipe *pipe)
|
|
{
|
|
kmutex_t *lock;
|
|
struct pipe *ppipe;
|
|
|
|
if (pipe == NULL)
|
|
return;
|
|
|
|
KASSERT(cv_is_valid(&pipe->pipe_rcv));
|
|
KASSERT(cv_is_valid(&pipe->pipe_wcv));
|
|
KASSERT(cv_is_valid(&pipe->pipe_draincv));
|
|
KASSERT(cv_is_valid(&pipe->pipe_lkcv));
|
|
|
|
lock = pipe->pipe_lock;
|
|
if (lock == NULL)
|
|
/* Must have failed during create */
|
|
goto free_resources;
|
|
|
|
mutex_enter(lock);
|
|
pipeselwakeup(pipe, pipe, POLL_HUP);
|
|
|
|
/*
|
|
* If the other side is blocked, wake it up saying that
|
|
* we want to close it down.
|
|
*/
|
|
pipe->pipe_state |= PIPE_EOF;
|
|
if (pipe->pipe_busy) {
|
|
while (pipe->pipe_busy) {
|
|
cv_broadcast(&pipe->pipe_wcv);
|
|
cv_wait_sig(&pipe->pipe_draincv, lock);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Disconnect from peer.
|
|
*/
|
|
if ((ppipe = pipe->pipe_peer) != NULL) {
|
|
pipeselwakeup(ppipe, ppipe, POLL_HUP);
|
|
ppipe->pipe_state |= PIPE_EOF;
|
|
cv_broadcast(&ppipe->pipe_rcv);
|
|
ppipe->pipe_peer = NULL;
|
|
}
|
|
|
|
/*
|
|
* Any knote objects still left in the list are
|
|
* the one attached by peer. Since no one will
|
|
* traverse this list, we just clear it.
|
|
*
|
|
* XXX Exposes select/kqueue internals.
|
|
*/
|
|
SLIST_INIT(&pipe->pipe_sel.sel_klist);
|
|
|
|
KASSERT((pipe->pipe_state & PIPE_LOCKFL) == 0);
|
|
mutex_exit(lock);
|
|
mutex_obj_free(lock);
|
|
|
|
/*
|
|
* Free resources.
|
|
*/
|
|
free_resources:
|
|
pipe->pipe_pgid = 0;
|
|
pipe->pipe_state = PIPE_SIGNALR;
|
|
pipe->pipe_peer = NULL;
|
|
pipe->pipe_lock = NULL;
|
|
pipe_free_kmem(pipe);
|
|
if (pipe->pipe_kmem != 0) {
|
|
pool_cache_put(pipe_rd_cache, pipe);
|
|
} else {
|
|
pool_cache_put(pipe_wr_cache, pipe);
|
|
}
|
|
}
|
|
|
|
static void
|
|
filt_pipedetach(struct knote *kn)
|
|
{
|
|
struct pipe *pipe;
|
|
kmutex_t *lock;
|
|
|
|
pipe = ((file_t *)kn->kn_obj)->f_pipe;
|
|
lock = pipe->pipe_lock;
|
|
|
|
mutex_enter(lock);
|
|
|
|
switch(kn->kn_filter) {
|
|
case EVFILT_WRITE:
|
|
/* Need the peer structure, not our own. */
|
|
pipe = pipe->pipe_peer;
|
|
|
|
/* If reader end already closed, just return. */
|
|
if (pipe == NULL) {
|
|
mutex_exit(lock);
|
|
return;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
/* Nothing to do. */
|
|
break;
|
|
}
|
|
|
|
KASSERT(kn->kn_hook == pipe);
|
|
selremove_knote(&pipe->pipe_sel, kn);
|
|
mutex_exit(lock);
|
|
}
|
|
|
|
static int
|
|
filt_piperead(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
|
|
struct pipe *wpipe;
|
|
int rv;
|
|
|
|
if ((hint & NOTE_SUBMIT) == 0) {
|
|
mutex_enter(rpipe->pipe_lock);
|
|
}
|
|
wpipe = rpipe->pipe_peer;
|
|
kn->kn_data = rpipe->pipe_buffer.cnt;
|
|
|
|
if ((rpipe->pipe_state & PIPE_EOF) ||
|
|
(wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
knote_set_eof(kn, 0);
|
|
rv = 1;
|
|
} else {
|
|
rv = kn->kn_data > 0;
|
|
}
|
|
|
|
if ((hint & NOTE_SUBMIT) == 0) {
|
|
mutex_exit(rpipe->pipe_lock);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
filt_pipewrite(struct knote *kn, long hint)
|
|
{
|
|
struct pipe *rpipe = ((file_t *)kn->kn_obj)->f_pipe;
|
|
struct pipe *wpipe;
|
|
int rv;
|
|
|
|
if ((hint & NOTE_SUBMIT) == 0) {
|
|
mutex_enter(rpipe->pipe_lock);
|
|
}
|
|
wpipe = rpipe->pipe_peer;
|
|
|
|
if ((wpipe == NULL) || (wpipe->pipe_state & PIPE_EOF)) {
|
|
kn->kn_data = 0;
|
|
knote_set_eof(kn, 0);
|
|
rv = 1;
|
|
} else {
|
|
kn->kn_data = wpipe->pipe_buffer.size - wpipe->pipe_buffer.cnt;
|
|
rv = kn->kn_data >= PIPE_BUF;
|
|
}
|
|
|
|
if ((hint & NOTE_SUBMIT) == 0) {
|
|
mutex_exit(rpipe->pipe_lock);
|
|
}
|
|
return rv;
|
|
}
|
|
|
|
static const struct filterops pipe_rfiltops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_attach = NULL,
|
|
.f_detach = filt_pipedetach,
|
|
.f_event = filt_piperead,
|
|
};
|
|
|
|
static const struct filterops pipe_wfiltops = {
|
|
.f_flags = FILTEROP_ISFD | FILTEROP_MPSAFE,
|
|
.f_attach = NULL,
|
|
.f_detach = filt_pipedetach,
|
|
.f_event = filt_pipewrite,
|
|
};
|
|
|
|
static int
|
|
pipe_kqfilter(file_t *fp, struct knote *kn)
|
|
{
|
|
struct pipe *pipe;
|
|
kmutex_t *lock;
|
|
|
|
pipe = ((file_t *)kn->kn_obj)->f_pipe;
|
|
lock = pipe->pipe_lock;
|
|
|
|
mutex_enter(lock);
|
|
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
kn->kn_fop = &pipe_rfiltops;
|
|
break;
|
|
case EVFILT_WRITE:
|
|
kn->kn_fop = &pipe_wfiltops;
|
|
pipe = pipe->pipe_peer;
|
|
if (pipe == NULL) {
|
|
/* Other end of pipe has been closed. */
|
|
mutex_exit(lock);
|
|
return (EBADF);
|
|
}
|
|
break;
|
|
default:
|
|
mutex_exit(lock);
|
|
return (EINVAL);
|
|
}
|
|
|
|
kn->kn_hook = pipe;
|
|
selrecord_knote(&pipe->pipe_sel, kn);
|
|
mutex_exit(lock);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle pipe sysctls.
|
|
*/
|
|
SYSCTL_SETUP(sysctl_kern_pipe_setup, "sysctl kern.pipe subtree setup")
|
|
{
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "pipe",
|
|
SYSCTL_DESCR("Pipe settings"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, KERN_PIPE, CTL_EOL);
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
|
|
CTLTYPE_INT, "maxbigpipes",
|
|
SYSCTL_DESCR("Maximum number of \"big\" pipes"),
|
|
NULL, 0, &maxbigpipes, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_MAXBIGPIPES, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "nbigpipes",
|
|
SYSCTL_DESCR("Number of \"big\" pipes"),
|
|
NULL, 0, &nbigpipe, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_NBIGPIPES, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "kvasize",
|
|
SYSCTL_DESCR("Amount of kernel memory consumed by pipe "
|
|
"buffers"),
|
|
NULL, 0, &amountpipekva, 0,
|
|
CTL_KERN, KERN_PIPE, KERN_PIPE_KVASIZE, CTL_EOL);
|
|
}
|