NetBSD/sys/kern/subr_percpu.c

563 lines
13 KiB
C

/* $NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $ */
/*-
* Copyright (c)2007,2008 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* per-cpu storage.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_percpu.c,v 1.25 2020/05/11 21:37:31 riastradh Exp $");
#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/percpu.h>
#include <sys/rwlock.h>
#include <sys/vmem.h>
#include <sys/xcall.h>
#define PERCPU_QUANTUM_SIZE (ALIGNBYTES + 1)
#define PERCPU_QCACHE_MAX 0
#define PERCPU_IMPORT_SIZE 2048
struct percpu {
unsigned pc_offset;
size_t pc_size;
percpu_callback_t pc_ctor;
percpu_callback_t pc_dtor;
void *pc_cookie;
LIST_ENTRY(percpu) pc_list;
};
static krwlock_t percpu_swap_lock __cacheline_aligned;
static vmem_t * percpu_offset_arena __read_mostly;
static struct {
kmutex_t lock;
unsigned int nextoff;
LIST_HEAD(, percpu) ctor_list;
struct lwp *busy;
kcondvar_t cv;
} percpu_allocation __cacheline_aligned;
static percpu_cpu_t *
cpu_percpu(struct cpu_info *ci)
{
return &ci->ci_data.cpu_percpu;
}
static unsigned int
percpu_offset(percpu_t *pc)
{
const unsigned int off = pc->pc_offset;
KASSERT(off < percpu_allocation.nextoff);
return off;
}
/*
* percpu_cpu_swap: crosscall handler for percpu_cpu_enlarge
*/
__noubsan
static void
percpu_cpu_swap(void *p1, void *p2)
{
struct cpu_info * const ci = p1;
percpu_cpu_t * const newpcc = p2;
percpu_cpu_t * const pcc = cpu_percpu(ci);
KASSERT(ci == curcpu() || !mp_online);
/*
* swap *pcc and *newpcc unless anyone has beaten us.
*/
rw_enter(&percpu_swap_lock, RW_WRITER);
if (newpcc->pcc_size > pcc->pcc_size) {
percpu_cpu_t tmp;
int s;
tmp = *pcc;
/*
* block interrupts so that we don't lose their modifications.
*/
s = splhigh();
/*
* copy data to new storage.
*/
memcpy(newpcc->pcc_data, pcc->pcc_data, pcc->pcc_size);
/*
* this assignment needs to be atomic for percpu_getptr_remote.
*/
pcc->pcc_data = newpcc->pcc_data;
splx(s);
pcc->pcc_size = newpcc->pcc_size;
*newpcc = tmp;
}
rw_exit(&percpu_swap_lock);
}
/*
* percpu_cpu_enlarge: ensure that percpu_cpu_t of each cpus have enough space
*/
static void
percpu_cpu_enlarge(size_t size)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
for (CPU_INFO_FOREACH(cii, ci)) {
percpu_cpu_t pcc;
pcc.pcc_data = kmem_alloc(size, KM_SLEEP); /* XXX cacheline */
pcc.pcc_size = size;
if (!mp_online) {
percpu_cpu_swap(ci, &pcc);
} else {
uint64_t where;
where = xc_unicast(0, percpu_cpu_swap, ci, &pcc, ci);
xc_wait(where);
}
KASSERT(pcc.pcc_size <= size);
if (pcc.pcc_data != NULL) {
kmem_free(pcc.pcc_data, pcc.pcc_size);
}
}
}
/*
* percpu_backend_alloc: vmem import callback for percpu_offset_arena
*/
static int
percpu_backend_alloc(vmem_t *dummy, vmem_size_t size, vmem_size_t *resultsize,
vm_flag_t vmflags, vmem_addr_t *addrp)
{
unsigned int offset;
unsigned int nextoff;
ASSERT_SLEEPABLE();
KASSERT(dummy == NULL);
if ((vmflags & VM_NOSLEEP) != 0)
return ENOMEM;
size = roundup(size, PERCPU_IMPORT_SIZE);
mutex_enter(&percpu_allocation.lock);
offset = percpu_allocation.nextoff;
percpu_allocation.nextoff = nextoff = percpu_allocation.nextoff + size;
mutex_exit(&percpu_allocation.lock);
percpu_cpu_enlarge(nextoff);
*resultsize = size;
*addrp = (vmem_addr_t)offset;
return 0;
}
static void
percpu_zero_cb(void *vp, void *vp2, struct cpu_info *ci)
{
size_t sz = (uintptr_t)vp2;
memset(vp, 0, sz);
}
/*
* percpu_zero: initialize percpu storage with zero.
*/
static void
percpu_zero(percpu_t *pc, size_t sz)
{
percpu_foreach(pc, percpu_zero_cb, (void *)(uintptr_t)sz);
}
/*
* percpu_init: subsystem initialization
*/
void
percpu_init(void)
{
ASSERT_SLEEPABLE();
rw_init(&percpu_swap_lock);
mutex_init(&percpu_allocation.lock, MUTEX_DEFAULT, IPL_NONE);
percpu_allocation.nextoff = PERCPU_QUANTUM_SIZE;
LIST_INIT(&percpu_allocation.ctor_list);
percpu_allocation.busy = NULL;
cv_init(&percpu_allocation.cv, "percpu");
percpu_offset_arena = vmem_xcreate("percpu", 0, 0, PERCPU_QUANTUM_SIZE,
percpu_backend_alloc, NULL, NULL, PERCPU_QCACHE_MAX, VM_SLEEP,
IPL_NONE);
}
/*
* percpu_init_cpu: cpu initialization
*
* => should be called before the cpu appears on the list for CPU_INFO_FOREACH.
* => may be called for static CPUs afterward (typically just primary CPU)
*/
void
percpu_init_cpu(struct cpu_info *ci)
{
percpu_cpu_t * const pcc = cpu_percpu(ci);
struct percpu *pc;
size_t size = percpu_allocation.nextoff; /* XXX racy */
ASSERT_SLEEPABLE();
/*
* For the primary CPU, prior percpu_create may have already
* triggered allocation, so there's nothing more for us to do
* here.
*/
if (pcc->pcc_size)
return;
KASSERT(pcc->pcc_data == NULL);
/*
* Otherwise, allocate storage and, while the constructor list
* is locked, run constructors for all percpus on this CPU.
*/
pcc->pcc_size = size;
if (size) {
pcc->pcc_data = kmem_zalloc(pcc->pcc_size, KM_SLEEP);
mutex_enter(&percpu_allocation.lock);
while (percpu_allocation.busy)
cv_wait(&percpu_allocation.cv,
&percpu_allocation.lock);
percpu_allocation.busy = curlwp;
LIST_FOREACH(pc, &percpu_allocation.ctor_list, pc_list) {
KASSERT(pc->pc_ctor);
mutex_exit(&percpu_allocation.lock);
(*pc->pc_ctor)((char *)pcc->pcc_data + pc->pc_offset,
pc->pc_cookie, ci);
mutex_enter(&percpu_allocation.lock);
}
KASSERT(percpu_allocation.busy == curlwp);
percpu_allocation.busy = NULL;
cv_broadcast(&percpu_allocation.cv);
mutex_exit(&percpu_allocation.lock);
}
}
/*
* percpu_alloc: allocate percpu storage
*
* => called in thread context.
* => considered as an expensive and rare operation.
* => allocated storage is initialized with zeros.
*/
percpu_t *
percpu_alloc(size_t size)
{
return percpu_create(size, NULL, NULL, NULL);
}
/*
* percpu_create: allocate percpu storage and associate ctor/dtor with it
*
* => called in thread context.
* => considered as an expensive and rare operation.
* => allocated storage is initialized by ctor, or zeros if ctor is null
* => percpu_free will call dtor first, if dtor is nonnull
* => ctor or dtor may sleep, even on allocation
*/
percpu_t *
percpu_create(size_t size, percpu_callback_t ctor, percpu_callback_t dtor,
void *cookie)
{
vmem_addr_t offset;
percpu_t *pc;
ASSERT_SLEEPABLE();
(void)vmem_alloc(percpu_offset_arena, size, VM_SLEEP | VM_BESTFIT,
&offset);
pc = kmem_alloc(sizeof(*pc), KM_SLEEP);
pc->pc_offset = offset;
pc->pc_size = size;
pc->pc_ctor = ctor;
pc->pc_dtor = dtor;
pc->pc_cookie = cookie;
if (ctor) {
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
void *buf;
/*
* Wait until nobody is using the list of percpus with
* constructors.
*/
mutex_enter(&percpu_allocation.lock);
while (percpu_allocation.busy)
cv_wait(&percpu_allocation.cv,
&percpu_allocation.lock);
percpu_allocation.busy = curlwp;
mutex_exit(&percpu_allocation.lock);
/*
* Run the constructor for all CPUs. We use a
* temporary buffer wo that we need not hold the
* percpu_swap_lock while running the constructor.
*/
buf = kmem_alloc(size, KM_SLEEP);
for (CPU_INFO_FOREACH(cii, ci)) {
memset(buf, 0, size);
(*ctor)(buf, cookie, ci);
percpu_traverse_enter();
memcpy(percpu_getptr_remote(pc, ci), buf, size);
percpu_traverse_exit();
}
explicit_memset(buf, 0, size);
kmem_free(buf, size);
/*
* Insert the percpu into the list of percpus with
* constructors. We are now done using the list, so it
* is safe for concurrent percpu_create or concurrent
* percpu_init_cpu to run.
*/
mutex_enter(&percpu_allocation.lock);
KASSERT(percpu_allocation.busy == curlwp);
percpu_allocation.busy = NULL;
cv_broadcast(&percpu_allocation.cv);
LIST_INSERT_HEAD(&percpu_allocation.ctor_list, pc, pc_list);
mutex_exit(&percpu_allocation.lock);
} else {
percpu_zero(pc, size);
}
return pc;
}
/*
* percpu_free: free percpu storage
*
* => called in thread context.
* => considered as an expensive and rare operation.
*/
void
percpu_free(percpu_t *pc, size_t size)
{
ASSERT_SLEEPABLE();
KASSERT(size == pc->pc_size);
/*
* If there's a constructor, take the percpu off the list of
* percpus with constructors, but first wait until nobody is
* using the list.
*/
if (pc->pc_ctor) {
mutex_enter(&percpu_allocation.lock);
while (percpu_allocation.busy)
cv_wait(&percpu_allocation.cv,
&percpu_allocation.lock);
LIST_REMOVE(pc, pc_list);
mutex_exit(&percpu_allocation.lock);
}
/* If there's a destructor, run it now for all CPUs. */
if (pc->pc_dtor) {
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
void *buf;
buf = kmem_alloc(size, KM_SLEEP);
for (CPU_INFO_FOREACH(cii, ci)) {
percpu_traverse_enter();
memcpy(buf, percpu_getptr_remote(pc, ci), size);
explicit_memset(percpu_getptr_remote(pc, ci), 0, size);
percpu_traverse_exit();
(*pc->pc_dtor)(buf, pc->pc_cookie, ci);
}
explicit_memset(buf, 0, size);
kmem_free(buf, size);
}
vmem_free(percpu_offset_arena, (vmem_addr_t)percpu_offset(pc), size);
kmem_free(pc, sizeof(*pc));
}
/*
* percpu_getref:
*
* => safe to be used in either thread or interrupt context
* => disables preemption; must be bracketed with a percpu_putref()
*/
void *
percpu_getref(percpu_t *pc)
{
kpreempt_disable();
return percpu_getptr_remote(pc, curcpu());
}
/*
* percpu_putref:
*
* => drops the preemption-disabled count after caller is done with per-cpu
* data
*/
void
percpu_putref(percpu_t *pc)
{
kpreempt_enable();
}
/*
* percpu_traverse_enter, percpu_traverse_exit, percpu_getptr_remote:
* helpers to access remote cpu's percpu data.
*
* => called in thread context.
* => percpu_traverse_enter can block low-priority xcalls.
* => typical usage would be:
*
* sum = 0;
* percpu_traverse_enter();
* for (CPU_INFO_FOREACH(cii, ci)) {
* unsigned int *p = percpu_getptr_remote(pc, ci);
* sum += *p;
* }
* percpu_traverse_exit();
*/
void
percpu_traverse_enter(void)
{
ASSERT_SLEEPABLE();
rw_enter(&percpu_swap_lock, RW_READER);
}
void
percpu_traverse_exit(void)
{
rw_exit(&percpu_swap_lock);
}
void *
percpu_getptr_remote(percpu_t *pc, struct cpu_info *ci)
{
return &((char *)cpu_percpu(ci)->pcc_data)[percpu_offset(pc)];
}
/*
* percpu_foreach: call the specified callback function for each cpus.
*
* => must be called from thread context.
* => callback executes on **current** CPU (or, really, arbitrary CPU,
* in case of preemption)
* => caller should not rely on the cpu iteration order.
* => the callback function should be minimum because it is executed with
* holding a global lock, which can block low-priority xcalls.
* eg. it's illegal for a callback function to sleep for memory allocation.
*/
void
percpu_foreach(percpu_t *pc, percpu_callback_t cb, void *arg)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
percpu_traverse_enter();
for (CPU_INFO_FOREACH(cii, ci)) {
(*cb)(percpu_getptr_remote(pc, ci), arg, ci);
}
percpu_traverse_exit();
}
struct percpu_xcall_ctx {
percpu_callback_t ctx_cb;
void *ctx_arg;
};
static void
percpu_xcfunc(void * const v1, void * const v2)
{
percpu_t * const pc = v1;
struct percpu_xcall_ctx * const ctx = v2;
(*ctx->ctx_cb)(percpu_getref(pc), ctx->ctx_arg, curcpu());
percpu_putref(pc);
}
/*
* percpu_foreach_xcall: call the specified callback function for each
* cpu. This version uses an xcall to run the callback on each cpu.
*
* => must be called from thread context.
* => callback executes on **remote** CPU in soft-interrupt context
* (at the specified soft interrupt priority).
* => caller should not rely on the cpu iteration order.
* => the callback function should be minimum because it may be
* executed in soft-interrupt context. eg. it's illegal for
* a callback function to sleep for memory allocation.
*/
void
percpu_foreach_xcall(percpu_t *pc, u_int xcflags, percpu_callback_t cb,
void *arg)
{
struct percpu_xcall_ctx ctx = {
.ctx_cb = cb,
.ctx_arg = arg,
};
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
for (CPU_INFO_FOREACH(cii, ci)) {
xc_wait(xc_unicast(xcflags, percpu_xcfunc, pc, &ctx, ci));
}
}