NetBSD/sys/kern/subr_cpu.c

531 lines
14 KiB
C

/* $NetBSD: subr_cpu.c,v 1.20 2024/01/04 11:18:19 mlelstv Exp $ */
/*-
* Copyright (c) 2007, 2008, 2009, 2010, 2012, 2019, 2020
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c)2007 YAMAMOTO Takashi,
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* CPU related routines shared with rump.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_cpu.c,v 1.20 2024/01/04 11:18:19 mlelstv Exp $");
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/systm.h>
#include <sys/sched.h>
#include <sys/conf.h>
#include <sys/cpu.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
static void cpu_topology_fake1(struct cpu_info *);
kmutex_t cpu_lock __cacheline_aligned;
int ncpu __read_mostly;
int ncpuonline __read_mostly;
bool mp_online __read_mostly;
static bool cpu_topology_present __read_mostly;
static bool cpu_topology_haveslow __read_mostly;
int64_t cpu_counts[CPU_COUNT_MAX];
/* An array of CPUs. There are ncpu entries. */
struct cpu_info **cpu_infos __read_mostly;
/* Note: set on mi_cpu_attach() and idle_loop(). */
kcpuset_t * kcpuset_attached __read_mostly = NULL;
kcpuset_t * kcpuset_running __read_mostly = NULL;
static char cpu_model[128];
/*
* mi_cpu_init: early initialisation of MI CPU related structures.
*
* Note: may not block and memory allocator is not yet available.
*/
void
mi_cpu_init(void)
{
struct cpu_info *ci;
mutex_init(&cpu_lock, MUTEX_DEFAULT, IPL_NONE);
kcpuset_create(&kcpuset_attached, true);
kcpuset_create(&kcpuset_running, true);
kcpuset_set(kcpuset_running, 0);
ci = curcpu();
cpu_topology_fake1(ci);
}
int
cpu_setmodel(const char *fmt, ...)
{
int len;
va_list ap;
va_start(ap, fmt);
len = vsnprintf(cpu_model, sizeof(cpu_model), fmt, ap);
va_end(ap);
return len;
}
const char *
cpu_getmodel(void)
{
return cpu_model;
}
bool
cpu_softintr_p(void)
{
return (curlwp->l_pflag & LP_INTR) != 0;
}
bool
curcpu_stable(void)
{
struct lwp *const l = curlwp;
const int pflag = l->l_pflag;
const int nopreempt = l->l_nopreempt;
/*
* - Softints (LP_INTR) never migrate between CPUs.
* - Bound lwps (LP_BOUND), either kthreads created bound to
* a CPU or any lwps bound with curlwp_bind, never migrate.
* - If kpreemption is disabled, the lwp can't migrate.
* - If we're in interrupt context, preemption is blocked.
*
* We combine the LP_INTR, LP_BOUND, and l_nopreempt test into
* a single predicted-true branch so this is cheap to assert in
* most contexts where it will be used, then fall back to
* calling the full kpreempt_disabled() and cpu_intr_p() as
* subroutines.
*
* XXX Is cpu_intr_p redundant with kpreempt_disabled?
*/
return __predict_true(((pflag & (LP_INTR|LP_BOUND)) | nopreempt)
!= 0) ||
kpreempt_disabled() ||
cpu_intr_p();
}
/*
* Collect CPU topology information as each CPU is attached. This can be
* called early during boot, so we need to be careful what we do.
*/
void
cpu_topology_set(struct cpu_info *ci, u_int package_id, u_int core_id,
u_int smt_id, u_int numa_id)
{
enum cpu_rel rel;
cpu_topology_present = true;
ci->ci_package_id = package_id;
ci->ci_core_id = core_id;
ci->ci_smt_id = smt_id;
ci->ci_numa_id = numa_id;
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
ci->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = 1;
}
}
/*
* Collect CPU relative speed
*/
void
cpu_topology_setspeed(struct cpu_info *ci, bool slow)
{
cpu_topology_haveslow |= slow;
ci->ci_is_slow = slow;
}
/*
* Link a CPU into the given circular list.
*/
static void
cpu_topology_link(struct cpu_info *ci, struct cpu_info *ci2, enum cpu_rel rel)
{
struct cpu_info *ci3;
/* Walk to the end of the existing circular list and append. */
for (ci3 = ci2;; ci3 = ci3->ci_sibling[rel]) {
ci3->ci_nsibling[rel]++;
if (ci3->ci_sibling[rel] == ci2) {
break;
}
}
ci->ci_sibling[rel] = ci2;
ci3->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = ci3->ci_nsibling[rel];
}
/*
* Print out the topology lists.
*/
static void
cpu_topology_dump(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci, *ci2;
const char *names[] = { "core", "pkg", "1st" };
enum cpu_rel rel;
int i;
CTASSERT(__arraycount(names) >= __arraycount(ci->ci_sibling));
if (ncpu == 1) {
return;
}
for (CPU_INFO_FOREACH(cii, ci)) {
if (cpu_topology_haveslow)
aprint_debug("%s ", ci->ci_is_slow ? "slow" : "fast");
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
aprint_debug("%s has %d %s siblings:", cpu_name(ci),
ci->ci_nsibling[rel], names[rel]);
ci2 = ci->ci_sibling[rel];
i = 0;
do {
aprint_debug(" %s", cpu_name(ci2));
ci2 = ci2->ci_sibling[rel];
} while (++i < 64 && ci2 != ci->ci_sibling[rel]);
if (i == 64) {
aprint_debug(" GAVE UP");
}
aprint_debug("\n");
}
aprint_debug("%s first in package: %s\n", cpu_name(ci),
cpu_name(ci->ci_package1st));
}
}
/*
* Fake up topology info if we have none, or if what we got was bogus.
* Used early in boot, and by cpu_topology_fake().
*/
static void
cpu_topology_fake1(struct cpu_info *ci)
{
enum cpu_rel rel;
for (rel = 0; rel < __arraycount(ci->ci_sibling); rel++) {
ci->ci_sibling[rel] = ci;
ci->ci_nsibling[rel] = 1;
}
if (!cpu_topology_present) {
ci->ci_package_id = cpu_index(ci);
}
ci->ci_schedstate.spc_flags |=
(SPCF_CORE1ST | SPCF_PACKAGE1ST | SPCF_1STCLASS);
ci->ci_package1st = ci;
if (!cpu_topology_haveslow) {
ci->ci_is_slow = false;
}
}
/*
* Fake up topology info if we have none, or if what we got was bogus.
* Don't override ci_package_id, etc, if cpu_topology_present is set.
* MD code also uses these.
*/
static void
cpu_topology_fake(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
for (CPU_INFO_FOREACH(cii, ci)) {
cpu_topology_fake1(ci);
/* Undo (early boot) flag set so everything links OK. */
ci->ci_schedstate.spc_flags &=
~(SPCF_CORE1ST | SPCF_PACKAGE1ST | SPCF_1STCLASS);
}
}
/*
* Fix up basic CPU topology info. Right now that means attach each CPU to
* circular lists of its siblings in the same core, and in the same package.
*/
void
cpu_topology_init(void)
{
CPU_INFO_ITERATOR cii, cii2;
struct cpu_info *ci, *ci2, *ci3;
u_int minsmt, mincore;
if (!cpu_topology_present) {
cpu_topology_fake();
goto linkit;
}
/* Find siblings in same core and package. */
for (CPU_INFO_FOREACH(cii, ci)) {
ci->ci_schedstate.spc_flags &=
~(SPCF_CORE1ST | SPCF_PACKAGE1ST | SPCF_1STCLASS);
for (CPU_INFO_FOREACH(cii2, ci2)) {
/* Avoid bad things happening. */
if (ci2->ci_package_id == ci->ci_package_id &&
ci2->ci_core_id == ci->ci_core_id &&
ci2->ci_smt_id == ci->ci_smt_id &&
ci2 != ci) {
#ifdef DEBUG
printf("cpu%u %p pkg %u core %u smt %u same as "
"cpu%u %p pkg %u core %u smt %u\n",
cpu_index(ci), ci, ci->ci_package_id,
ci->ci_core_id, ci->ci_smt_id,
cpu_index(ci2), ci2, ci2->ci_package_id,
ci2->ci_core_id, ci2->ci_smt_id);
#endif
printf("cpu_topology_init: info bogus, "
"faking it\n");
cpu_topology_fake();
goto linkit;
}
if (ci2 == ci ||
ci2->ci_package_id != ci->ci_package_id) {
continue;
}
/* Find CPUs in the same core. */
if (ci->ci_nsibling[CPUREL_CORE] == 1 &&
ci->ci_core_id == ci2->ci_core_id) {
cpu_topology_link(ci, ci2, CPUREL_CORE);
}
/* Find CPUs in the same package. */
if (ci->ci_nsibling[CPUREL_PACKAGE] == 1) {
cpu_topology_link(ci, ci2, CPUREL_PACKAGE);
}
if (ci->ci_nsibling[CPUREL_CORE] > 1 &&
ci->ci_nsibling[CPUREL_PACKAGE] > 1) {
break;
}
}
}
linkit:
/* Identify lowest numbered SMT in each core. */
for (CPU_INFO_FOREACH(cii, ci)) {
ci2 = ci3 = ci;
minsmt = ci->ci_smt_id;
do {
if (ci2->ci_smt_id < minsmt) {
ci3 = ci2;
minsmt = ci2->ci_smt_id;
}
ci2 = ci2->ci_sibling[CPUREL_CORE];
} while (ci2 != ci);
ci3->ci_schedstate.spc_flags |= SPCF_CORE1ST;
}
/* Identify lowest numbered SMT in each package. */
ci3 = NULL;
for (CPU_INFO_FOREACH(cii, ci)) {
if ((ci->ci_schedstate.spc_flags & SPCF_CORE1ST) == 0) {
continue;
}
ci2 = ci3 = ci;
mincore = ci->ci_core_id;
do {
if ((ci2->ci_schedstate.spc_flags &
SPCF_CORE1ST) != 0 &&
ci2->ci_core_id < mincore) {
ci3 = ci2;
mincore = ci2->ci_core_id;
}
ci2 = ci2->ci_sibling[CPUREL_PACKAGE];
} while (ci2 != ci);
if ((ci3->ci_schedstate.spc_flags & SPCF_PACKAGE1ST) != 0) {
/* Already identified - nothing more to do. */
continue;
}
ci3->ci_schedstate.spc_flags |= SPCF_PACKAGE1ST;
/* Walk through all CPUs in package and point to first. */
ci2 = ci3;
do {
ci2->ci_package1st = ci3;
ci2->ci_sibling[CPUREL_PACKAGE1ST] = ci3;
ci2 = ci2->ci_sibling[CPUREL_PACKAGE];
} while (ci2 != ci3);
/* Now look for somebody else to link to. */
for (CPU_INFO_FOREACH(cii2, ci2)) {
if ((ci2->ci_schedstate.spc_flags & SPCF_PACKAGE1ST)
!= 0 && ci2 != ci3) {
cpu_topology_link(ci3, ci2, CPUREL_PACKAGE1ST);
break;
}
}
}
/* Walk through all packages, starting with value of ci3 from above. */
KASSERT(ci3 != NULL);
ci = ci3;
do {
/* Walk through CPUs in the package and copy in PACKAGE1ST. */
ci2 = ci;
do {
ci2->ci_sibling[CPUREL_PACKAGE1ST] =
ci->ci_sibling[CPUREL_PACKAGE1ST];
ci2->ci_nsibling[CPUREL_PACKAGE1ST] =
ci->ci_nsibling[CPUREL_PACKAGE1ST];
ci2 = ci2->ci_sibling[CPUREL_PACKAGE];
} while (ci2 != ci);
ci = ci->ci_sibling[CPUREL_PACKAGE1ST];
} while (ci != ci3);
if (cpu_topology_haveslow) {
/*
* For asymmetric systems where some CPUs are slower than
* others, mark first class CPUs for the scheduler. This
* conflicts with SMT right now so whinge if observed.
*/
if (curcpu()->ci_nsibling[CPUREL_CORE] > 1) {
printf("cpu_topology_init: asymmetric & SMT??\n");
}
for (CPU_INFO_FOREACH(cii, ci)) {
if (!ci->ci_is_slow) {
ci->ci_schedstate.spc_flags |= SPCF_1STCLASS;
}
}
} else {
/*
* For any other configuration mark the 1st CPU in each
* core as a first class CPU.
*/
for (CPU_INFO_FOREACH(cii, ci)) {
if ((ci->ci_schedstate.spc_flags & SPCF_CORE1ST) != 0) {
ci->ci_schedstate.spc_flags |= SPCF_1STCLASS;
}
}
}
cpu_topology_dump();
}
/*
* Adjust one count, for a counter that's NOT updated from interrupt
* context. Hardly worth making an inline due to preemption stuff.
*/
void
cpu_count(enum cpu_count idx, int64_t delta)
{
lwp_t *l = curlwp;
KPREEMPT_DISABLE(l);
l->l_cpu->ci_counts[idx] += delta;
KPREEMPT_ENABLE(l);
}
/*
* Fetch fresh sum total for all counts. Expensive - don't call often.
*
* If poll is true, the caller is okay with less recent values (but
* no more than 1/hz seconds old). Where this is called very often that
* should be the case.
*
* This should be reasonably quick so that any value collected get isn't
* totally out of whack, and it can also be called from interrupt context,
* so go to splvm() while summing the counters. It's tempting to use a spin
* mutex here but this routine is called from DDB.
*/
void
cpu_count_sync(bool poll)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
int64_t sum[CPU_COUNT_MAX], *ptr;
static int lasttick;
int curtick, s;
enum cpu_count i;
KASSERT(sizeof(ci->ci_counts) == sizeof(cpu_counts));
if (__predict_false(!mp_online)) {
memcpy(cpu_counts, curcpu()->ci_counts, sizeof(cpu_counts));
return;
}
s = splvm();
curtick = getticks();
if (poll && atomic_load_acquire(&lasttick) == curtick) {
splx(s);
return;
}
memset(sum, 0, sizeof(sum));
curcpu()->ci_counts[CPU_COUNT_SYNC]++;
for (CPU_INFO_FOREACH(cii, ci)) {
ptr = ci->ci_counts;
for (i = 0; i < CPU_COUNT_MAX; i += 8) {
sum[i+0] += ptr[i+0];
sum[i+1] += ptr[i+1];
sum[i+2] += ptr[i+2];
sum[i+3] += ptr[i+3];
sum[i+4] += ptr[i+4];
sum[i+5] += ptr[i+5];
sum[i+6] += ptr[i+6];
sum[i+7] += ptr[i+7];
}
KASSERT(i == CPU_COUNT_MAX);
}
memcpy(cpu_counts, sum, sizeof(cpu_counts));
atomic_store_release(&lasttick, curtick);
splx(s);
}