NetBSD/sys/kern/subr_autoconf.c

3937 lines
93 KiB
C

/* $NetBSD: subr_autoconf.c,v 1.314 2023/07/18 11:57:37 riastradh Exp $ */
/*
* Copyright (c) 1996, 2000 Christopher G. Demetriou
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the
* NetBSD Project. See http://www.NetBSD.org/ for
* information about NetBSD.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
*/
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratories.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
*
* @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.314 2023/07/18 11:57:37 riastradh Exp $");
#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "drvctl.h"
#endif
#include <sys/param.h>
#include <sys/device.h>
#include <sys/device_impl.h>
#include <sys/disklabel.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/proc.h>
#include <sys/reboot.h>
#include <sys/kthread.h>
#include <sys/buf.h>
#include <sys/dirent.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/unistd.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/callout.h>
#include <sys/devmon.h>
#include <sys/cpu.h>
#include <sys/sysctl.h>
#include <sys/stdarg.h>
#include <sys/localcount.h>
#include <sys/disk.h>
#include <sys/rndsource.h>
#include <machine/limits.h>
/*
* Autoconfiguration subroutines.
*/
/*
* Device autoconfiguration timings are mixed into the entropy pool.
*/
static krndsource_t rnd_autoconf_source;
/*
* ioconf.c exports exactly two names: cfdata and cfroots. All system
* devices and drivers are found via these tables.
*/
extern struct cfdata cfdata[];
extern const short cfroots[];
/*
* List of all cfdriver structures. We use this to detect duplicates
* when other cfdrivers are loaded.
*/
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
extern struct cfdriver * const cfdriver_list_initial[];
/*
* Initial list of cfattach's.
*/
extern const struct cfattachinit cfattachinit[];
/*
* List of cfdata tables. We always have one such list -- the one
* built statically when the kernel was configured.
*/
struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
static struct cftable initcftable;
#define ROOT ((device_t)NULL)
struct matchinfo {
cfsubmatch_t fn;
device_t parent;
const int *locs;
void *aux;
struct cfdata *match;
int pri;
};
struct alldevs_foray {
int af_s;
struct devicelist af_garbage;
};
/*
* Internal version of the cfargs structure; all versions are
* canonicalized to this.
*/
struct cfargs_internal {
union {
cfsubmatch_t submatch;/* submatch function (direct config) */
cfsearch_t search; /* search function (indirect config) */
};
const char * iattr; /* interface attribute */
const int * locators; /* locators array */
devhandle_t devhandle; /* devhandle_t (by value) */
};
static char *number(char *, int);
static void mapply(struct matchinfo *, cfdata_t);
static void config_devdelete(device_t);
static void config_devunlink(device_t, struct devicelist *);
static void config_makeroom(int, struct cfdriver *);
static void config_devlink(device_t);
static void config_alldevs_enter(struct alldevs_foray *);
static void config_alldevs_exit(struct alldevs_foray *);
static void config_add_attrib_dict(device_t);
static device_t config_attach_internal(device_t, cfdata_t, void *,
cfprint_t, const struct cfargs_internal *);
static void config_collect_garbage(struct devicelist *);
static void config_dump_garbage(struct devicelist *);
static void pmflock_debug(device_t, const char *, int);
static device_t deviter_next1(deviter_t *);
static void deviter_reinit(deviter_t *);
struct deferred_config {
TAILQ_ENTRY(deferred_config) dc_queue;
device_t dc_dev;
void (*dc_func)(device_t);
};
TAILQ_HEAD(deferred_config_head, deferred_config);
static struct deferred_config_head deferred_config_queue =
TAILQ_HEAD_INITIALIZER(deferred_config_queue);
static struct deferred_config_head interrupt_config_queue =
TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
static int interrupt_config_threads = 8;
static struct deferred_config_head mountroot_config_queue =
TAILQ_HEAD_INITIALIZER(mountroot_config_queue);
static int mountroot_config_threads = 2;
static lwp_t **mountroot_config_lwpids;
static size_t mountroot_config_lwpids_size;
bool root_is_mounted = false;
static void config_process_deferred(struct deferred_config_head *, device_t);
/* Hooks to finalize configuration once all real devices have been found. */
struct finalize_hook {
TAILQ_ENTRY(finalize_hook) f_list;
int (*f_func)(device_t);
device_t f_dev;
};
static TAILQ_HEAD(, finalize_hook) config_finalize_list =
TAILQ_HEAD_INITIALIZER(config_finalize_list);
static int config_finalize_done;
/* list of all devices */
static struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
static kmutex_t alldevs_lock __cacheline_aligned;
static devgen_t alldevs_gen = 1;
static int alldevs_nread = 0;
static int alldevs_nwrite = 0;
static bool alldevs_garbage = false;
static struct devicelist config_pending =
TAILQ_HEAD_INITIALIZER(config_pending);
static kmutex_t config_misc_lock;
static kcondvar_t config_misc_cv;
static bool detachall = false;
#define STREQ(s1, s2) \
(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
static bool config_initialized = false; /* config_init() has been called. */
static int config_do_twiddle;
static callout_t config_twiddle_ch;
static void sysctl_detach_setup(struct sysctllog **);
int no_devmon_insert(const char *, prop_dictionary_t);
int (*devmon_insert_vec)(const char *, prop_dictionary_t) = no_devmon_insert;
typedef int (*cfdriver_fn)(struct cfdriver *);
static int
frob_cfdrivervec(struct cfdriver * const *cfdriverv,
cfdriver_fn drv_do, cfdriver_fn drv_undo,
const char *style, bool dopanic)
{
void (*pr)(const char *, ...) __printflike(1, 2) =
dopanic ? panic : printf;
int i, error = 0, e2 __diagused;
for (i = 0; cfdriverv[i] != NULL; i++) {
if ((error = drv_do(cfdriverv[i])) != 0) {
pr("configure: `%s' driver %s failed: %d",
cfdriverv[i]->cd_name, style, error);
goto bad;
}
}
KASSERT(error == 0);
return 0;
bad:
printf("\n");
for (i--; i >= 0; i--) {
e2 = drv_undo(cfdriverv[i]);
KASSERT(e2 == 0);
}
return error;
}
typedef int (*cfattach_fn)(const char *, struct cfattach *);
static int
frob_cfattachvec(const struct cfattachinit *cfattachv,
cfattach_fn att_do, cfattach_fn att_undo,
const char *style, bool dopanic)
{
const struct cfattachinit *cfai = NULL;
void (*pr)(const char *, ...) __printflike(1, 2) =
dopanic ? panic : printf;
int j = 0, error = 0, e2 __diagused;
for (cfai = &cfattachv[0]; cfai->cfai_name != NULL; cfai++) {
for (j = 0; cfai->cfai_list[j] != NULL; j++) {
if ((error = att_do(cfai->cfai_name,
cfai->cfai_list[j])) != 0) {
pr("configure: attachment `%s' "
"of `%s' driver %s failed: %d",
cfai->cfai_list[j]->ca_name,
cfai->cfai_name, style, error);
goto bad;
}
}
}
KASSERT(error == 0);
return 0;
bad:
/*
* Rollback in reverse order. dunno if super-important, but
* do that anyway. Although the code looks a little like
* someone did a little integration (in the math sense).
*/
printf("\n");
if (cfai) {
bool last;
for (last = false; last == false; ) {
if (cfai == &cfattachv[0])
last = true;
for (j--; j >= 0; j--) {
e2 = att_undo(cfai->cfai_name,
cfai->cfai_list[j]);
KASSERT(e2 == 0);
}
if (!last) {
cfai--;
for (j = 0; cfai->cfai_list[j] != NULL; j++)
;
}
}
}
return error;
}
/*
* Initialize the autoconfiguration data structures. Normally this
* is done by configure(), but some platforms need to do this very
* early (to e.g. initialize the console).
*/
void
config_init(void)
{
KASSERT(config_initialized == false);
mutex_init(&alldevs_lock, MUTEX_DEFAULT, IPL_VM);
mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
cv_init(&config_misc_cv, "cfgmisc");
callout_init(&config_twiddle_ch, CALLOUT_MPSAFE);
frob_cfdrivervec(cfdriver_list_initial,
config_cfdriver_attach, NULL, "bootstrap", true);
frob_cfattachvec(cfattachinit,
config_cfattach_attach, NULL, "bootstrap", true);
initcftable.ct_cfdata = cfdata;
TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
rnd_attach_source(&rnd_autoconf_source, "autoconf", RND_TYPE_UNKNOWN,
RND_FLAG_COLLECT_TIME);
config_initialized = true;
}
/*
* Init or fini drivers and attachments. Either all or none
* are processed (via rollback). It would be nice if this were
* atomic to outside consumers, but with the current state of
* locking ...
*/
int
config_init_component(struct cfdriver * const *cfdriverv,
const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
{
int error;
KERNEL_LOCK(1, NULL);
if ((error = frob_cfdrivervec(cfdriverv,
config_cfdriver_attach, config_cfdriver_detach, "init", false))!= 0)
goto out;
if ((error = frob_cfattachvec(cfattachv,
config_cfattach_attach, config_cfattach_detach,
"init", false)) != 0) {
frob_cfdrivervec(cfdriverv,
config_cfdriver_detach, NULL, "init rollback", true);
goto out;
}
if ((error = config_cfdata_attach(cfdatav, 1)) != 0) {
frob_cfattachvec(cfattachv,
config_cfattach_detach, NULL, "init rollback", true);
frob_cfdrivervec(cfdriverv,
config_cfdriver_detach, NULL, "init rollback", true);
goto out;
}
/* Success! */
error = 0;
out: KERNEL_UNLOCK_ONE(NULL);
return error;
}
int
config_fini_component(struct cfdriver * const *cfdriverv,
const struct cfattachinit *cfattachv, struct cfdata *cfdatav)
{
int error;
KERNEL_LOCK(1, NULL);
if ((error = config_cfdata_detach(cfdatav)) != 0)
goto out;
if ((error = frob_cfattachvec(cfattachv,
config_cfattach_detach, config_cfattach_attach,
"fini", false)) != 0) {
if (config_cfdata_attach(cfdatav, 0) != 0)
panic("config_cfdata fini rollback failed");
goto out;
}
if ((error = frob_cfdrivervec(cfdriverv,
config_cfdriver_detach, config_cfdriver_attach,
"fini", false)) != 0) {
frob_cfattachvec(cfattachv,
config_cfattach_attach, NULL, "fini rollback", true);
if (config_cfdata_attach(cfdatav, 0) != 0)
panic("config_cfdata fini rollback failed");
goto out;
}
/* Success! */
error = 0;
out: KERNEL_UNLOCK_ONE(NULL);
return error;
}
void
config_init_mi(void)
{
if (!config_initialized)
config_init();
sysctl_detach_setup(NULL);
}
void
config_deferred(device_t dev)
{
KASSERT(KERNEL_LOCKED_P());
config_process_deferred(&deferred_config_queue, dev);
config_process_deferred(&interrupt_config_queue, dev);
config_process_deferred(&mountroot_config_queue, dev);
}
static void
config_interrupts_thread(void *cookie)
{
struct deferred_config *dc;
device_t dev;
mutex_enter(&config_misc_lock);
while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
mutex_exit(&config_misc_lock);
dev = dc->dc_dev;
(*dc->dc_func)(dev);
if (!device_pmf_is_registered(dev))
aprint_debug_dev(dev,
"WARNING: power management not supported\n");
config_pending_decr(dev);
kmem_free(dc, sizeof(*dc));
mutex_enter(&config_misc_lock);
}
mutex_exit(&config_misc_lock);
kthread_exit(0);
}
void
config_create_interruptthreads(void)
{
int i;
for (i = 0; i < interrupt_config_threads; i++) {
(void)kthread_create(PRI_NONE, 0/*XXXSMP */, NULL,
config_interrupts_thread, NULL, NULL, "configintr");
}
}
static void
config_mountroot_thread(void *cookie)
{
struct deferred_config *dc;
mutex_enter(&config_misc_lock);
while ((dc = TAILQ_FIRST(&mountroot_config_queue)) != NULL) {
TAILQ_REMOVE(&mountroot_config_queue, dc, dc_queue);
mutex_exit(&config_misc_lock);
(*dc->dc_func)(dc->dc_dev);
kmem_free(dc, sizeof(*dc));
mutex_enter(&config_misc_lock);
}
mutex_exit(&config_misc_lock);
kthread_exit(0);
}
void
config_create_mountrootthreads(void)
{
int i;
if (!root_is_mounted)
root_is_mounted = true;
mountroot_config_lwpids_size = sizeof(mountroot_config_lwpids) *
mountroot_config_threads;
mountroot_config_lwpids = kmem_alloc(mountroot_config_lwpids_size,
KM_NOSLEEP);
KASSERT(mountroot_config_lwpids);
for (i = 0; i < mountroot_config_threads; i++) {
mountroot_config_lwpids[i] = 0;
(void)kthread_create(PRI_NONE, KTHREAD_MUSTJOIN/* XXXSMP */,
NULL, config_mountroot_thread, NULL,
&mountroot_config_lwpids[i],
"configroot");
}
}
void
config_finalize_mountroot(void)
{
int i, error;
for (i = 0; i < mountroot_config_threads; i++) {
if (mountroot_config_lwpids[i] == 0)
continue;
error = kthread_join(mountroot_config_lwpids[i]);
if (error)
printf("%s: thread %x joined with error %d\n",
__func__, i, error);
}
kmem_free(mountroot_config_lwpids, mountroot_config_lwpids_size);
}
/*
* Announce device attach/detach to userland listeners.
*/
int
no_devmon_insert(const char *name, prop_dictionary_t p)
{
return ENODEV;
}
static void
devmon_report_device(device_t dev, bool isattach)
{
prop_dictionary_t ev, dict = device_properties(dev);
const char *parent;
const char *what;
const char *where;
device_t pdev = device_parent(dev);
/* If currently no drvctl device, just return */
if (devmon_insert_vec == no_devmon_insert)
return;
ev = prop_dictionary_create();
if (ev == NULL)
return;
what = (isattach ? "device-attach" : "device-detach");
parent = (pdev == NULL ? "root" : device_xname(pdev));
if (prop_dictionary_get_string(dict, "location", &where)) {
prop_dictionary_set_string(ev, "location", where);
aprint_debug("ev: %s %s at %s in [%s]\n",
what, device_xname(dev), parent, where);
}
if (!prop_dictionary_set_string(ev, "device", device_xname(dev)) ||
!prop_dictionary_set_string(ev, "parent", parent)) {
prop_object_release(ev);
return;
}
if ((*devmon_insert_vec)(what, ev) != 0)
prop_object_release(ev);
}
/*
* Add a cfdriver to the system.
*/
int
config_cfdriver_attach(struct cfdriver *cd)
{
struct cfdriver *lcd;
/* Make sure this driver isn't already in the system. */
LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
if (STREQ(lcd->cd_name, cd->cd_name))
return EEXIST;
}
LIST_INIT(&cd->cd_attach);
LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
return 0;
}
/*
* Remove a cfdriver from the system.
*/
int
config_cfdriver_detach(struct cfdriver *cd)
{
struct alldevs_foray af;
int i, rc = 0;
config_alldevs_enter(&af);
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if (cd->cd_devs[i] != NULL) {
rc = EBUSY;
break;
}
}
config_alldevs_exit(&af);
if (rc != 0)
return rc;
/* ...and no attachments loaded. */
if (LIST_EMPTY(&cd->cd_attach) == 0)
return EBUSY;
LIST_REMOVE(cd, cd_list);
KASSERT(cd->cd_devs == NULL);
return 0;
}
/*
* Look up a cfdriver by name.
*/
struct cfdriver *
config_cfdriver_lookup(const char *name)
{
struct cfdriver *cd;
LIST_FOREACH(cd, &allcfdrivers, cd_list) {
if (STREQ(cd->cd_name, name))
return cd;
}
return NULL;
}
/*
* Add a cfattach to the specified driver.
*/
int
config_cfattach_attach(const char *driver, struct cfattach *ca)
{
struct cfattach *lca;
struct cfdriver *cd;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return ESRCH;
/* Make sure this attachment isn't already on this driver. */
LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
if (STREQ(lca->ca_name, ca->ca_name))
return EEXIST;
}
LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
return 0;
}
/*
* Remove a cfattach from the specified driver.
*/
int
config_cfattach_detach(const char *driver, struct cfattach *ca)
{
struct alldevs_foray af;
struct cfdriver *cd;
device_t dev;
int i, rc = 0;
cd = config_cfdriver_lookup(driver);
if (cd == NULL)
return ESRCH;
config_alldevs_enter(&af);
/* Make sure there are no active instances. */
for (i = 0; i < cd->cd_ndevs; i++) {
if ((dev = cd->cd_devs[i]) == NULL)
continue;
if (dev->dv_cfattach == ca) {
rc = EBUSY;
break;
}
}
config_alldevs_exit(&af);
if (rc != 0)
return rc;
LIST_REMOVE(ca, ca_list);
return 0;
}
/*
* Look up a cfattach by name.
*/
static struct cfattach *
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
{
struct cfattach *ca;
LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
if (STREQ(ca->ca_name, atname))
return ca;
}
return NULL;
}
/*
* Look up a cfattach by driver/attachment name.
*/
struct cfattach *
config_cfattach_lookup(const char *name, const char *atname)
{
struct cfdriver *cd;
cd = config_cfdriver_lookup(name);
if (cd == NULL)
return NULL;
return config_cfattach_lookup_cd(cd, atname);
}
/*
* Apply the matching function and choose the best. This is used
* a few times and we want to keep the code small.
*/
static void
mapply(struct matchinfo *m, cfdata_t cf)
{
int pri;
if (m->fn != NULL) {
pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
} else {
pri = config_match(m->parent, cf, m->aux);
}
if (pri > m->pri) {
m->match = cf;
m->pri = pri;
}
}
int
config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
{
const struct cfiattrdata *ci;
const struct cflocdesc *cl;
int nlocs, i;
ci = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
KASSERT(ci);
nlocs = ci->ci_loclen;
KASSERT(!nlocs || locs);
for (i = 0; i < nlocs; i++) {
cl = &ci->ci_locdesc[i];
if (cl->cld_defaultstr != NULL &&
cf->cf_loc[i] == cl->cld_default)
continue;
if (cf->cf_loc[i] == locs[i])
continue;
return 0;
}
return config_match(parent, cf, aux);
}
/*
* Helper function: check whether the driver supports the interface attribute
* and return its descriptor structure.
*/
static const struct cfiattrdata *
cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
{
const struct cfiattrdata * const *cpp;
if (cd->cd_attrs == NULL)
return 0;
for (cpp = cd->cd_attrs; *cpp; cpp++) {
if (STREQ((*cpp)->ci_name, ia)) {
/* Match. */
return *cpp;
}
}
return 0;
}
static int __diagused
cfdriver_iattr_count(const struct cfdriver *cd)
{
const struct cfiattrdata * const *cpp;
int i;
if (cd->cd_attrs == NULL)
return 0;
for (i = 0, cpp = cd->cd_attrs; *cpp; cpp++) {
i++;
}
return i;
}
/*
* Lookup an interface attribute description by name.
* If the driver is given, consider only its supported attributes.
*/
const struct cfiattrdata *
cfiattr_lookup(const char *name, const struct cfdriver *cd)
{
const struct cfdriver *d;
const struct cfiattrdata *ia;
if (cd)
return cfdriver_get_iattr(cd, name);
LIST_FOREACH(d, &allcfdrivers, cd_list) {
ia = cfdriver_get_iattr(d, name);
if (ia)
return ia;
}
return 0;
}
/*
* Determine if `parent' is a potential parent for a device spec based
* on `cfp'.
*/
static int
cfparent_match(const device_t parent, const struct cfparent *cfp)
{
struct cfdriver *pcd;
/* We don't match root nodes here. */
if (cfp == NULL)
return 0;
pcd = parent->dv_cfdriver;
KASSERT(pcd != NULL);
/*
* First, ensure this parent has the correct interface
* attribute.
*/
if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
return 0;
/*
* If no specific parent device instance was specified (i.e.
* we're attaching to the attribute only), we're done!
*/
if (cfp->cfp_parent == NULL)
return 1;
/*
* Check the parent device's name.
*/
if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
return 0; /* not the same parent */
/*
* Make sure the unit number matches.
*/
if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
cfp->cfp_unit == parent->dv_unit)
return 1;
/* Unit numbers don't match. */
return 0;
}
/*
* Helper for config_cfdata_attach(): check all devices whether it could be
* parent any attachment in the config data table passed, and rescan.
*/
static void
rescan_with_cfdata(const struct cfdata *cf)
{
device_t d;
const struct cfdata *cf1;
deviter_t di;
KASSERT(KERNEL_LOCKED_P());
/*
* "alldevs" is likely longer than a modules's cfdata, so make it
* the outer loop.
*/
for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
if (!(d->dv_cfattach->ca_rescan))
continue;
for (cf1 = cf; cf1->cf_name; cf1++) {
if (!cfparent_match(d, cf1->cf_pspec))
continue;
(*d->dv_cfattach->ca_rescan)(d,
cfdata_ifattr(cf1), cf1->cf_loc);
config_deferred(d);
}
}
deviter_release(&di);
}
/*
* Attach a supplemental config data table and rescan potential
* parent devices if required.
*/
int
config_cfdata_attach(cfdata_t cf, int scannow)
{
struct cftable *ct;
KERNEL_LOCK(1, NULL);
ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
ct->ct_cfdata = cf;
TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
if (scannow)
rescan_with_cfdata(cf);
KERNEL_UNLOCK_ONE(NULL);
return 0;
}
/*
* Helper for config_cfdata_detach: check whether a device is
* found through any attachment in the config data table.
*/
static int
dev_in_cfdata(device_t d, cfdata_t cf)
{
const struct cfdata *cf1;
for (cf1 = cf; cf1->cf_name; cf1++)
if (d->dv_cfdata == cf1)
return 1;
return 0;
}
/*
* Detach a supplemental config data table. Detach all devices found
* through that table (and thus keeping references to it) before.
*/
int
config_cfdata_detach(cfdata_t cf)
{
device_t d;
int error = 0;
struct cftable *ct;
deviter_t di;
KERNEL_LOCK(1, NULL);
for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
d = deviter_next(&di)) {
if (!dev_in_cfdata(d, cf))
continue;
if ((error = config_detach(d, 0)) != 0)
break;
}
deviter_release(&di);
if (error) {
aprint_error_dev(d, "unable to detach instance\n");
goto out;
}
TAILQ_FOREACH(ct, &allcftables, ct_list) {
if (ct->ct_cfdata == cf) {
TAILQ_REMOVE(&allcftables, ct, ct_list);
kmem_free(ct, sizeof(*ct));
error = 0;
goto out;
}
}
/* not found -- shouldn't happen */
error = EINVAL;
out: KERNEL_UNLOCK_ONE(NULL);
return error;
}
/*
* Invoke the "match" routine for a cfdata entry on behalf of
* an external caller, usually a direct config "submatch" routine.
*/
int
config_match(device_t parent, cfdata_t cf, void *aux)
{
struct cfattach *ca;
KASSERT(KERNEL_LOCKED_P());
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
if (ca == NULL) {
/* No attachment for this entry, oh well. */
return 0;
}
return (*ca->ca_match)(parent, cf, aux);
}
/*
* Invoke the "probe" routine for a cfdata entry on behalf of
* an external caller, usually an indirect config "search" routine.
*/
int
config_probe(device_t parent, cfdata_t cf, void *aux)
{
/*
* This is currently a synonym for config_match(), but this
* is an implementation detail; "match" and "probe" routines
* have different behaviors.
*
* XXX config_probe() should return a bool, because there is
* XXX no match score for probe -- it's either there or it's
* XXX not, but some ports abuse the return value as a way
* XXX to attach "critical" devices before "non-critical"
* XXX devices.
*/
return config_match(parent, cf, aux);
}
static struct cfargs_internal *
cfargs_canonicalize(const struct cfargs * const cfargs,
struct cfargs_internal * const store)
{
struct cfargs_internal *args = store;
memset(args, 0, sizeof(*args));
/* If none specified, are all-NULL pointers are good. */
if (cfargs == NULL) {
return args;
}
/*
* Only one arguments version is recognized at this time.
*/
if (cfargs->cfargs_version != CFARGS_VERSION) {
panic("cfargs_canonicalize: unknown version %lu\n",
(unsigned long)cfargs->cfargs_version);
}
/*
* submatch and search are mutually-exclusive.
*/
if (cfargs->submatch != NULL && cfargs->search != NULL) {
panic("cfargs_canonicalize: submatch and search are "
"mutually-exclusive");
}
if (cfargs->submatch != NULL) {
args->submatch = cfargs->submatch;
} else if (cfargs->search != NULL) {
args->search = cfargs->search;
}
args->iattr = cfargs->iattr;
args->locators = cfargs->locators;
args->devhandle = cfargs->devhandle;
return args;
}
/*
* Iterate over all potential children of some device, calling the given
* function (default being the child's match function) for each one.
* Nonzero returns are matches; the highest value returned is considered
* the best match. Return the `found child' if we got a match, or NULL
* otherwise. The `aux' pointer is simply passed on through.
*
* Note that this function is designed so that it can be used to apply
* an arbitrary function to all potential children (its return value
* can be ignored).
*/
static cfdata_t
config_search_internal(device_t parent, void *aux,
const struct cfargs_internal * const args)
{
struct cftable *ct;
cfdata_t cf;
struct matchinfo m;
KASSERT(config_initialized);
KASSERTMSG((!args->iattr ||
cfdriver_get_iattr(parent->dv_cfdriver, args->iattr)),
"%s searched for child at interface attribute %s,"
" but device %s(4) has no such interface attribute in config(5)",
device_xname(parent), args->iattr,
parent->dv_cfdriver->cd_name);
KASSERTMSG((args->iattr ||
cfdriver_iattr_count(parent->dv_cfdriver) < 2),
"%s searched for child without interface attribute,"
" needed to disambiguate among the %d declared for in %s(4)"
" in config(5)",
device_xname(parent),
cfdriver_iattr_count(parent->dv_cfdriver),
parent->dv_cfdriver->cd_name);
m.fn = args->submatch; /* N.B. union */
m.parent = parent;
m.locs = args->locators;
m.aux = aux;
m.match = NULL;
m.pri = 0;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
/* We don't match root nodes here. */
if (!cf->cf_pspec)
continue;
/*
* Skip cf if no longer eligible, otherwise scan
* through parents for one matching `parent', and
* try match function.
*/
if (cf->cf_fstate == FSTATE_FOUND)
continue;
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
cf->cf_fstate == FSTATE_DSTAR)
continue;
/*
* If an interface attribute was specified,
* consider only children which attach to
* that attribute.
*/
if (args->iattr != NULL &&
!STREQ(args->iattr, cfdata_ifattr(cf)))
continue;
if (cfparent_match(parent, cf->cf_pspec))
mapply(&m, cf);
}
}
rnd_add_uint32(&rnd_autoconf_source, 0);
return m.match;
}
cfdata_t
config_search(device_t parent, void *aux, const struct cfargs *cfargs)
{
cfdata_t cf;
struct cfargs_internal store;
cf = config_search_internal(parent, aux,
cfargs_canonicalize(cfargs, &store));
return cf;
}
/*
* Find the given root device.
* This is much like config_search, but there is no parent.
* Don't bother with multiple cfdata tables; the root node
* must always be in the initial table.
*/
cfdata_t
config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
{
cfdata_t cf;
const short *p;
struct matchinfo m;
m.fn = fn;
m.parent = ROOT;
m.aux = aux;
m.match = NULL;
m.pri = 0;
m.locs = 0;
/*
* Look at root entries for matching name. We do not bother
* with found-state here since only one root should ever be
* searched (and it must be done first).
*/
for (p = cfroots; *p >= 0; p++) {
cf = &cfdata[*p];
if (strcmp(cf->cf_name, rootname) == 0)
mapply(&m, cf);
}
return m.match;
}
static const char * const msgs[] = {
[QUIET] = "",
[UNCONF] = " not configured\n",
[UNSUPP] = " unsupported\n",
};
/*
* The given `aux' argument describes a device that has been found
* on the given parent, but not necessarily configured. Locate the
* configuration data for that device (using the submatch function
* provided, or using candidates' cd_match configuration driver
* functions) and attach it, and return its device_t. If the device was
* not configured, call the given `print' function and return NULL.
*/
device_t
config_found_acquire(device_t parent, void *aux, cfprint_t print,
const struct cfargs * const cfargs)
{
cfdata_t cf;
struct cfargs_internal store;
const struct cfargs_internal * const args =
cfargs_canonicalize(cfargs, &store);
device_t dev;
KERNEL_LOCK(1, NULL);
cf = config_search_internal(parent, aux, args);
if (cf != NULL) {
dev = config_attach_internal(parent, cf, aux, print, args);
goto out;
}
if (print) {
if (config_do_twiddle && cold)
twiddle();
const int pret = (*print)(aux, device_xname(parent));
KASSERT(pret >= 0);
KASSERT(pret < __arraycount(msgs));
KASSERT(msgs[pret] != NULL);
aprint_normal("%s", msgs[pret]);
}
dev = NULL;
out: KERNEL_UNLOCK_ONE(NULL);
return dev;
}
/*
* config_found(parent, aux, print, cfargs)
*
* Legacy entry point for callers whose use of the returned
* device_t is not delimited by device_release.
*
* The caller is required to hold the kernel lock as a fragile
* defence against races.
*
* Callers should ignore the return value or be converted to
* config_found_acquire with a matching device_release once they
* have finished with the returned device_t.
*/
device_t
config_found(device_t parent, void *aux, cfprint_t print,
const struct cfargs * const cfargs)
{
device_t dev;
KASSERT(KERNEL_LOCKED_P());
dev = config_found_acquire(parent, aux, print, cfargs);
if (dev == NULL)
return NULL;
device_release(dev);
return dev;
}
/*
* As above, but for root devices.
*/
device_t
config_rootfound(const char *rootname, void *aux)
{
cfdata_t cf;
device_t dev = NULL;
KERNEL_LOCK(1, NULL);
if ((cf = config_rootsearch(NULL, rootname, aux)) != NULL)
dev = config_attach(ROOT, cf, aux, NULL, CFARGS_NONE);
else
aprint_error("root device %s not configured\n", rootname);
KERNEL_UNLOCK_ONE(NULL);
return dev;
}
/* just like sprintf(buf, "%d") except that it works from the end */
static char *
number(char *ep, int n)
{
*--ep = 0;
while (n >= 10) {
*--ep = (n % 10) + '0';
n /= 10;
}
*--ep = n + '0';
return ep;
}
/*
* Expand the size of the cd_devs array if necessary.
*
* The caller must hold alldevs_lock. config_makeroom() may release and
* re-acquire alldevs_lock, so callers should re-check conditions such
* as alldevs_nwrite == 0 and alldevs_nread == 0 when config_makeroom()
* returns.
*/
static void
config_makeroom(int n, struct cfdriver *cd)
{
int ondevs, nndevs;
device_t *osp, *nsp;
KASSERT(mutex_owned(&alldevs_lock));
alldevs_nwrite++;
/* XXX arithmetic overflow */
for (nndevs = MAX(4, cd->cd_ndevs); nndevs <= n; nndevs += nndevs)
;
while (n >= cd->cd_ndevs) {
/*
* Need to expand the array.
*/
ondevs = cd->cd_ndevs;
osp = cd->cd_devs;
/*
* Release alldevs_lock around allocation, which may
* sleep.
*/
mutex_exit(&alldevs_lock);
nsp = kmem_alloc(sizeof(device_t) * nndevs, KM_SLEEP);
mutex_enter(&alldevs_lock);
/*
* If another thread moved the array while we did
* not hold alldevs_lock, try again.
*/
if (cd->cd_devs != osp || cd->cd_ndevs != ondevs) {
mutex_exit(&alldevs_lock);
kmem_free(nsp, sizeof(device_t) * nndevs);
mutex_enter(&alldevs_lock);
continue;
}
memset(nsp + ondevs, 0, sizeof(device_t) * (nndevs - ondevs));
if (ondevs != 0)
memcpy(nsp, cd->cd_devs, sizeof(device_t) * ondevs);
cd->cd_ndevs = nndevs;
cd->cd_devs = nsp;
if (ondevs != 0) {
mutex_exit(&alldevs_lock);
kmem_free(osp, sizeof(device_t) * ondevs);
mutex_enter(&alldevs_lock);
}
}
KASSERT(mutex_owned(&alldevs_lock));
alldevs_nwrite--;
}
/*
* Put dev into the devices list.
*/
static void
config_devlink(device_t dev)
{
mutex_enter(&alldevs_lock);
KASSERT(device_cfdriver(dev)->cd_devs[dev->dv_unit] == dev);
dev->dv_add_gen = alldevs_gen;
/* It is safe to add a device to the tail of the list while
* readers and writers are in the list.
*/
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list);
mutex_exit(&alldevs_lock);
}
static void
config_devfree(device_t dev)
{
KASSERT(dev->dv_flags & DVF_PRIV_ALLOC);
KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
if (dev->dv_cfattach->ca_devsize > 0)
kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
kmem_free(dev, sizeof(*dev));
}
/*
* Caller must hold alldevs_lock.
*/
static void
config_devunlink(device_t dev, struct devicelist *garbage)
{
struct device_garbage *dg = &dev->dv_garbage;
cfdriver_t cd = device_cfdriver(dev);
int i;
KASSERT(mutex_owned(&alldevs_lock));
KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
/* Unlink from device list. Link to garbage list. */
TAILQ_REMOVE(&alldevs, dev, dv_list);
TAILQ_INSERT_TAIL(garbage, dev, dv_list);
/* Remove from cfdriver's array. */
cd->cd_devs[dev->dv_unit] = NULL;
/*
* If the device now has no units in use, unlink its softc array.
*/
for (i = 0; i < cd->cd_ndevs; i++) {
if (cd->cd_devs[i] != NULL)
break;
}
/* Nothing found. Unlink, now. Deallocate, later. */
if (i == cd->cd_ndevs) {
dg->dg_ndevs = cd->cd_ndevs;
dg->dg_devs = cd->cd_devs;
cd->cd_devs = NULL;
cd->cd_ndevs = 0;
}
}
static void
config_devdelete(device_t dev)
{
struct device_garbage *dg = &dev->dv_garbage;
device_lock_t dvl = device_getlock(dev);
KASSERTMSG(dev->dv_pending == 0, "%d", dev->dv_pending);
if (dg->dg_devs != NULL)
kmem_free(dg->dg_devs, sizeof(device_t) * dg->dg_ndevs);
localcount_fini(dev->dv_localcount);
kmem_free(dev->dv_localcount, sizeof(*dev->dv_localcount));
cv_destroy(&dvl->dvl_cv);
mutex_destroy(&dvl->dvl_mtx);
KASSERT(dev->dv_properties != NULL);
prop_object_release(dev->dv_properties);
if (dev->dv_activity_handlers)
panic("%s with registered handlers", __func__);
if (dev->dv_locators) {
size_t amount = *--dev->dv_locators;
kmem_free(dev->dv_locators, amount);
}
config_devfree(dev);
}
static int
config_unit_nextfree(cfdriver_t cd, cfdata_t cf)
{
int unit = cf->cf_unit;
KASSERT(mutex_owned(&alldevs_lock));
if (unit < 0)
return -1;
if (cf->cf_fstate == FSTATE_STAR) {
for (; unit < cd->cd_ndevs; unit++)
if (cd->cd_devs[unit] == NULL)
break;
/*
* unit is now the unit of the first NULL device pointer,
* or max(cd->cd_ndevs,cf->cf_unit).
*/
} else {
if (unit < cd->cd_ndevs && cd->cd_devs[unit] != NULL)
unit = -1;
}
return unit;
}
static int
config_unit_alloc(device_t dev, cfdriver_t cd, cfdata_t cf)
{
struct alldevs_foray af;
int unit;
config_alldevs_enter(&af);
for (;;) {
unit = config_unit_nextfree(cd, cf);
if (unit == -1)
break;
if (unit < cd->cd_ndevs) {
cd->cd_devs[unit] = dev;
dev->dv_unit = unit;
break;
}
config_makeroom(unit, cd);
}
config_alldevs_exit(&af);
return unit;
}
static device_t
config_devalloc(const device_t parent, const cfdata_t cf,
const struct cfargs_internal * const args)
{
cfdriver_t cd;
cfattach_t ca;
size_t lname, lunit;
const char *xunit;
int myunit;
char num[10];
device_t dev;
void *dev_private;
const struct cfiattrdata *ia;
device_lock_t dvl;
cd = config_cfdriver_lookup(cf->cf_name);
if (cd == NULL)
return NULL;
ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
if (ca == NULL)
return NULL;
/* get memory for all device vars */
KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
if (ca->ca_devsize > 0) {
dev_private = kmem_zalloc(ca->ca_devsize, KM_SLEEP);
} else {
dev_private = NULL;
}
dev = kmem_zalloc(sizeof(*dev), KM_SLEEP);
dev->dv_handle = args->devhandle;
dev->dv_class = cd->cd_class;
dev->dv_cfdata = cf;
dev->dv_cfdriver = cd;
dev->dv_cfattach = ca;
dev->dv_activity_count = 0;
dev->dv_activity_handlers = NULL;
dev->dv_private = dev_private;
dev->dv_flags = ca->ca_flags; /* inherit flags from class */
dev->dv_attaching = curlwp;
myunit = config_unit_alloc(dev, cd, cf);
if (myunit == -1) {
config_devfree(dev);
return NULL;
}
/* compute length of name and decimal expansion of unit number */
lname = strlen(cd->cd_name);
xunit = number(&num[sizeof(num)], myunit);
lunit = &num[sizeof(num)] - xunit;
if (lname + lunit > sizeof(dev->dv_xname))
panic("config_devalloc: device name too long");
dvl = device_getlock(dev);
mutex_init(&dvl->dvl_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&dvl->dvl_cv, "pmfsusp");
memcpy(dev->dv_xname, cd->cd_name, lname);
memcpy(dev->dv_xname + lname, xunit, lunit);
dev->dv_parent = parent;
if (parent != NULL)
dev->dv_depth = parent->dv_depth + 1;
else
dev->dv_depth = 0;
dev->dv_flags |= DVF_ACTIVE; /* always initially active */
if (args->locators) {
KASSERT(parent); /* no locators at root */
ia = cfiattr_lookup(cfdata_ifattr(cf), parent->dv_cfdriver);
dev->dv_locators =
kmem_alloc(sizeof(int) * (ia->ci_loclen + 1), KM_SLEEP);
*dev->dv_locators++ = sizeof(int) * (ia->ci_loclen + 1);
memcpy(dev->dv_locators, args->locators,
sizeof(int) * ia->ci_loclen);
}
dev->dv_properties = prop_dictionary_create();
KASSERT(dev->dv_properties != NULL);
prop_dictionary_set_string_nocopy(dev->dv_properties,
"device-driver", dev->dv_cfdriver->cd_name);
prop_dictionary_set_uint16(dev->dv_properties,
"device-unit", dev->dv_unit);
if (parent != NULL) {
prop_dictionary_set_string(dev->dv_properties,
"device-parent", device_xname(parent));
}
dev->dv_localcount = kmem_zalloc(sizeof(*dev->dv_localcount),
KM_SLEEP);
localcount_init(dev->dv_localcount);
if (dev->dv_cfdriver->cd_attrs != NULL)
config_add_attrib_dict(dev);
return dev;
}
/*
* Create an array of device attach attributes and add it
* to the device's dv_properties dictionary.
*
* <key>interface-attributes</key>
* <array>
* <dict>
* <key>attribute-name</key>
* <string>foo</string>
* <key>locators</key>
* <array>
* <dict>
* <key>loc-name</key>
* <string>foo-loc1</string>
* </dict>
* <dict>
* <key>loc-name</key>
* <string>foo-loc2</string>
* <key>default</key>
* <string>foo-loc2-default</string>
* </dict>
* ...
* </array>
* </dict>
* ...
* </array>
*/
static void
config_add_attrib_dict(device_t dev)
{
int i, j;
const struct cfiattrdata *ci;
prop_dictionary_t attr_dict, loc_dict;
prop_array_t attr_array, loc_array;
if ((attr_array = prop_array_create()) == NULL)
return;
for (i = 0; ; i++) {
if ((ci = dev->dv_cfdriver->cd_attrs[i]) == NULL)
break;
if ((attr_dict = prop_dictionary_create()) == NULL)
break;
prop_dictionary_set_string_nocopy(attr_dict, "attribute-name",
ci->ci_name);
/* Create an array of the locator names and defaults */
if (ci->ci_loclen != 0 &&
(loc_array = prop_array_create()) != NULL) {
for (j = 0; j < ci->ci_loclen; j++) {
loc_dict = prop_dictionary_create();
if (loc_dict == NULL)
continue;
prop_dictionary_set_string_nocopy(loc_dict,
"loc-name", ci->ci_locdesc[j].cld_name);
if (ci->ci_locdesc[j].cld_defaultstr != NULL)
prop_dictionary_set_string_nocopy(
loc_dict, "default",
ci->ci_locdesc[j].cld_defaultstr);
prop_array_set(loc_array, j, loc_dict);
prop_object_release(loc_dict);
}
prop_dictionary_set_and_rel(attr_dict, "locators",
loc_array);
}
prop_array_add(attr_array, attr_dict);
prop_object_release(attr_dict);
}
if (i == 0)
prop_object_release(attr_array);
else
prop_dictionary_set_and_rel(dev->dv_properties,
"interface-attributes", attr_array);
return;
}
/*
* Attach a found device.
*
* Returns the device referenced, to be released with device_release.
*/
static device_t
config_attach_internal(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
const struct cfargs_internal * const args)
{
device_t dev;
struct cftable *ct;
const char *drvname;
bool deferred;
KASSERT(KERNEL_LOCKED_P());
dev = config_devalloc(parent, cf, args);
if (!dev)
panic("config_attach: allocation of device softc failed");
/* XXX redundant - see below? */
if (cf->cf_fstate != FSTATE_STAR) {
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
cf->cf_fstate = FSTATE_FOUND;
}
config_devlink(dev);
if (config_do_twiddle && cold)
twiddle();
else
aprint_naive("Found ");
/*
* We want the next two printfs for normal, verbose, and quiet,
* but not silent (in which case, we're twiddling, instead).
*/
if (parent == ROOT) {
aprint_naive("%s (root)", device_xname(dev));
aprint_normal("%s (root)", device_xname(dev));
} else {
aprint_naive("%s at %s", device_xname(dev),
device_xname(parent));
aprint_normal("%s at %s", device_xname(dev),
device_xname(parent));
if (print)
(void) (*print)(aux, NULL);
}
/*
* Before attaching, clobber any unfound devices that are
* otherwise identical.
* XXX code above is redundant?
*/
drvname = dev->dv_cfdriver->cd_name;
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, drvname) &&
cf->cf_unit == dev->dv_unit) {
if (cf->cf_fstate == FSTATE_NOTFOUND)
cf->cf_fstate = FSTATE_FOUND;
}
}
}
device_register(dev, aux);
/* Let userland know */
devmon_report_device(dev, true);
/*
* Prevent detach until the driver's attach function, and all
* deferred actions, have finished.
*/
config_pending_incr(dev);
/*
* Prevent concurrent detach from destroying the device_t until
* the caller has released the device.
*/
device_acquire(dev);
/* Call the driver's attach function. */
(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
/*
* Allow other threads to acquire references to the device now
* that the driver's attach function is done.
*/
mutex_enter(&config_misc_lock);
KASSERT(dev->dv_attaching == curlwp);
dev->dv_attaching = NULL;
cv_broadcast(&config_misc_cv);
mutex_exit(&config_misc_lock);
/*
* Synchronous parts of attach are done. Allow detach, unless
* the driver's attach function scheduled deferred actions.
*/
config_pending_decr(dev);
mutex_enter(&config_misc_lock);
deferred = (dev->dv_pending != 0);
mutex_exit(&config_misc_lock);
if (!deferred && !device_pmf_is_registered(dev))
aprint_debug_dev(dev,
"WARNING: power management not supported\n");
config_process_deferred(&deferred_config_queue, dev);
device_register_post_config(dev, aux);
rnd_add_uint32(&rnd_autoconf_source, 0);
return dev;
}
device_t
config_attach_acquire(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
const struct cfargs *cfargs)
{
struct cfargs_internal store;
device_t dev;
KERNEL_LOCK(1, NULL);
dev = config_attach_internal(parent, cf, aux, print,
cfargs_canonicalize(cfargs, &store));
KERNEL_UNLOCK_ONE(NULL);
return dev;
}
/*
* config_attach(parent, cf, aux, print, cfargs)
*
* Legacy entry point for callers whose use of the returned
* device_t is not delimited by device_release.
*
* The caller is required to hold the kernel lock as a fragile
* defence against races.
*
* Callers should ignore the return value or be converted to
* config_attach_acquire with a matching device_release once they
* have finished with the returned device_t.
*/
device_t
config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print,
const struct cfargs *cfargs)
{
device_t dev;
KASSERT(KERNEL_LOCKED_P());
dev = config_attach_acquire(parent, cf, aux, print, cfargs);
if (dev == NULL)
return NULL;
device_release(dev);
return dev;
}
/*
* As above, but for pseudo-devices. Pseudo-devices attached in this
* way are silently inserted into the device tree, and their children
* attached.
*
* Note that because pseudo-devices are attached silently, any information
* the attach routine wishes to print should be prefixed with the device
* name by the attach routine.
*/
device_t
config_attach_pseudo_acquire(cfdata_t cf, void *aux)
{
device_t dev;
KERNEL_LOCK(1, NULL);
struct cfargs_internal args = { };
dev = config_devalloc(ROOT, cf, &args);
if (!dev)
goto out;
/* XXX mark busy in cfdata */
if (cf->cf_fstate != FSTATE_STAR) {
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
cf->cf_fstate = FSTATE_FOUND;
}
config_devlink(dev);
#if 0 /* XXXJRT not yet */
device_register(dev, NULL); /* like a root node */
#endif
/* Let userland know */
devmon_report_device(dev, true);
/*
* Prevent detach until the driver's attach function, and all
* deferred actions, have finished.
*/
config_pending_incr(dev);
/*
* Prevent concurrent detach from destroying the device_t until
* the caller has released the device.
*/
device_acquire(dev);
/* Call the driver's attach function. */
(*dev->dv_cfattach->ca_attach)(ROOT, dev, aux);
/*
* Allow other threads to acquire references to the device now
* that the driver's attach function is done.
*/
mutex_enter(&config_misc_lock);
KASSERT(dev->dv_attaching == curlwp);
dev->dv_attaching = NULL;
cv_broadcast(&config_misc_cv);
mutex_exit(&config_misc_lock);
/*
* Synchronous parts of attach are done. Allow detach, unless
* the driver's attach function scheduled deferred actions.
*/
config_pending_decr(dev);
config_process_deferred(&deferred_config_queue, dev);
out: KERNEL_UNLOCK_ONE(NULL);
return dev;
}
/*
* config_attach_pseudo(cf)
*
* Legacy entry point for callers whose use of the returned
* device_t is not delimited by device_release.
*
* The caller is required to hold the kernel lock as a fragile
* defence against races.
*
* Callers should ignore the return value or be converted to
* config_attach_pseudo_acquire with a matching device_release
* once they have finished with the returned device_t. As a
* bonus, config_attach_pseudo_acquire can pass a non-null aux
* argument into the driver's attach routine.
*/
device_t
config_attach_pseudo(cfdata_t cf)
{
device_t dev;
dev = config_attach_pseudo_acquire(cf, NULL);
if (dev == NULL)
return dev;
device_release(dev);
return dev;
}
/*
* Caller must hold alldevs_lock.
*/
static void
config_collect_garbage(struct devicelist *garbage)
{
device_t dv;
KASSERT(!cpu_intr_p());
KASSERT(!cpu_softintr_p());
KASSERT(mutex_owned(&alldevs_lock));
while (alldevs_nwrite == 0 && alldevs_nread == 0 && alldevs_garbage) {
TAILQ_FOREACH(dv, &alldevs, dv_list) {
if (dv->dv_del_gen != 0)
break;
}
if (dv == NULL) {
alldevs_garbage = false;
break;
}
config_devunlink(dv, garbage);
}
KASSERT(mutex_owned(&alldevs_lock));
}
static void
config_dump_garbage(struct devicelist *garbage)
{
device_t dv;
while ((dv = TAILQ_FIRST(garbage)) != NULL) {
TAILQ_REMOVE(garbage, dv, dv_list);
config_devdelete(dv);
}
}
static int
config_detach_enter(device_t dev)
{
struct lwp *l __diagused;
int error = 0;
mutex_enter(&config_misc_lock);
/*
* Wait until attach has fully completed, and until any
* concurrent detach (e.g., drvctl racing with USB event
* thread) has completed.
*
* Caller must hold alldevs_nread or alldevs_nwrite (e.g., via
* deviter) to ensure the winner of the race doesn't free the
* device leading the loser of the race into use-after-free.
*
* XXX Not all callers do this!
*/
while (dev->dv_pending || dev->dv_detaching) {
KASSERTMSG(dev->dv_detaching != curlwp,
"recursively detaching %s", device_xname(dev));
error = cv_wait_sig(&config_misc_cv, &config_misc_lock);
if (error)
goto out;
}
/*
* Attach has completed, and no other concurrent detach is
* running. Claim the device for detaching. This will cause
* all new attempts to acquire references to block.
*/
KASSERTMSG((l = dev->dv_attaching) == NULL,
"lwp %ld [%s] @ %p attaching %s",
(long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
device_xname(dev));
KASSERTMSG((l = dev->dv_detaching) == NULL,
"lwp %ld [%s] @ %p detaching %s",
(long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
device_xname(dev));
dev->dv_detaching = curlwp;
out: mutex_exit(&config_misc_lock);
return error;
}
static void
config_detach_exit(device_t dev)
{
struct lwp *l __diagused;
mutex_enter(&config_misc_lock);
KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
device_xname(dev));
KASSERTMSG((l = dev->dv_detaching) == curlwp,
"lwp %ld [%s] @ %p detaching %s",
(long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
device_xname(dev));
dev->dv_detaching = NULL;
cv_broadcast(&config_misc_cv);
mutex_exit(&config_misc_lock);
}
/*
* Detach a device. Optionally forced (e.g. because of hardware
* removal) and quiet. Returns zero if successful, non-zero
* (an error code) otherwise.
*
* Note that this code wants to be run from a process context, so
* that the detach can sleep to allow processes which have a device
* open to run and unwind their stacks.
*
* Caller must hold a reference with device_acquire or
* device_lookup_acquire.
*/
int
config_detach_release(device_t dev, int flags)
{
struct alldevs_foray af;
struct cftable *ct;
cfdata_t cf;
const struct cfattach *ca;
struct cfdriver *cd;
device_t d __diagused;
int rv = 0;
KERNEL_LOCK(1, NULL);
cf = dev->dv_cfdata;
KASSERTMSG((cf == NULL || cf->cf_fstate == FSTATE_FOUND ||
cf->cf_fstate == FSTATE_STAR),
"config_detach: %s: bad device fstate: %d",
device_xname(dev), cf ? cf->cf_fstate : -1);
cd = dev->dv_cfdriver;
KASSERT(cd != NULL);
ca = dev->dv_cfattach;
KASSERT(ca != NULL);
/*
* Only one detach at a time, please -- and not until fully
* attached.
*/
rv = config_detach_enter(dev);
device_release(dev);
if (rv) {
KERNEL_UNLOCK_ONE(NULL);
return rv;
}
mutex_enter(&alldevs_lock);
if (dev->dv_del_gen != 0) {
mutex_exit(&alldevs_lock);
#ifdef DIAGNOSTIC
printf("%s: %s is already detached\n", __func__,
device_xname(dev));
#endif /* DIAGNOSTIC */
config_detach_exit(dev);
KERNEL_UNLOCK_ONE(NULL);
return ENOENT;
}
alldevs_nwrite++;
mutex_exit(&alldevs_lock);
/*
* Call the driver's .ca_detach function, unless it has none or
* we are skipping it because it's unforced shutdown time and
* the driver didn't ask to detach on shutdown.
*/
if (!detachall &&
(flags & (DETACH_SHUTDOWN|DETACH_FORCE)) == DETACH_SHUTDOWN &&
(dev->dv_flags & DVF_DETACH_SHUTDOWN) == 0) {
rv = EOPNOTSUPP;
} else if (ca->ca_detach != NULL) {
rv = (*ca->ca_detach)(dev, flags);
} else
rv = EOPNOTSUPP;
KASSERTMSG(!dev->dv_detach_done, "%s detached twice, error=%d",
device_xname(dev), rv);
/*
* If it was not possible to detach the device, then we either
* panic() (for the forced but failed case), or return an error.
*/
if (rv) {
/*
* Detach failed -- likely EOPNOTSUPP or EBUSY. Driver
* must not have called config_detach_commit.
*/
KASSERTMSG(!dev->dv_detach_committed,
"%s committed to detaching and then backed out, error=%d",
device_xname(dev), rv);
if (flags & DETACH_FORCE) {
panic("config_detach: forced detach of %s failed (%d)",
device_xname(dev), rv);
}
goto out;
}
/*
* The device has now been successfully detached.
*/
dev->dv_detach_done = true;
/*
* If .ca_detach didn't commit to detach, then do that for it.
* This wakes any pending device_lookup_acquire calls so they
* will fail.
*/
config_detach_commit(dev);
/*
* If it was possible to detach the device, ensure that the
* device is deactivated.
*/
dev->dv_flags &= ~DVF_ACTIVE; /* XXXSMP */
/*
* Wait for all device_lookup_acquire references -- mostly, for
* all attempts to open the device -- to drain. It is the
* responsibility of .ca_detach to ensure anything with open
* references will be interrupted and release them promptly,
* not block indefinitely. All new attempts to acquire
* references will fail, as config_detach_commit has arranged
* by now.
*/
mutex_enter(&config_misc_lock);
localcount_drain(dev->dv_localcount,
&config_misc_cv, &config_misc_lock);
mutex_exit(&config_misc_lock);
/* Let userland know */
devmon_report_device(dev, false);
#ifdef DIAGNOSTIC
/*
* Sanity: If you're successfully detached, you should have no
* children. (Note that because children must be attached
* after parents, we only need to search the latter part of
* the list.)
*/
mutex_enter(&alldevs_lock);
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
d = TAILQ_NEXT(d, dv_list)) {
if (d->dv_parent == dev && d->dv_del_gen == 0) {
printf("config_detach: detached device %s"
" has children %s\n", device_xname(dev),
device_xname(d));
panic("config_detach");
}
}
mutex_exit(&alldevs_lock);
#endif
/* notify the parent that the child is gone */
if (dev->dv_parent) {
device_t p = dev->dv_parent;
if (p->dv_cfattach->ca_childdetached)
(*p->dv_cfattach->ca_childdetached)(p, dev);
}
/*
* Mark cfdata to show that the unit can be reused, if possible.
*/
TAILQ_FOREACH(ct, &allcftables, ct_list) {
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
if (STREQ(cf->cf_name, cd->cd_name)) {
if (cf->cf_fstate == FSTATE_FOUND &&
cf->cf_unit == dev->dv_unit)
cf->cf_fstate = FSTATE_NOTFOUND;
}
}
}
if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
aprint_normal_dev(dev, "detached\n");
out:
config_detach_exit(dev);
config_alldevs_enter(&af);
KASSERT(alldevs_nwrite != 0);
--alldevs_nwrite;
if (rv == 0 && dev->dv_del_gen == 0) {
if (alldevs_nwrite == 0 && alldevs_nread == 0)
config_devunlink(dev, &af.af_garbage);
else {
dev->dv_del_gen = alldevs_gen;
alldevs_garbage = true;
}
}
config_alldevs_exit(&af);
KERNEL_UNLOCK_ONE(NULL);
return rv;
}
/*
* config_detach(dev, flags)
*
* Legacy entry point for callers that have not acquired a
* reference to dev.
*
* The caller is required to hold the kernel lock as a fragile
* defence against races.
*
* Callers should be converted to use device_acquire under a lock
* taken also by .ca_childdetached to synchronize access to the
* device_t, and then config_detach_release ouside the lock.
* Alternatively, most drivers detach children only in their own
* detach routines, which can be done with config_detach_children
* instead.
*/
int
config_detach(device_t dev, int flags)
{
device_acquire(dev);
return config_detach_release(dev, flags);
}
/*
* config_detach_commit(dev)
*
* Issued by a driver's .ca_detach routine to notify anyone
* waiting in device_lookup_acquire that the driver is committed
* to detaching the device, which allows device_lookup_acquire to
* wake up and fail immediately.
*
* Safe to call multiple times -- idempotent. Must be called
* during config_detach_enter/exit. Safe to use with
* device_lookup because the device is not actually removed from
* the table until after config_detach_exit.
*/
void
config_detach_commit(device_t dev)
{
struct lwp *l __diagused;
mutex_enter(&config_misc_lock);
KASSERTMSG(dev->dv_detaching != NULL, "not detaching %s",
device_xname(dev));
KASSERTMSG((l = dev->dv_detaching) == curlwp,
"lwp %ld [%s] @ %p detaching %s",
(long)l->l_lid, (l->l_name ? l->l_name : l->l_proc->p_comm), l,
device_xname(dev));
dev->dv_detach_committed = true;
cv_broadcast(&config_misc_cv);
mutex_exit(&config_misc_lock);
}
int
config_detach_children(device_t parent, int flags)
{
device_t dv;
deviter_t di;
int error = 0;
KASSERT(KERNEL_LOCKED_P());
for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
dv = deviter_next(&di)) {
if (device_parent(dv) != parent)
continue;
if ((error = config_detach(dv, flags)) != 0)
break;
}
deviter_release(&di);
return error;
}
device_t
shutdown_first(struct shutdown_state *s)
{
if (!s->initialized) {
deviter_init(&s->di, DEVITER_F_SHUTDOWN|DEVITER_F_LEAVES_FIRST);
s->initialized = true;
}
return shutdown_next(s);
}
device_t
shutdown_next(struct shutdown_state *s)
{
device_t dv;
while ((dv = deviter_next(&s->di)) != NULL && !device_is_active(dv))
;
if (dv == NULL)
s->initialized = false;
return dv;
}
bool
config_detach_all(int how)
{
static struct shutdown_state s;
device_t curdev;
bool progress = false;
int flags;
KERNEL_LOCK(1, NULL);
if ((how & (RB_NOSYNC|RB_DUMP)) != 0)
goto out;
if ((how & RB_POWERDOWN) == RB_POWERDOWN)
flags = DETACH_SHUTDOWN | DETACH_POWEROFF;
else
flags = DETACH_SHUTDOWN;
for (curdev = shutdown_first(&s); curdev != NULL;
curdev = shutdown_next(&s)) {
aprint_debug(" detaching %s, ", device_xname(curdev));
if (config_detach(curdev, flags) == 0) {
progress = true;
aprint_debug("success.");
} else
aprint_debug("failed.");
}
out: KERNEL_UNLOCK_ONE(NULL);
return progress;
}
static bool
device_is_ancestor_of(device_t ancestor, device_t descendant)
{
device_t dv;
for (dv = descendant; dv != NULL; dv = device_parent(dv)) {
if (device_parent(dv) == ancestor)
return true;
}
return false;
}
int
config_deactivate(device_t dev)
{
deviter_t di;
const struct cfattach *ca;
device_t descendant;
int s, rv = 0, oflags;
for (descendant = deviter_first(&di, DEVITER_F_ROOT_FIRST);
descendant != NULL;
descendant = deviter_next(&di)) {
if (dev != descendant &&
!device_is_ancestor_of(dev, descendant))
continue;
if ((descendant->dv_flags & DVF_ACTIVE) == 0)
continue;
ca = descendant->dv_cfattach;
oflags = descendant->dv_flags;
descendant->dv_flags &= ~DVF_ACTIVE;
if (ca->ca_activate == NULL)
continue;
s = splhigh();
rv = (*ca->ca_activate)(descendant, DVACT_DEACTIVATE);
splx(s);
if (rv != 0)
descendant->dv_flags = oflags;
}
deviter_release(&di);
return rv;
}
/*
* Defer the configuration of the specified device until all
* of its parent's devices have been attached.
*/
void
config_defer(device_t dev, void (*func)(device_t))
{
struct deferred_config *dc;
if (dev->dv_parent == NULL)
panic("config_defer: can't defer config of a root device");
dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
config_pending_incr(dev);
mutex_enter(&config_misc_lock);
#ifdef DIAGNOSTIC
struct deferred_config *odc;
TAILQ_FOREACH(odc, &deferred_config_queue, dc_queue) {
if (odc->dc_dev == dev)
panic("config_defer: deferred twice");
}
#endif
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
mutex_exit(&config_misc_lock);
}
/*
* Defer some autoconfiguration for a device until after interrupts
* are enabled.
*/
void
config_interrupts(device_t dev, void (*func)(device_t))
{
struct deferred_config *dc;
/*
* If interrupts are enabled, callback now.
*/
if (cold == 0) {
(*func)(dev);
return;
}
dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
config_pending_incr(dev);
mutex_enter(&config_misc_lock);
#ifdef DIAGNOSTIC
struct deferred_config *odc;
TAILQ_FOREACH(odc, &interrupt_config_queue, dc_queue) {
if (odc->dc_dev == dev)
panic("config_interrupts: deferred twice");
}
#endif
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
mutex_exit(&config_misc_lock);
}
/*
* Defer some autoconfiguration for a device until after root file system
* is mounted (to load firmware etc).
*/
void
config_mountroot(device_t dev, void (*func)(device_t))
{
struct deferred_config *dc;
/*
* If root file system is mounted, callback now.
*/
if (root_is_mounted) {
(*func)(dev);
return;
}
dc = kmem_alloc(sizeof(*dc), KM_SLEEP);
mutex_enter(&config_misc_lock);
#ifdef DIAGNOSTIC
struct deferred_config *odc;
TAILQ_FOREACH(odc, &mountroot_config_queue, dc_queue) {
if (odc->dc_dev == dev)
panic("%s: deferred twice", __func__);
}
#endif
dc->dc_dev = dev;
dc->dc_func = func;
TAILQ_INSERT_TAIL(&mountroot_config_queue, dc, dc_queue);
mutex_exit(&config_misc_lock);
}
/*
* Process a deferred configuration queue.
*/
static void
config_process_deferred(struct deferred_config_head *queue, device_t parent)
{
struct deferred_config *dc;
KASSERT(KERNEL_LOCKED_P());
mutex_enter(&config_misc_lock);
dc = TAILQ_FIRST(queue);
while (dc) {
if (parent == NULL || dc->dc_dev->dv_parent == parent) {
TAILQ_REMOVE(queue, dc, dc_queue);
mutex_exit(&config_misc_lock);
(*dc->dc_func)(dc->dc_dev);
config_pending_decr(dc->dc_dev);
kmem_free(dc, sizeof(*dc));
mutex_enter(&config_misc_lock);
/* Restart, queue might have changed */
dc = TAILQ_FIRST(queue);
} else {
dc = TAILQ_NEXT(dc, dc_queue);
}
}
mutex_exit(&config_misc_lock);
}
/*
* Manipulate the config_pending semaphore.
*/
void
config_pending_incr(device_t dev)
{
mutex_enter(&config_misc_lock);
KASSERTMSG(dev->dv_pending < INT_MAX,
"%s: excess config_pending_incr", device_xname(dev));
if (dev->dv_pending++ == 0)
TAILQ_INSERT_TAIL(&config_pending, dev, dv_pending_list);
#ifdef DEBUG_AUTOCONF
printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
#endif
mutex_exit(&config_misc_lock);
}
void
config_pending_decr(device_t dev)
{
mutex_enter(&config_misc_lock);
KASSERTMSG(dev->dv_pending > 0,
"%s: excess config_pending_decr", device_xname(dev));
if (--dev->dv_pending == 0) {
TAILQ_REMOVE(&config_pending, dev, dv_pending_list);
cv_broadcast(&config_misc_cv);
}
#ifdef DEBUG_AUTOCONF
printf("%s: %s %d\n", __func__, device_xname(dev), dev->dv_pending);
#endif
mutex_exit(&config_misc_lock);
}
/*
* Register a "finalization" routine. Finalization routines are
* called iteratively once all real devices have been found during
* autoconfiguration, for as long as any one finalizer has done
* any work.
*/
int
config_finalize_register(device_t dev, int (*fn)(device_t))
{
struct finalize_hook *f;
int error = 0;
KERNEL_LOCK(1, NULL);
/*
* If finalization has already been done, invoke the
* callback function now.
*/
if (config_finalize_done) {
while ((*fn)(dev) != 0)
/* loop */ ;
goto out;
}
/* Ensure this isn't already on the list. */
TAILQ_FOREACH(f, &config_finalize_list, f_list) {
if (f->f_func == fn && f->f_dev == dev) {
error = EEXIST;
goto out;
}
}
f = kmem_alloc(sizeof(*f), KM_SLEEP);
f->f_func = fn;
f->f_dev = dev;
TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
/* Success! */
error = 0;
out: KERNEL_UNLOCK_ONE(NULL);
return error;
}
void
config_finalize(void)
{
struct finalize_hook *f;
struct pdevinit *pdev;
extern struct pdevinit pdevinit[];
unsigned t0 = getticks();
int errcnt, rv;
/*
* Now that device driver threads have been created, wait for
* them to finish any deferred autoconfiguration.
*/
mutex_enter(&config_misc_lock);
while (!TAILQ_EMPTY(&config_pending)) {
const unsigned t1 = getticks();
if (t1 - t0 >= hz) {
void (*pr)(const char *, ...) __printflike(1,2);
device_t dev;
if (t1 - t0 >= 60*hz) {
pr = aprint_normal;
t0 = t1;
} else {
pr = aprint_debug;
}
(*pr)("waiting for devices:");
TAILQ_FOREACH(dev, &config_pending, dv_pending_list)
(*pr)(" %s", device_xname(dev));
(*pr)("\n");
}
(void)cv_timedwait(&config_misc_cv, &config_misc_lock,
mstohz(1000));
}
mutex_exit(&config_misc_lock);
KERNEL_LOCK(1, NULL);
/* Attach pseudo-devices. */
for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
(*pdev->pdev_attach)(pdev->pdev_count);
/* Run the hooks until none of them does any work. */
do {
rv = 0;
TAILQ_FOREACH(f, &config_finalize_list, f_list)
rv |= (*f->f_func)(f->f_dev);
} while (rv != 0);
config_finalize_done = 1;
/* Now free all the hooks. */
while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
TAILQ_REMOVE(&config_finalize_list, f, f_list);
kmem_free(f, sizeof(*f));
}
KERNEL_UNLOCK_ONE(NULL);
errcnt = aprint_get_error_count();
if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
(boothowto & AB_VERBOSE) == 0) {
mutex_enter(&config_misc_lock);
if (config_do_twiddle) {
config_do_twiddle = 0;
printf_nolog(" done.\n");
}
mutex_exit(&config_misc_lock);
}
if (errcnt != 0) {
printf("WARNING: %d error%s while detecting hardware; "
"check system log.\n", errcnt,
errcnt == 1 ? "" : "s");
}
}
void
config_twiddle_init(void)
{
if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
config_do_twiddle = 1;
}
callout_setfunc(&config_twiddle_ch, config_twiddle_fn, NULL);
}
void
config_twiddle_fn(void *cookie)
{
mutex_enter(&config_misc_lock);
if (config_do_twiddle) {
twiddle();
callout_schedule(&config_twiddle_ch, mstohz(100));
}
mutex_exit(&config_misc_lock);
}
static void
config_alldevs_enter(struct alldevs_foray *af)
{
TAILQ_INIT(&af->af_garbage);
mutex_enter(&alldevs_lock);
config_collect_garbage(&af->af_garbage);
}
static void
config_alldevs_exit(struct alldevs_foray *af)
{
mutex_exit(&alldevs_lock);
config_dump_garbage(&af->af_garbage);
}
/*
* device_lookup:
*
* Look up a device instance for a given driver.
*
* Caller is responsible for ensuring the device's state is
* stable, either by holding a reference already obtained with
* device_lookup_acquire or by otherwise ensuring the device is
* attached and can't be detached (e.g., holding an open device
* node and ensuring *_detach calls vdevgone).
*
* XXX Find a way to assert this.
*
* Safe for use up to and including interrupt context at IPL_VM.
* Never sleeps.
*/
device_t
device_lookup(cfdriver_t cd, int unit)
{
device_t dv;
mutex_enter(&alldevs_lock);
if (unit < 0 || unit >= cd->cd_ndevs)
dv = NULL;
else if ((dv = cd->cd_devs[unit]) != NULL && dv->dv_del_gen != 0)
dv = NULL;
mutex_exit(&alldevs_lock);
return dv;
}
/*
* device_lookup_private:
*
* Look up a softc instance for a given driver.
*/
void *
device_lookup_private(cfdriver_t cd, int unit)
{
return device_private(device_lookup(cd, unit));
}
/*
* device_lookup_acquire:
*
* Look up a device instance for a given driver, and return a
* reference to it that must be released by device_release.
*
* => If the device is still attaching, blocks until *_attach has
* returned.
*
* => If the device is detaching, blocks until *_detach has
* returned. May succeed or fail in that case, depending on
* whether *_detach has backed out (EBUSY) or committed to
* detaching.
*
* May sleep.
*/
device_t
device_lookup_acquire(cfdriver_t cd, int unit)
{
device_t dv;
ASSERT_SLEEPABLE();
/* XXX This should have a pserialized fast path -- TBD. */
mutex_enter(&config_misc_lock);
mutex_enter(&alldevs_lock);
retry: if (unit < 0 || unit >= cd->cd_ndevs ||
(dv = cd->cd_devs[unit]) == NULL ||
dv->dv_del_gen != 0 ||
dv->dv_detach_committed) {
dv = NULL;
} else {
/*
* Wait for the device to stabilize, if attaching or
* detaching. Either way we must wait for *_attach or
* *_detach to complete, and either way we must retry:
* even if detaching, *_detach might fail (EBUSY) so
* the device may still be there.
*/
if ((dv->dv_attaching != NULL && dv->dv_attaching != curlwp) ||
dv->dv_detaching != NULL) {
mutex_exit(&alldevs_lock);
cv_wait(&config_misc_cv, &config_misc_lock);
mutex_enter(&alldevs_lock);
goto retry;
}
device_acquire(dv);
}
mutex_exit(&alldevs_lock);
mutex_exit(&config_misc_lock);
return dv;
}
/*
* device_acquire:
*
* Acquire a reference to a device. It is the caller's
* responsibility to ensure that the device's .ca_detach routine
* cannot return before calling this. Caller must release the
* reference with device_release or config_detach_release.
*/
void
device_acquire(device_t dv)
{
/*
* No lock because the caller has promised that this can't
* change concurrently with device_acquire.
*/
KASSERTMSG(!dv->dv_detach_done, "%s",
dv == NULL ? "(null)" : device_xname(dv));
localcount_acquire(dv->dv_localcount);
}
/*
* device_release:
*
* Release a reference to a device acquired with device_acquire or
* device_lookup_acquire.
*/
void
device_release(device_t dv)
{
localcount_release(dv->dv_localcount,
&config_misc_cv, &config_misc_lock);
}
/*
* device_find_by_xname:
*
* Returns the device of the given name or NULL if it doesn't exist.
*/
device_t
device_find_by_xname(const char *name)
{
device_t dv;
deviter_t di;
for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
if (strcmp(device_xname(dv), name) == 0)
break;
}
deviter_release(&di);
return dv;
}
/*
* device_find_by_driver_unit:
*
* Returns the device of the given driver name and unit or
* NULL if it doesn't exist.
*/
device_t
device_find_by_driver_unit(const char *name, int unit)
{
struct cfdriver *cd;
if ((cd = config_cfdriver_lookup(name)) == NULL)
return NULL;
return device_lookup(cd, unit);
}
static bool
match_strcmp(const char * const s1, const char * const s2)
{
return strcmp(s1, s2) == 0;
}
static bool
match_pmatch(const char * const s1, const char * const s2)
{
return pmatch(s1, s2, NULL) == 2;
}
static bool
strarray_match_internal(const char ** const strings,
unsigned int const nstrings, const char * const str,
unsigned int * const indexp,
bool (*match_fn)(const char *, const char *))
{
unsigned int i;
if (strings == NULL || nstrings == 0) {
return false;
}
for (i = 0; i < nstrings; i++) {
if ((*match_fn)(strings[i], str)) {
*indexp = i;
return true;
}
}
return false;
}
static int
strarray_match(const char ** const strings, unsigned int const nstrings,
const char * const str)
{
unsigned int idx;
if (strarray_match_internal(strings, nstrings, str, &idx,
match_strcmp)) {
return (int)(nstrings - idx);
}
return 0;
}
static int
strarray_pmatch(const char ** const strings, unsigned int const nstrings,
const char * const pattern)
{
unsigned int idx;
if (strarray_match_internal(strings, nstrings, pattern, &idx,
match_pmatch)) {
return (int)(nstrings - idx);
}
return 0;
}
static int
device_compatible_match_strarray_internal(
const char **device_compats, int ndevice_compats,
const struct device_compatible_entry *driver_compats,
const struct device_compatible_entry **matching_entryp,
int (*match_fn)(const char **, unsigned int, const char *))
{
const struct device_compatible_entry *dce = NULL;
int rv;
if (ndevice_compats == 0 || device_compats == NULL ||
driver_compats == NULL)
return 0;
for (dce = driver_compats; dce->compat != NULL; dce++) {
rv = (*match_fn)(device_compats, ndevice_compats, dce->compat);
if (rv != 0) {
if (matching_entryp != NULL) {
*matching_entryp = dce;
}
return rv;
}
}
return 0;
}
/*
* device_compatible_match:
*
* Match a driver's "compatible" data against a device's
* "compatible" strings. Returns resulted weighted by
* which device "compatible" string was matched.
*/
int
device_compatible_match(const char **device_compats, int ndevice_compats,
const struct device_compatible_entry *driver_compats)
{
return device_compatible_match_strarray_internal(device_compats,
ndevice_compats, driver_compats, NULL, strarray_match);
}
/*
* device_compatible_pmatch:
*
* Like device_compatible_match(), but uses pmatch(9) to compare
* the device "compatible" strings against patterns in the
* driver's "compatible" data.
*/
int
device_compatible_pmatch(const char **device_compats, int ndevice_compats,
const struct device_compatible_entry *driver_compats)
{
return device_compatible_match_strarray_internal(device_compats,
ndevice_compats, driver_compats, NULL, strarray_pmatch);
}
static int
device_compatible_match_strlist_internal(
const char * const device_compats, size_t const device_compatsize,
const struct device_compatible_entry *driver_compats,
const struct device_compatible_entry **matching_entryp,
int (*match_fn)(const char *, size_t, const char *))
{
const struct device_compatible_entry *dce = NULL;
int rv;
if (device_compats == NULL || device_compatsize == 0 ||
driver_compats == NULL)
return 0;
for (dce = driver_compats; dce->compat != NULL; dce++) {
rv = (*match_fn)(device_compats, device_compatsize,
dce->compat);
if (rv != 0) {
if (matching_entryp != NULL) {
*matching_entryp = dce;
}
return rv;
}
}
return 0;
}
/*
* device_compatible_match_strlist:
*
* Like device_compatible_match(), but take the device
* "compatible" strings as an OpenFirmware-style string
* list.
*/
int
device_compatible_match_strlist(
const char * const device_compats, size_t const device_compatsize,
const struct device_compatible_entry *driver_compats)
{
return device_compatible_match_strlist_internal(device_compats,
device_compatsize, driver_compats, NULL, strlist_match);
}
/*
* device_compatible_pmatch_strlist:
*
* Like device_compatible_pmatch(), but take the device
* "compatible" strings as an OpenFirmware-style string
* list.
*/
int
device_compatible_pmatch_strlist(
const char * const device_compats, size_t const device_compatsize,
const struct device_compatible_entry *driver_compats)
{
return device_compatible_match_strlist_internal(device_compats,
device_compatsize, driver_compats, NULL, strlist_pmatch);
}
static int
device_compatible_match_id_internal(
uintptr_t const id, uintptr_t const mask, uintptr_t const sentinel_id,
const struct device_compatible_entry *driver_compats,
const struct device_compatible_entry **matching_entryp)
{
const struct device_compatible_entry *dce = NULL;
if (mask == 0)
return 0;
for (dce = driver_compats; dce->id != sentinel_id; dce++) {
if ((id & mask) == dce->id) {
if (matching_entryp != NULL) {
*matching_entryp = dce;
}
return 1;
}
}
return 0;
}
/*
* device_compatible_match_id:
*
* Like device_compatible_match(), but takes a single
* unsigned integer device ID.
*/
int
device_compatible_match_id(
uintptr_t const id, uintptr_t const sentinel_id,
const struct device_compatible_entry *driver_compats)
{
return device_compatible_match_id_internal(id, (uintptr_t)-1,
sentinel_id, driver_compats, NULL);
}
/*
* device_compatible_lookup:
*
* Look up and return the device_compatible_entry, using the
* same matching criteria used by device_compatible_match().
*/
const struct device_compatible_entry *
device_compatible_lookup(const char **device_compats, int ndevice_compats,
const struct device_compatible_entry *driver_compats)
{
const struct device_compatible_entry *dce;
if (device_compatible_match_strarray_internal(device_compats,
ndevice_compats, driver_compats, &dce, strarray_match)) {
return dce;
}
return NULL;
}
/*
* device_compatible_plookup:
*
* Look up and return the device_compatible_entry, using the
* same matching criteria used by device_compatible_pmatch().
*/
const struct device_compatible_entry *
device_compatible_plookup(const char **device_compats, int ndevice_compats,
const struct device_compatible_entry *driver_compats)
{
const struct device_compatible_entry *dce;
if (device_compatible_match_strarray_internal(device_compats,
ndevice_compats, driver_compats, &dce, strarray_pmatch)) {
return dce;
}
return NULL;
}
/*
* device_compatible_lookup_strlist:
*
* Like device_compatible_lookup(), but take the device
* "compatible" strings as an OpenFirmware-style string
* list.
*/
const struct device_compatible_entry *
device_compatible_lookup_strlist(
const char * const device_compats, size_t const device_compatsize,
const struct device_compatible_entry *driver_compats)
{
const struct device_compatible_entry *dce;
if (device_compatible_match_strlist_internal(device_compats,
device_compatsize, driver_compats, &dce, strlist_match)) {
return dce;
}
return NULL;
}
/*
* device_compatible_plookup_strlist:
*
* Like device_compatible_plookup(), but take the device
* "compatible" strings as an OpenFirmware-style string
* list.
*/
const struct device_compatible_entry *
device_compatible_plookup_strlist(
const char * const device_compats, size_t const device_compatsize,
const struct device_compatible_entry *driver_compats)
{
const struct device_compatible_entry *dce;
if (device_compatible_match_strlist_internal(device_compats,
device_compatsize, driver_compats, &dce, strlist_pmatch)) {
return dce;
}
return NULL;
}
/*
* device_compatible_lookup_id:
*
* Like device_compatible_lookup(), but takes a single
* unsigned integer device ID.
*/
const struct device_compatible_entry *
device_compatible_lookup_id(
uintptr_t const id, uintptr_t const sentinel_id,
const struct device_compatible_entry *driver_compats)
{
const struct device_compatible_entry *dce;
if (device_compatible_match_id_internal(id, (uintptr_t)-1,
sentinel_id, driver_compats, &dce)) {
return dce;
}
return NULL;
}
/*
* Power management related functions.
*/
bool
device_pmf_is_registered(device_t dev)
{
return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
}
bool
device_pmf_driver_suspend(device_t dev, const pmf_qual_t *qual)
{
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
return true;
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
return false;
if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
dev->dv_driver_suspend != NULL &&
!(*dev->dv_driver_suspend)(dev, qual))
return false;
dev->dv_flags |= DVF_DRIVER_SUSPENDED;
return true;
}
bool
device_pmf_driver_resume(device_t dev, const pmf_qual_t *qual)
{
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
return true;
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
return false;
if (pmf_qual_depth(qual) <= DEVACT_LEVEL_DRIVER &&
dev->dv_driver_resume != NULL &&
!(*dev->dv_driver_resume)(dev, qual))
return false;
dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
return true;
}
bool
device_pmf_driver_shutdown(device_t dev, int how)
{
if (*dev->dv_driver_shutdown != NULL &&
!(*dev->dv_driver_shutdown)(dev, how))
return false;
return true;
}
void
device_pmf_driver_register(device_t dev,
bool (*suspend)(device_t, const pmf_qual_t *),
bool (*resume)(device_t, const pmf_qual_t *),
bool (*shutdown)(device_t, int))
{
dev->dv_driver_suspend = suspend;
dev->dv_driver_resume = resume;
dev->dv_driver_shutdown = shutdown;
dev->dv_flags |= DVF_POWER_HANDLERS;
}
void
device_pmf_driver_deregister(device_t dev)
{
device_lock_t dvl = device_getlock(dev);
dev->dv_driver_suspend = NULL;
dev->dv_driver_resume = NULL;
mutex_enter(&dvl->dvl_mtx);
dev->dv_flags &= ~DVF_POWER_HANDLERS;
while (dvl->dvl_nlock > 0 || dvl->dvl_nwait > 0) {
/* Wake a thread that waits for the lock. That
* thread will fail to acquire the lock, and then
* it will wake the next thread that waits for the
* lock, or else it will wake us.
*/
cv_signal(&dvl->dvl_cv);
pmflock_debug(dev, __func__, __LINE__);
cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
pmflock_debug(dev, __func__, __LINE__);
}
mutex_exit(&dvl->dvl_mtx);
}
void
device_pmf_driver_child_register(device_t dev)
{
device_t parent = device_parent(dev);
if (parent == NULL || parent->dv_driver_child_register == NULL)
return;
(*parent->dv_driver_child_register)(dev);
}
void
device_pmf_driver_set_child_register(device_t dev,
void (*child_register)(device_t))
{
dev->dv_driver_child_register = child_register;
}
static void
pmflock_debug(device_t dev, const char *func, int line)
{
#ifdef PMFLOCK_DEBUG
device_lock_t dvl = device_getlock(dev);
const char *curlwp_name;
if (curlwp->l_name != NULL)
curlwp_name = curlwp->l_name;
else
curlwp_name = curlwp->l_proc->p_comm;
aprint_debug_dev(dev,
"%s.%d, %s dvl_nlock %d dvl_nwait %d dv_flags %x\n", func, line,
curlwp_name, dvl->dvl_nlock, dvl->dvl_nwait, dev->dv_flags);
#endif /* PMFLOCK_DEBUG */
}
static bool
device_pmf_lock1(device_t dev)
{
device_lock_t dvl = device_getlock(dev);
while (device_pmf_is_registered(dev) &&
dvl->dvl_nlock > 0 && dvl->dvl_holder != curlwp) {
dvl->dvl_nwait++;
pmflock_debug(dev, __func__, __LINE__);
cv_wait(&dvl->dvl_cv, &dvl->dvl_mtx);
pmflock_debug(dev, __func__, __LINE__);
dvl->dvl_nwait--;
}
if (!device_pmf_is_registered(dev)) {
pmflock_debug(dev, __func__, __LINE__);
/* We could not acquire the lock, but some other thread may
* wait for it, also. Wake that thread.
*/
cv_signal(&dvl->dvl_cv);
return false;
}
dvl->dvl_nlock++;
dvl->dvl_holder = curlwp;
pmflock_debug(dev, __func__, __LINE__);
return true;
}
bool
device_pmf_lock(device_t dev)
{
bool rc;
device_lock_t dvl = device_getlock(dev);
mutex_enter(&dvl->dvl_mtx);
rc = device_pmf_lock1(dev);
mutex_exit(&dvl->dvl_mtx);
return rc;
}
void
device_pmf_unlock(device_t dev)
{
device_lock_t dvl = device_getlock(dev);
KASSERT(dvl->dvl_nlock > 0);
mutex_enter(&dvl->dvl_mtx);
if (--dvl->dvl_nlock == 0)
dvl->dvl_holder = NULL;
cv_signal(&dvl->dvl_cv);
pmflock_debug(dev, __func__, __LINE__);
mutex_exit(&dvl->dvl_mtx);
}
device_lock_t
device_getlock(device_t dev)
{
return &dev->dv_lock;
}
void *
device_pmf_bus_private(device_t dev)
{
return dev->dv_bus_private;
}
bool
device_pmf_bus_suspend(device_t dev, const pmf_qual_t *qual)
{
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
return true;
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
(dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
return false;
if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
dev->dv_bus_suspend != NULL &&
!(*dev->dv_bus_suspend)(dev, qual))
return false;
dev->dv_flags |= DVF_BUS_SUSPENDED;
return true;
}
bool
device_pmf_bus_resume(device_t dev, const pmf_qual_t *qual)
{
if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
return true;
if (pmf_qual_depth(qual) <= DEVACT_LEVEL_BUS &&
dev->dv_bus_resume != NULL &&
!(*dev->dv_bus_resume)(dev, qual))
return false;
dev->dv_flags &= ~DVF_BUS_SUSPENDED;
return true;
}
bool
device_pmf_bus_shutdown(device_t dev, int how)
{
if (*dev->dv_bus_shutdown != NULL &&
!(*dev->dv_bus_shutdown)(dev, how))
return false;
return true;
}
void
device_pmf_bus_register(device_t dev, void *priv,
bool (*suspend)(device_t, const pmf_qual_t *),
bool (*resume)(device_t, const pmf_qual_t *),
bool (*shutdown)(device_t, int), void (*deregister)(device_t))
{
dev->dv_bus_private = priv;
dev->dv_bus_resume = resume;
dev->dv_bus_suspend = suspend;
dev->dv_bus_shutdown = shutdown;
dev->dv_bus_deregister = deregister;
}
void
device_pmf_bus_deregister(device_t dev)
{
if (dev->dv_bus_deregister == NULL)
return;
(*dev->dv_bus_deregister)(dev);
dev->dv_bus_private = NULL;
dev->dv_bus_suspend = NULL;
dev->dv_bus_resume = NULL;
dev->dv_bus_deregister = NULL;
}
void *
device_pmf_class_private(device_t dev)
{
return dev->dv_class_private;
}
bool
device_pmf_class_suspend(device_t dev, const pmf_qual_t *qual)
{
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
return true;
if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
dev->dv_class_suspend != NULL &&
!(*dev->dv_class_suspend)(dev, qual))
return false;
dev->dv_flags |= DVF_CLASS_SUSPENDED;
return true;
}
bool
device_pmf_class_resume(device_t dev, const pmf_qual_t *qual)
{
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
return true;
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
(dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
return false;
if (pmf_qual_depth(qual) <= DEVACT_LEVEL_CLASS &&
dev->dv_class_resume != NULL &&
!(*dev->dv_class_resume)(dev, qual))
return false;
dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
return true;
}
void
device_pmf_class_register(device_t dev, void *priv,
bool (*suspend)(device_t, const pmf_qual_t *),
bool (*resume)(device_t, const pmf_qual_t *),
void (*deregister)(device_t))
{
dev->dv_class_private = priv;
dev->dv_class_suspend = suspend;
dev->dv_class_resume = resume;
dev->dv_class_deregister = deregister;
}
void
device_pmf_class_deregister(device_t dev)
{
if (dev->dv_class_deregister == NULL)
return;
(*dev->dv_class_deregister)(dev);
dev->dv_class_private = NULL;
dev->dv_class_suspend = NULL;
dev->dv_class_resume = NULL;
dev->dv_class_deregister = NULL;
}
bool
device_active(device_t dev, devactive_t type)
{
size_t i;
if (dev->dv_activity_count == 0)
return false;
for (i = 0; i < dev->dv_activity_count; ++i) {
if (dev->dv_activity_handlers[i] == NULL)
break;
(*dev->dv_activity_handlers[i])(dev, type);
}
return true;
}
bool
device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
{
void (**new_handlers)(device_t, devactive_t);
void (**old_handlers)(device_t, devactive_t);
size_t i, old_size, new_size;
int s;
old_handlers = dev->dv_activity_handlers;
old_size = dev->dv_activity_count;
KASSERT(old_size == 0 || old_handlers != NULL);
for (i = 0; i < old_size; ++i) {
KASSERT(old_handlers[i] != handler);
if (old_handlers[i] == NULL) {
old_handlers[i] = handler;
return true;
}
}
new_size = old_size + 4;
new_handlers = kmem_alloc(sizeof(void *) * new_size, KM_SLEEP);
for (i = 0; i < old_size; ++i)
new_handlers[i] = old_handlers[i];
new_handlers[old_size] = handler;
for (i = old_size+1; i < new_size; ++i)
new_handlers[i] = NULL;
s = splhigh();
dev->dv_activity_count = new_size;
dev->dv_activity_handlers = new_handlers;
splx(s);
if (old_size > 0)
kmem_free(old_handlers, sizeof(void *) * old_size);
return true;
}
void
device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
{
void (**old_handlers)(device_t, devactive_t);
size_t i, old_size;
int s;
old_handlers = dev->dv_activity_handlers;
old_size = dev->dv_activity_count;
for (i = 0; i < old_size; ++i) {
if (old_handlers[i] == handler)
break;
if (old_handlers[i] == NULL)
return; /* XXX panic? */
}
if (i == old_size)
return; /* XXX panic? */
for (; i < old_size - 1; ++i) {
if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
continue;
if (i == 0) {
s = splhigh();
dev->dv_activity_count = 0;
dev->dv_activity_handlers = NULL;
splx(s);
kmem_free(old_handlers, sizeof(void *) * old_size);
}
return;
}
old_handlers[i] = NULL;
}
/* Return true iff the device_t `dev' exists at generation `gen'. */
static bool
device_exists_at(device_t dv, devgen_t gen)
{
return (dv->dv_del_gen == 0 || dv->dv_del_gen > gen) &&
dv->dv_add_gen <= gen;
}
static bool
deviter_visits(const deviter_t *di, device_t dv)
{
return device_exists_at(dv, di->di_gen);
}
/*
* Device Iteration
*
* deviter_t: a device iterator. Holds state for a "walk" visiting
* each device_t's in the device tree.
*
* deviter_init(di, flags): initialize the device iterator `di'
* to "walk" the device tree. deviter_next(di) will return
* the first device_t in the device tree, or NULL if there are
* no devices.
*
* `flags' is one or more of DEVITER_F_RW, indicating that the
* caller intends to modify the device tree by calling
* config_detach(9) on devices in the order that the iterator
* returns them; DEVITER_F_ROOT_FIRST, asking for the devices
* nearest the "root" of the device tree to be returned, first;
* DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
* the root of the device tree, first; and DEVITER_F_SHUTDOWN,
* indicating both that deviter_init() should not respect any
* locks on the device tree, and that deviter_next(di) may run
* in more than one LWP before the walk has finished.
*
* Only one DEVITER_F_RW iterator may be in the device tree at
* once.
*
* DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
*
* Results are undefined if the flags DEVITER_F_ROOT_FIRST and
* DEVITER_F_LEAVES_FIRST are used in combination.
*
* deviter_first(di, flags): initialize the device iterator `di'
* and return the first device_t in the device tree, or NULL
* if there are no devices. The statement
*
* dv = deviter_first(di);
*
* is shorthand for
*
* deviter_init(di);
* dv = deviter_next(di);
*
* deviter_next(di): return the next device_t in the device tree,
* or NULL if there are no more devices. deviter_next(di)
* is undefined if `di' was not initialized with deviter_init() or
* deviter_first().
*
* deviter_release(di): stops iteration (subsequent calls to
* deviter_next() will return NULL), releases any locks and
* resources held by the device iterator.
*
* Device iteration does not return device_t's in any particular
* order. An iterator will never return the same device_t twice.
* Device iteration is guaranteed to complete---i.e., if deviter_next(di)
* is called repeatedly on the same `di', it will eventually return
* NULL. It is ok to attach/detach devices during device iteration.
*/
void
deviter_init(deviter_t *di, deviter_flags_t flags)
{
device_t dv;
memset(di, 0, sizeof(*di));
if ((flags & DEVITER_F_SHUTDOWN) != 0)
flags |= DEVITER_F_RW;
mutex_enter(&alldevs_lock);
if ((flags & DEVITER_F_RW) != 0)
alldevs_nwrite++;
else
alldevs_nread++;
di->di_gen = alldevs_gen++;
di->di_flags = flags;
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
case DEVITER_F_LEAVES_FIRST:
TAILQ_FOREACH(dv, &alldevs, dv_list) {
if (!deviter_visits(di, dv))
continue;
di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
}
break;
case DEVITER_F_ROOT_FIRST:
TAILQ_FOREACH(dv, &alldevs, dv_list) {
if (!deviter_visits(di, dv))
continue;
di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
}
break;
default:
break;
}
deviter_reinit(di);
mutex_exit(&alldevs_lock);
}
static void
deviter_reinit(deviter_t *di)
{
KASSERT(mutex_owned(&alldevs_lock));
if ((di->di_flags & DEVITER_F_RW) != 0)
di->di_prev = TAILQ_LAST(&alldevs, devicelist);
else
di->di_prev = TAILQ_FIRST(&alldevs);
}
device_t
deviter_first(deviter_t *di, deviter_flags_t flags)
{
deviter_init(di, flags);
return deviter_next(di);
}
static device_t
deviter_next2(deviter_t *di)
{
device_t dv;
KASSERT(mutex_owned(&alldevs_lock));
dv = di->di_prev;
if (dv == NULL)
return NULL;
if ((di->di_flags & DEVITER_F_RW) != 0)
di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
else
di->di_prev = TAILQ_NEXT(dv, dv_list);
return dv;
}
static device_t
deviter_next1(deviter_t *di)
{
device_t dv;
KASSERT(mutex_owned(&alldevs_lock));
do {
dv = deviter_next2(di);
} while (dv != NULL && !deviter_visits(di, dv));
return dv;
}
device_t
deviter_next(deviter_t *di)
{
device_t dv = NULL;
mutex_enter(&alldevs_lock);
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
case 0:
dv = deviter_next1(di);
break;
case DEVITER_F_LEAVES_FIRST:
while (di->di_curdepth >= 0) {
if ((dv = deviter_next1(di)) == NULL) {
di->di_curdepth--;
deviter_reinit(di);
} else if (dv->dv_depth == di->di_curdepth)
break;
}
break;
case DEVITER_F_ROOT_FIRST:
while (di->di_curdepth <= di->di_maxdepth) {
if ((dv = deviter_next1(di)) == NULL) {
di->di_curdepth++;
deviter_reinit(di);
} else if (dv->dv_depth == di->di_curdepth)
break;
}
break;
default:
break;
}
mutex_exit(&alldevs_lock);
return dv;
}
void
deviter_release(deviter_t *di)
{
bool rw = (di->di_flags & DEVITER_F_RW) != 0;
mutex_enter(&alldevs_lock);
if (rw)
--alldevs_nwrite;
else
--alldevs_nread;
/* XXX wake a garbage-collection thread */
mutex_exit(&alldevs_lock);
}
const char *
cfdata_ifattr(const struct cfdata *cf)
{
return cf->cf_pspec->cfp_iattr;
}
bool
ifattr_match(const char *snull, const char *t)
{
return (snull == NULL) || strcmp(snull, t) == 0;
}
void
null_childdetached(device_t self, device_t child)
{
/* do nothing */
}
static void
sysctl_detach_setup(struct sysctllog **clog)
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT | CTLFLAG_READWRITE,
CTLTYPE_BOOL, "detachall",
SYSCTL_DESCR("Detach all devices at shutdown"),
NULL, 0, &detachall, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
}