NetBSD/sys/kern/kern_lwp.c

2212 lines
53 KiB
C

/* $NetBSD: kern_lwp.c,v 1.269 2023/12/20 21:03:50 andvar Exp $ */
/*-
* Copyright (c) 2001, 2006, 2007, 2008, 2009, 2019, 2020, 2023
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Nathan J. Williams, and Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Overview
*
* Lightweight processes (LWPs) are the basic unit or thread of
* execution within the kernel. The core state of an LWP is described
* by "struct lwp", also known as lwp_t.
*
* Each LWP is contained within a process (described by "struct proc"),
* Every process contains at least one LWP, but may contain more. The
* process describes attributes shared among all of its LWPs such as a
* private address space, global execution state (stopped, active,
* zombie, ...), signal disposition and so on. On a multiprocessor
* machine, multiple LWPs be executing concurrently in the kernel.
*
* Execution states
*
* At any given time, an LWP has overall state that is described by
* lwp::l_stat. The states are broken into two sets below. The first
* set is guaranteed to represent the absolute, current state of the
* LWP:
*
* LSONPROC
*
* On processor: the LWP is executing on a CPU, either in the
* kernel or in user space.
*
* LSRUN
*
* Runnable: the LWP is parked on a run queue, and may soon be
* chosen to run by an idle processor, or by a processor that
* has been asked to preempt a currently running but lower
* priority LWP.
*
* LSIDL
*
* Idle: the LWP has been created but has not yet executed, or
* it has ceased executing a unit of work and is waiting to be
* started again. This state exists so that the LWP can occupy
* a slot in the process & PID table, but without having to
* worry about being touched; lookups of the LWP by ID will
* fail while in this state. The LWP will become visible for
* lookup once its state transitions further. Some special
* kernel threads also (ab)use this state to indicate that they
* are idle (soft interrupts and idle LWPs).
*
* LSSUSPENDED:
*
* Suspended: the LWP has had its execution suspended by
* another LWP in the same process using the _lwp_suspend()
* system call. User-level LWPs also enter the suspended
* state when the system is shutting down.
*
* The second set represent a "statement of intent" on behalf of the
* LWP. The LWP may in fact be executing on a processor, may be
* sleeping or idle. It is expected to take the necessary action to
* stop executing or become "running" again within a short timeframe.
* The LP_RUNNING flag in lwp::l_pflag indicates that an LWP is running.
* Importantly, it indicates that its state is tied to a CPU.
*
* LSZOMB:
*
* Dead or dying: the LWP has released most of its resources
* and is about to switch away into oblivion, or has already
* switched away. When it switches away, its few remaining
* resources can be collected.
*
* LSSLEEP:
*
* Sleeping: the LWP has entered itself onto a sleep queue, and
* has switched away or will switch away shortly to allow other
* LWPs to run on the CPU.
*
* LSSTOP:
*
* Stopped: the LWP has been stopped as a result of a job
* control signal, or as a result of the ptrace() interface.
*
* Stopped LWPs may run briefly within the kernel to handle
* signals that they receive, but will not return to user space
* until their process' state is changed away from stopped.
*
* Single LWPs within a process can not be set stopped
* selectively: all actions that can stop or continue LWPs
* occur at the process level.
*
* State transitions
*
* Note that the LSSTOP state may only be set when returning to
* user space in userret(), or when sleeping interruptably. The
* LSSUSPENDED state may only be set in userret(). Before setting
* those states, we try to ensure that the LWPs will release all
* locks that they hold, and at a minimum try to ensure that the
* LWP can be set runnable again by a signal.
*
* LWPs may transition states in the following ways:
*
* RUN -------> ONPROC ONPROC -----> RUN
* > SLEEP
* > STOPPED
* > SUSPENDED
* > ZOMB
* > IDL (special cases)
*
* STOPPED ---> RUN SUSPENDED --> RUN
* > SLEEP
*
* SLEEP -----> ONPROC IDL --------> RUN
* > RUN > SUSPENDED
* > STOPPED > STOPPED
* > ONPROC (special cases)
*
* Some state transitions are only possible with kernel threads (eg
* ONPROC -> IDL) and happen under tightly controlled circumstances
* free of unwanted side effects.
*
* Migration
*
* Migration of threads from one CPU to another could be performed
* internally by the scheduler via sched_takecpu() or sched_catchlwp()
* functions. The universal lwp_migrate() function should be used for
* any other cases. Subsystems in the kernel must be aware that CPU
* of LWP may change, while it is not locked.
*
* Locking
*
* The majority of fields in 'struct lwp' are covered by a single,
* general spin lock pointed to by lwp::l_mutex. The locks covering
* each field are documented in sys/lwp.h.
*
* State transitions must be made with the LWP's general lock held,
* and may cause the LWP's lock pointer to change. Manipulation of
* the general lock is not performed directly, but through calls to
* lwp_lock(), lwp_unlock() and others. It should be noted that the
* adaptive locks are not allowed to be released while the LWP's lock
* is being held (unlike for other spin-locks).
*
* States and their associated locks:
*
* LSIDL, LSONPROC, LSZOMB, LSSUPENDED:
*
* Always covered by spc_lwplock, which protects LWPs not
* associated with any other sync object. This is a per-CPU
* lock and matches lwp::l_cpu.
*
* LSRUN:
*
* Always covered by spc_mutex, which protects the run queues.
* This is a per-CPU lock and matches lwp::l_cpu.
*
* LSSLEEP:
*
* Covered by a lock associated with the sleep queue (sometimes
* a turnstile sleep queue) that the LWP resides on. This can
* be spc_lwplock for SOBJ_SLEEPQ_NULL (an "untracked" sleep).
*
* LSSTOP:
*
* If the LWP was previously sleeping (l_wchan != NULL), then
* l_mutex references the sleep queue lock. If the LWP was
* runnable or on the CPU when halted, or has been removed from
* the sleep queue since halted, then the lock is spc_lwplock.
*
* The lock order is as follows:
*
* sleepq -> turnstile -> spc_lwplock -> spc_mutex
*
* Each process has a scheduler state lock (proc::p_lock), and a
* number of counters on LWPs and their states: p_nzlwps, p_nrlwps, and
* so on. When an LWP is to be entered into or removed from one of the
* following states, p_lock must be held and the process wide counters
* adjusted:
*
* LSIDL, LSZOMB, LSSTOP, LSSUSPENDED
*
* (But not always for kernel threads. There are some special cases
* as mentioned above: soft interrupts, and the idle loops.)
*
* Note that an LWP is considered running or likely to run soon if in
* one of the following states. This affects the value of p_nrlwps:
*
* LSRUN, LSONPROC, LSSLEEP
*
* p_lock does not need to be held when transitioning among these
* three states, hence p_lock is rarely taken for state transitions.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_lwp.c,v 1.269 2023/12/20 21:03:50 andvar Exp $");
#include "opt_ddb.h"
#include "opt_lockdebug.h"
#include "opt_dtrace.h"
#define _LWP_API_PRIVATE
#include <sys/param.h>
#include <sys/atomic.h>
#include <sys/cprng.h>
#include <sys/cpu.h>
#include <sys/dtrace_bsd.h>
#include <sys/filedesc.h>
#include <sys/fstrans.h>
#include <sys/futex.h>
#include <sys/intr.h>
#include <sys/kauth.h>
#include <sys/kcov.h>
#include <sys/kmem.h>
#include <sys/lockdebug.h>
#include <sys/lwpctl.h>
#include <sys/msan.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/pset.h>
#include <sys/psref.h>
#include <sys/ptrace.h>
#include <sys/sdt.h>
#include <sys/sleepq.h>
#include <sys/syncobj.h>
#include <sys/syscall_stats.h>
#include <sys/syscallargs.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/uidinfo.h>
#include <sys/xcall.h>
#include <uvm/uvm_extern.h>
#include <uvm/uvm_object.h>
static pool_cache_t lwp_cache __read_mostly;
struct lwplist alllwp __cacheline_aligned;
static int lwp_ctor(void *, void *, int);
static void lwp_dtor(void *, void *);
/* DTrace proc provider probes */
SDT_PROVIDER_DEFINE(proc);
SDT_PROBE_DEFINE1(proc, kernel, , lwp__create, "struct lwp *");
SDT_PROBE_DEFINE1(proc, kernel, , lwp__start, "struct lwp *");
SDT_PROBE_DEFINE1(proc, kernel, , lwp__exit, "struct lwp *");
struct turnstile turnstile0 __cacheline_aligned;
struct lwp lwp0 __aligned(MIN_LWP_ALIGNMENT) = {
#ifdef LWP0_CPU_INFO
.l_cpu = LWP0_CPU_INFO,
#endif
#ifdef LWP0_MD_INITIALIZER
.l_md = LWP0_MD_INITIALIZER,
#endif
.l_proc = &proc0,
.l_lid = 0, /* we own proc0's slot in the pid table */
.l_flag = LW_SYSTEM,
.l_stat = LSONPROC,
.l_ts = &turnstile0,
.l_syncobj = &sched_syncobj,
.l_refcnt = 0,
.l_priority = PRI_USER + NPRI_USER - 1,
.l_inheritedprio = -1,
.l_class = SCHED_OTHER,
.l_psid = PS_NONE,
.l_pi_lenders = SLIST_HEAD_INITIALIZER(&lwp0.l_pi_lenders),
.l_name = __UNCONST("swapper"),
.l_fd = &filedesc0,
};
static int
lwp_maxlwp(void)
{
/* Assume 1 LWP per 1MiB. */
uint64_t lwps_per = ctob(physmem) / (1024 * 1024);
return MAX(MIN(MAXMAXLWP, lwps_per), MAXLWP);
}
static int sysctl_kern_maxlwp(SYSCTLFN_PROTO);
/*
* sysctl helper routine for kern.maxlwp. Ensures that the new
* values are not too low or too high.
*/
static int
sysctl_kern_maxlwp(SYSCTLFN_ARGS)
{
int error, nmaxlwp;
struct sysctlnode node;
nmaxlwp = maxlwp;
node = *rnode;
node.sysctl_data = &nmaxlwp;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (nmaxlwp < 0 || nmaxlwp >= MAXMAXLWP)
return EINVAL;
if (nmaxlwp > lwp_maxlwp())
return EINVAL;
maxlwp = nmaxlwp;
return 0;
}
static void
sysctl_kern_lwp_setup(void)
{
sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "maxlwp",
SYSCTL_DESCR("Maximum number of simultaneous threads"),
sysctl_kern_maxlwp, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
}
void
lwpinit(void)
{
LIST_INIT(&alllwp);
lwpinit_specificdata();
/*
* Provide a barrier to ensure that all mutex_oncpu() and rw_oncpu()
* calls will exit before memory of LWPs is returned to the pool, where
* KVA of LWP structure might be freed and re-used for other purposes.
* Kernel preemption is disabled around mutex_oncpu() and rw_oncpu()
* callers, therefore a regular passive serialization barrier will
* do the job.
*/
lwp_cache = pool_cache_init(sizeof(lwp_t), MIN_LWP_ALIGNMENT, 0,
PR_PSERIALIZE, "lwppl", NULL, IPL_NONE, lwp_ctor, lwp_dtor, NULL);
maxlwp = lwp_maxlwp();
sysctl_kern_lwp_setup();
}
void
lwp0_init(void)
{
struct lwp *l = &lwp0;
KASSERT((void *)uvm_lwp_getuarea(l) != NULL);
LIST_INSERT_HEAD(&alllwp, l, l_list);
callout_init(&l->l_timeout_ch, CALLOUT_MPSAFE);
callout_setfunc(&l->l_timeout_ch, sleepq_timeout, l);
cv_init(&l->l_sigcv, "sigwait");
cv_init(&l->l_waitcv, "vfork");
l->l_cred = kauth_cred_hold(proc0.p_cred);
kdtrace_thread_ctor(NULL, l);
lwp_initspecific(l);
SYSCALL_TIME_LWP_INIT(l);
}
/*
* Initialize the non-zeroed portion of an lwp_t.
*/
static int
lwp_ctor(void *arg, void *obj, int flags)
{
lwp_t *l = obj;
l->l_stat = LSIDL;
l->l_cpu = curcpu();
l->l_mutex = l->l_cpu->ci_schedstate.spc_lwplock;
l->l_ts = kmem_alloc(sizeof(*l->l_ts), flags == PR_WAITOK ?
KM_SLEEP : KM_NOSLEEP);
if (l->l_ts == NULL) {
return ENOMEM;
} else {
turnstile_ctor(l->l_ts);
return 0;
}
}
static void
lwp_dtor(void *arg, void *obj)
{
lwp_t *l = obj;
/*
* The value of l->l_cpu must still be valid at this point.
*/
KASSERT(l->l_cpu != NULL);
/*
* We can't return turnstile0 to the pool (it didn't come from it),
* so if it comes up just drop it quietly and move on.
*/
if (l->l_ts != &turnstile0)
kmem_free(l->l_ts, sizeof(*l->l_ts));
}
/*
* Set an LWP suspended.
*
* Must be called with p_lock held, and the LWP locked. Will unlock the
* LWP before return.
*/
int
lwp_suspend(struct lwp *curl, struct lwp *t)
{
int error;
KASSERT(mutex_owned(t->l_proc->p_lock));
KASSERT(lwp_locked(t, NULL));
KASSERT(curl != t || curl->l_stat == LSONPROC);
/*
* If the current LWP has been told to exit, we must not suspend anyone
* else or deadlock could occur. We won't return to userspace.
*/
if ((curl->l_flag & (LW_WEXIT | LW_WCORE)) != 0) {
lwp_unlock(t);
return (EDEADLK);
}
if ((t->l_flag & LW_DBGSUSPEND) != 0) {
lwp_unlock(t);
return 0;
}
error = 0;
switch (t->l_stat) {
case LSRUN:
case LSONPROC:
t->l_flag |= LW_WSUSPEND;
lwp_need_userret(t);
lwp_unlock(t);
break;
case LSSLEEP:
t->l_flag |= LW_WSUSPEND;
lwp_need_userret(t);
/*
* Kick the LWP and try to get it to the kernel boundary
* so that it will release any locks that it holds.
* setrunnable() will release the lock.
*/
if ((t->l_flag & LW_SINTR) != 0)
setrunnable(t);
else
lwp_unlock(t);
break;
case LSSUSPENDED:
lwp_unlock(t);
break;
case LSSTOP:
t->l_flag |= LW_WSUSPEND;
lwp_need_userret(t);
setrunnable(t);
break;
case LSIDL:
case LSZOMB:
error = EINTR; /* It's what Solaris does..... */
lwp_unlock(t);
break;
}
return (error);
}
/*
* Restart a suspended LWP.
*
* Must be called with p_lock held, and the LWP locked. Will unlock the
* LWP before return.
*/
void
lwp_continue(struct lwp *l)
{
KASSERT(mutex_owned(l->l_proc->p_lock));
KASSERT(lwp_locked(l, NULL));
/* If rebooting or not suspended, then just bail out. */
if ((l->l_flag & LW_WREBOOT) != 0) {
lwp_unlock(l);
return;
}
l->l_flag &= ~LW_WSUSPEND;
if (l->l_stat != LSSUSPENDED || (l->l_flag & LW_DBGSUSPEND) != 0) {
lwp_unlock(l);
return;
}
/* setrunnable() will release the lock. */
setrunnable(l);
}
/*
* Restart a stopped LWP.
*
* Must be called with p_lock held, and the LWP NOT locked. Will unlock the
* LWP before return.
*/
void
lwp_unstop(struct lwp *l)
{
struct proc *p = l->l_proc;
KASSERT(mutex_owned(&proc_lock));
KASSERT(mutex_owned(p->p_lock));
lwp_lock(l);
KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
/* If not stopped, then just bail out. */
if (l->l_stat != LSSTOP) {
lwp_unlock(l);
return;
}
p->p_stat = SACTIVE;
p->p_sflag &= ~PS_STOPPING;
if (!p->p_waited)
p->p_pptr->p_nstopchild--;
if (l->l_wchan == NULL) {
/* setrunnable() will release the lock. */
setrunnable(l);
} else if (p->p_xsig && (l->l_flag & LW_SINTR) != 0) {
/* setrunnable() so we can receive the signal */
setrunnable(l);
} else {
l->l_stat = LSSLEEP;
p->p_nrlwps++;
lwp_unlock(l);
}
}
/*
* Wait for an LWP within the current process to exit. If 'lid' is
* non-zero, we are waiting for a specific LWP.
*
* Must be called with p->p_lock held.
*/
int
lwp_wait(struct lwp *l, lwpid_t lid, lwpid_t *departed, bool exiting)
{
const lwpid_t curlid = l->l_lid;
proc_t *p = l->l_proc;
lwp_t *l2, *next;
int error;
KASSERT(mutex_owned(p->p_lock));
p->p_nlwpwait++;
l->l_waitingfor = lid;
for (;;) {
int nfound;
/*
* Avoid a race between exit1() and sigexit(): if the
* process is dumping core, then we need to bail out: call
* into lwp_userret() where we will be suspended until the
* deed is done.
*/
if ((p->p_sflag & PS_WCORE) != 0) {
mutex_exit(p->p_lock);
lwp_userret(l);
KASSERT(false);
}
/*
* First off, drain any detached LWP that is waiting to be
* reaped.
*/
if ((l2 = p->p_zomblwp) != NULL) {
p->p_zomblwp = NULL;
lwp_free(l2, false, false);/* releases proc mutex */
mutex_enter(p->p_lock);
continue;
}
/*
* Now look for an LWP to collect. If the whole process is
* exiting, count detached LWPs as eligible to be collected,
* but don't drain them here.
*/
nfound = 0;
error = 0;
/*
* If given a specific LID, go via pid_table and make sure
* it's not detached.
*/
if (lid != 0) {
l2 = proc_find_lwp(p, lid);
if (l2 == NULL) {
error = ESRCH;
break;
}
KASSERT(l2->l_lid == lid);
if ((l2->l_prflag & LPR_DETACHED) != 0) {
error = EINVAL;
break;
}
} else {
l2 = LIST_FIRST(&p->p_lwps);
}
for (; l2 != NULL; l2 = next) {
next = (lid != 0 ? NULL : LIST_NEXT(l2, l_sibling));
/*
* If a specific wait and the target is waiting on
* us, then avoid deadlock. This also traps LWPs
* that try to wait on themselves.
*
* Note that this does not handle more complicated
* cycles, like: t1 -> t2 -> t3 -> t1. The process
* can still be killed so it is not a major problem.
*/
if (l2->l_lid == lid && l2->l_waitingfor == curlid) {
error = EDEADLK;
break;
}
if (l2 == l)
continue;
if ((l2->l_prflag & LPR_DETACHED) != 0) {
nfound += exiting;
continue;
}
if (lid != 0) {
/*
* Mark this LWP as the first waiter, if there
* is no other.
*/
if (l2->l_waiter == 0)
l2->l_waiter = curlid;
} else if (l2->l_waiter != 0) {
/*
* It already has a waiter - so don't
* collect it. If the waiter doesn't
* grab it we'll get another chance
* later.
*/
nfound++;
continue;
}
nfound++;
/* No need to lock the LWP in order to see LSZOMB. */
if (l2->l_stat != LSZOMB)
continue;
/*
* We're no longer waiting. Reset the "first waiter"
* pointer on the target, in case it was us.
*/
l->l_waitingfor = 0;
l2->l_waiter = 0;
p->p_nlwpwait--;
if (departed)
*departed = l2->l_lid;
sched_lwp_collect(l2);
/* lwp_free() releases the proc lock. */
lwp_free(l2, false, false);
mutex_enter(p->p_lock);
return 0;
}
if (error != 0)
break;
if (nfound == 0) {
error = ESRCH;
break;
}
/*
* Note: since the lock will be dropped, need to restart on
* wakeup to run all LWPs again, e.g. there may be new LWPs.
*/
if (exiting) {
KASSERT(p->p_nlwps > 1);
error = cv_timedwait(&p->p_lwpcv, p->p_lock, 1);
break;
}
/*
* Break out if all LWPs are in _lwp_wait(). There are
* other ways to hang the process with _lwp_wait(), but the
* sleep is interruptable so little point checking for them.
*/
if (p->p_nlwpwait == p->p_nlwps) {
error = EDEADLK;
break;
}
/*
* Sit around and wait for something to happen. We'll be
* awoken if any of the conditions examined change: if an
* LWP exits, is collected, or is detached.
*/
if ((error = cv_wait_sig(&p->p_lwpcv, p->p_lock)) != 0)
break;
}
/*
* We didn't find any LWPs to collect, we may have received a
* signal, or some other condition has caused us to bail out.
*
* If waiting on a specific LWP, clear the waiters marker: some
* other LWP may want it. Then, kick all the remaining waiters
* so that they can re-check for zombies and for deadlock.
*/
if (lid != 0) {
l2 = proc_find_lwp(p, lid);
KASSERT(l2 == NULL || l2->l_lid == lid);
if (l2 != NULL && l2->l_waiter == curlid)
l2->l_waiter = 0;
}
p->p_nlwpwait--;
l->l_waitingfor = 0;
cv_broadcast(&p->p_lwpcv);
return error;
}
/*
* Create a new LWP within process 'p2', using LWP 'l1' as a template.
* The new LWP is created in state LSIDL and must be set running,
* suspended, or stopped by the caller.
*/
int
lwp_create(lwp_t *l1, proc_t *p2, vaddr_t uaddr, int flags,
void *stack, size_t stacksize, void (*func)(void *), void *arg,
lwp_t **rnewlwpp, int sclass, const sigset_t *sigmask,
const stack_t *sigstk)
{
struct lwp *l2;
KASSERT(l1 == curlwp || l1->l_proc == &proc0);
/*
* Enforce limits, excluding the first lwp and kthreads. We must
* use the process credentials here when adjusting the limit, as
* they are what's tied to the accounting entity. However for
* authorizing the action, we'll use the LWP's credentials.
*/
mutex_enter(p2->p_lock);
if (p2->p_nlwps != 0 && p2 != &proc0) {
uid_t uid = kauth_cred_getuid(p2->p_cred);
int count = chglwpcnt(uid, 1);
if (__predict_false(count >
p2->p_rlimit[RLIMIT_NTHR].rlim_cur)) {
if (kauth_authorize_process(l1->l_cred,
KAUTH_PROCESS_RLIMIT, p2,
KAUTH_ARG(KAUTH_REQ_PROCESS_RLIMIT_BYPASS),
&p2->p_rlimit[RLIMIT_NTHR], KAUTH_ARG(RLIMIT_NTHR))
!= 0) {
(void)chglwpcnt(uid, -1);
mutex_exit(p2->p_lock);
return EAGAIN;
}
}
}
/*
* First off, reap any detached LWP waiting to be collected.
* We can re-use its LWP structure and turnstile.
*/
if ((l2 = p2->p_zomblwp) != NULL) {
p2->p_zomblwp = NULL;
lwp_free(l2, true, false);
/* p2 now unlocked by lwp_free() */
KASSERT(l2->l_ts != NULL);
KASSERT(l2->l_inheritedprio == -1);
KASSERT(SLIST_EMPTY(&l2->l_pi_lenders));
memset(&l2->l_startzero, 0, sizeof(*l2) -
offsetof(lwp_t, l_startzero));
} else {
mutex_exit(p2->p_lock);
l2 = pool_cache_get(lwp_cache, PR_WAITOK);
memset(&l2->l_startzero, 0, sizeof(*l2) -
offsetof(lwp_t, l_startzero));
SLIST_INIT(&l2->l_pi_lenders);
}
/*
* Because of lockless lookup via pid_table, the LWP can be locked
* and inspected briefly even after it's freed, so a few fields are
* kept stable.
*/
KASSERT(l2->l_stat == LSIDL);
KASSERT(l2->l_cpu != NULL);
KASSERT(l2->l_ts != NULL);
KASSERT(l2->l_mutex == l2->l_cpu->ci_schedstate.spc_lwplock);
l2->l_proc = p2;
l2->l_refcnt = 0;
l2->l_class = sclass;
/*
* Allocate a process ID for this LWP. We need to do this now
* while we can still unwind if it fails. Because we're marked
* as LSIDL, no lookups by the ID will succeed.
*
* N.B. this will always succeed for the first LWP in a process,
* because proc_alloc_lwpid() will usurp the slot. Also note
* that l2->l_proc MUST be valid so that lookups of the proc
* will succeed, even if the LWP itself is not visible.
*/
if (__predict_false(proc_alloc_lwpid(p2, l2) == -1)) {
pool_cache_put(lwp_cache, l2);
return EAGAIN;
}
/*
* If vfork(), we want the LWP to run fast and on the same CPU
* as its parent, so that it can reuse the VM context and cache
* footprint on the local CPU.
*/
l2->l_boostpri = ((flags & LWP_VFORK) ? PRI_KERNEL : PRI_USER);
l2->l_priority = l1->l_priority;
l2->l_inheritedprio = -1;
l2->l_protectprio = -1;
l2->l_auxprio = -1;
l2->l_flag = 0;
l2->l_pflag = LP_MPSAFE;
TAILQ_INIT(&l2->l_ld_locks);
l2->l_psrefs = 0;
kmsan_lwp_alloc(l2);
/*
* For vfork, borrow parent's lwpctl context if it exists.
* This also causes us to return via lwp_userret.
*/
if (flags & LWP_VFORK && l1->l_lwpctl) {
l2->l_lwpctl = l1->l_lwpctl;
l2->l_flag |= LW_LWPCTL;
}
/*
* If not the first LWP in the process, grab a reference to the
* descriptor table.
*/
l2->l_fd = p2->p_fd;
if (p2->p_nlwps != 0) {
KASSERT(l1->l_proc == p2);
fd_hold(l2);
} else {
KASSERT(l1->l_proc != p2);
}
if (p2->p_flag & PK_SYSTEM) {
/* Mark it as a system LWP. */
l2->l_flag |= LW_SYSTEM;
}
kdtrace_thread_ctor(NULL, l2);
lwp_initspecific(l2);
sched_lwp_fork(l1, l2);
callout_init(&l2->l_timeout_ch, CALLOUT_MPSAFE);
callout_setfunc(&l2->l_timeout_ch, sleepq_timeout, l2);
cv_init(&l2->l_sigcv, "sigwait");
cv_init(&l2->l_waitcv, "vfork");
l2->l_syncobj = &sched_syncobj;
PSREF_DEBUG_INIT_LWP(l2);
if (rnewlwpp != NULL)
*rnewlwpp = l2;
/*
* PCU state needs to be saved before calling uvm_lwp_fork() so that
* the MD cpu_lwp_fork() can copy the saved state to the new LWP.
*/
pcu_save_all(l1);
#if PCU_UNIT_COUNT > 0
l2->l_pcu_valid = l1->l_pcu_valid;
#endif
uvm_lwp_setuarea(l2, uaddr);
uvm_lwp_fork(l1, l2, stack, stacksize, func, (arg != NULL) ? arg : l2);
mutex_enter(p2->p_lock);
l2->l_cred = kauth_cred_hold(p2->p_cred);
if ((flags & LWP_DETACHED) != 0) {
l2->l_prflag = LPR_DETACHED;
p2->p_ndlwps++;
} else
l2->l_prflag = 0;
if (l1->l_proc == p2) {
/*
* These flags are set while p_lock is held. Copy with
* p_lock held too, so the LWP doesn't sneak into the
* process without them being set.
*/
l2->l_flag |= (l1->l_flag & (LW_WEXIT | LW_WREBOOT | LW_WCORE));
} else {
/* fork(): pending core/exit doesn't apply to child. */
l2->l_flag |= (l1->l_flag & LW_WREBOOT);
}
l2->l_sigstk = *sigstk;
l2->l_sigmask = *sigmask;
TAILQ_INIT(&l2->l_sigpend.sp_info);
sigemptyset(&l2->l_sigpend.sp_set);
LIST_INSERT_HEAD(&p2->p_lwps, l2, l_sibling);
p2->p_nlwps++;
p2->p_nrlwps++;
KASSERT(l2->l_affinity == NULL);
/* Inherit the affinity mask. */
if (l1->l_affinity) {
/*
* Note that we hold the state lock while inheriting
* the affinity to avoid race with sched_setaffinity().
*/
lwp_lock(l1);
if (l1->l_affinity) {
kcpuset_use(l1->l_affinity);
l2->l_affinity = l1->l_affinity;
}
lwp_unlock(l1);
}
/* Ensure a trip through lwp_userret() if needed. */
if ((l2->l_flag & LW_USERRET) != 0) {
lwp_need_userret(l2);
}
/* This marks the end of the "must be atomic" section. */
mutex_exit(p2->p_lock);
SDT_PROBE(proc, kernel, , lwp__create, l2, 0, 0, 0, 0);
mutex_enter(&proc_lock);
LIST_INSERT_HEAD(&alllwp, l2, l_list);
/* Inherit a processor-set */
l2->l_psid = l1->l_psid;
mutex_exit(&proc_lock);
SYSCALL_TIME_LWP_INIT(l2);
if (p2->p_emul->e_lwp_fork)
(*p2->p_emul->e_lwp_fork)(l1, l2);
return (0);
}
/*
* Set a new LWP running. If the process is stopping, then the LWP is
* created stopped.
*/
void
lwp_start(lwp_t *l, int flags)
{
proc_t *p = l->l_proc;
mutex_enter(p->p_lock);
lwp_lock(l);
KASSERT(l->l_stat == LSIDL);
if ((flags & LWP_SUSPENDED) != 0) {
/* It'll suspend itself in lwp_userret(). */
l->l_flag |= LW_WSUSPEND;
lwp_need_userret(l);
}
if (p->p_stat == SSTOP || (p->p_sflag & PS_STOPPING) != 0) {
KASSERT(l->l_wchan == NULL);
l->l_stat = LSSTOP;
p->p_nrlwps--;
lwp_unlock(l);
} else {
setrunnable(l);
/* LWP now unlocked */
}
mutex_exit(p->p_lock);
}
/*
* Called by MD code when a new LWP begins execution. Must be called
* with the previous LWP locked (so at splsched), or if there is no
* previous LWP, at splsched.
*/
void
lwp_startup(struct lwp *prev, struct lwp *new_lwp)
{
kmutex_t *lock;
KASSERTMSG(new_lwp == curlwp, "l %p curlwp %p prevlwp %p", new_lwp, curlwp, prev);
KASSERT(kpreempt_disabled());
KASSERT(prev != NULL);
KASSERT((prev->l_pflag & LP_RUNNING) != 0);
KASSERT(curcpu()->ci_mtx_count == -2);
/*
* Immediately mark the previous LWP as no longer running and
* unlock (to keep lock wait times short as possible). If a
* zombie, don't touch after clearing LP_RUNNING as it could be
* reaped by another CPU. Use atomic_store_release to ensure
* this -- matches atomic_load_acquire in lwp_free.
*/
lock = prev->l_mutex;
if (__predict_false(prev->l_stat == LSZOMB)) {
atomic_store_release(&prev->l_pflag,
prev->l_pflag & ~LP_RUNNING);
} else {
prev->l_pflag &= ~LP_RUNNING;
}
mutex_spin_exit(lock);
/* Correct spin mutex count after mi_switch(). */
curcpu()->ci_mtx_count = 0;
/* Install new VM context. */
if (__predict_true(new_lwp->l_proc->p_vmspace)) {
pmap_activate(new_lwp);
}
/* We remain at IPL_SCHED from mi_switch() - reset it. */
spl0();
LOCKDEBUG_BARRIER(NULL, 0);
SDT_PROBE(proc, kernel, , lwp__start, new_lwp, 0, 0, 0, 0);
/* For kthreads, acquire kernel lock if not MPSAFE. */
if (__predict_false((new_lwp->l_pflag & LP_MPSAFE) == 0)) {
KERNEL_LOCK(1, new_lwp);
}
}
/*
* Exit an LWP.
*
* *** WARNING *** This can be called with (l != curlwp) in error paths.
*/
void
lwp_exit(struct lwp *l)
{
struct proc *p = l->l_proc;
struct lwp *l2;
bool current;
current = (l == curlwp);
KASSERT(current || l->l_stat == LSIDL);
KASSERT(current || l->l_target_cpu == NULL);
KASSERT(p == curproc);
SDT_PROBE(proc, kernel, , lwp__exit, l, 0, 0, 0, 0);
/* Verify that we hold no locks; for DIAGNOSTIC check kernel_lock. */
LOCKDEBUG_BARRIER(NULL, 0);
KASSERTMSG(curcpu()->ci_biglock_count == 0, "kernel_lock leaked");
/*
* If we are the last live LWP in a process, we need to exit the
* entire process. We do so with an exit status of zero, because
* it's a "controlled" exit, and because that's what Solaris does.
*
* We are not quite a zombie yet, but for accounting purposes we
* must increment the count of zombies here.
*
* Note: the last LWP's specificdata will be deleted here.
*/
mutex_enter(p->p_lock);
if (p->p_nlwps - p->p_nzlwps == 1) {
KASSERT(current == true);
KASSERT(p != &proc0);
exit1(l, 0, 0);
/* NOTREACHED */
}
p->p_nzlwps++;
/*
* Perform any required thread cleanup. Do this early so
* anyone wanting to look us up with lwp_getref_lwpid() will
* fail to find us before we become a zombie.
*
* N.B. this will unlock p->p_lock on our behalf.
*/
lwp_thread_cleanup(l);
if (p->p_emul->e_lwp_exit)
(*p->p_emul->e_lwp_exit)(l);
/* Drop filedesc reference. */
fd_free();
/* Release fstrans private data. */
fstrans_lwp_dtor(l);
/* Delete the specificdata while it's still safe to sleep. */
lwp_finispecific(l);
/*
* Release our cached credentials.
*/
kauth_cred_free(l->l_cred);
callout_destroy(&l->l_timeout_ch);
/*
* If traced, report LWP exit event to the debugger.
*
* Remove the LWP from the global list.
* Free its LID from the PID namespace if needed.
*/
mutex_enter(&proc_lock);
if ((p->p_slflag & (PSL_TRACED|PSL_TRACELWP_EXIT)) ==
(PSL_TRACED|PSL_TRACELWP_EXIT)) {
mutex_enter(p->p_lock);
if (ISSET(p->p_sflag, PS_WEXIT)) {
mutex_exit(p->p_lock);
/*
* We are exiting, bail out without informing parent
* about a terminating LWP as it would deadlock.
*/
} else {
eventswitch(TRAP_LWP, PTRACE_LWP_EXIT, l->l_lid);
mutex_enter(&proc_lock);
}
}
LIST_REMOVE(l, l_list);
mutex_exit(&proc_lock);
/*
* Get rid of all references to the LWP that others (e.g. procfs)
* may have, and mark the LWP as a zombie. If the LWP is detached,
* mark it waiting for collection in the proc structure. Note that
* before we can do that, we need to free any other dead, detached
* LWP waiting to meet its maker.
*
* All conditions need to be observed upon under the same hold of
* p_lock, because if the lock is dropped any of them can change.
*/
mutex_enter(p->p_lock);
for (;;) {
if (lwp_drainrefs(l))
continue;
if ((l->l_prflag & LPR_DETACHED) != 0) {
if ((l2 = p->p_zomblwp) != NULL) {
p->p_zomblwp = NULL;
lwp_free(l2, false, false);
/* proc now unlocked */
mutex_enter(p->p_lock);
continue;
}
p->p_zomblwp = l;
}
break;
}
/*
* If we find a pending signal for the process and we have been
* asked to check for signals, then we lose: arrange to have
* all other LWPs in the process check for signals.
*/
if ((l->l_flag & LW_PENDSIG) != 0 &&
firstsig(&p->p_sigpend.sp_set) != 0) {
LIST_FOREACH(l2, &p->p_lwps, l_sibling) {
lwp_lock(l2);
signotify(l2);
lwp_unlock(l2);
}
}
/*
* Release any PCU resources before becoming a zombie.
*/
pcu_discard_all(l);
lwp_lock(l);
l->l_stat = LSZOMB;
if (l->l_name != NULL) {
strcpy(l->l_name, "(zombie)");
}
lwp_unlock(l);
p->p_nrlwps--;
if (l->l_lwpctl != NULL)
l->l_lwpctl->lc_curcpu = LWPCTL_CPU_EXITED;
mutex_exit(p->p_lock);
cv_broadcast(&p->p_lwpcv);
/*
* We can no longer block. At this point, lwp_free() may already
* be gunning for us. On a multi-CPU system, we may be off p_lwps.
*
* Free MD LWP resources.
*/
cpu_lwp_free(l, 0);
if (current) {
/* Switch away into oblivion. */
lwp_lock(l);
spc_lock(l->l_cpu);
mi_switch(l);
panic("lwp_exit");
}
}
/*
* Free a dead LWP's remaining resources.
*
* XXXLWP limits.
*/
void
lwp_free(struct lwp *l, bool recycle, bool last)
{
struct proc *p = l->l_proc;
struct rusage *ru;
ksiginfoq_t kq;
KASSERT(l != curlwp);
KASSERT(last || mutex_owned(p->p_lock));
/*
* We use the process credentials instead of the lwp credentials here
* because the lwp credentials maybe cached (just after a setuid call)
* and we don't want pay for syncing, since the lwp is going away
* anyway
*/
if (p != &proc0 && p->p_nlwps != 1)
(void)chglwpcnt(kauth_cred_getuid(p->p_cred), -1);
/*
* In the unlikely event that the LWP is still on the CPU,
* then spin until it has switched away.
*
* atomic_load_acquire matches atomic_store_release in
* lwp_startup and mi_switch.
*/
while (__predict_false((atomic_load_acquire(&l->l_pflag) & LP_RUNNING)
!= 0)) {
SPINLOCK_BACKOFF_HOOK;
}
/*
* Now that the LWP's known off the CPU, reset its state back to
* LSIDL, which defeats anything that might have gotten a hold on
* the LWP via pid_table before the ID was freed. It's important
* to do this with both the LWP locked and p_lock held.
*
* Also reset the CPU and lock pointer back to curcpu(), since the
* LWP will in all likelyhood be cached with the current CPU in
* lwp_cache when we free it and later allocated from there again
* (avoid incidental lock contention).
*/
lwp_lock(l);
l->l_stat = LSIDL;
l->l_cpu = curcpu();
lwp_unlock_to(l, l->l_cpu->ci_schedstate.spc_lwplock);
/*
* If this was not the last LWP in the process, then adjust counters
* and unlock. This is done differently for the last LWP in exit1().
*/
if (!last) {
/*
* Add the LWP's run time to the process' base value.
* This needs to co-incide with coming off p_lwps.
*/
bintime_add(&p->p_rtime, &l->l_rtime);
p->p_pctcpu += l->l_pctcpu;
ru = &p->p_stats->p_ru;
ruadd(ru, &l->l_ru);
LIST_REMOVE(l, l_sibling);
p->p_nlwps--;
p->p_nzlwps--;
if ((l->l_prflag & LPR_DETACHED) != 0)
p->p_ndlwps--;
mutex_exit(p->p_lock);
/*
* Have any LWPs sleeping in lwp_wait() recheck for
* deadlock.
*/
cv_broadcast(&p->p_lwpcv);
/* Free the LWP ID. */
mutex_enter(&proc_lock);
proc_free_lwpid(p, l->l_lid);
mutex_exit(&proc_lock);
}
/*
* Destroy the LWP's remaining signal information.
*/
ksiginfo_queue_init(&kq);
sigclear(&l->l_sigpend, NULL, &kq);
ksiginfo_queue_drain(&kq);
cv_destroy(&l->l_sigcv);
cv_destroy(&l->l_waitcv);
/*
* Free lwpctl structure and affinity.
*/
if (l->l_lwpctl) {
lwp_ctl_free(l);
}
if (l->l_affinity) {
kcpuset_unuse(l->l_affinity, NULL);
l->l_affinity = NULL;
}
/*
* Free remaining data structures and the LWP itself unless the
* caller wants to recycle.
*/
if (l->l_name != NULL)
kmem_free(l->l_name, MAXCOMLEN);
kmsan_lwp_free(l);
kcov_lwp_free(l);
cpu_lwp_free2(l);
uvm_lwp_exit(l);
KASSERT(SLIST_EMPTY(&l->l_pi_lenders));
KASSERT(l->l_inheritedprio == -1);
KASSERT(l->l_blcnt == 0);
kdtrace_thread_dtor(NULL, l);
if (!recycle)
pool_cache_put(lwp_cache, l);
}
/*
* Migrate the LWP to the another CPU. Unlocks the LWP.
*/
void
lwp_migrate(lwp_t *l, struct cpu_info *tci)
{
struct schedstate_percpu *tspc;
int lstat = l->l_stat;
KASSERT(lwp_locked(l, NULL));
KASSERT(tci != NULL);
/* If LWP is still on the CPU, it must be handled like LSONPROC */
if ((l->l_pflag & LP_RUNNING) != 0) {
lstat = LSONPROC;
}
/*
* The destination CPU could be changed while previous migration
* was not finished.
*/
if (l->l_target_cpu != NULL) {
l->l_target_cpu = tci;
lwp_unlock(l);
return;
}
/* Nothing to do if trying to migrate to the same CPU */
if (l->l_cpu == tci) {
lwp_unlock(l);
return;
}
KASSERT(l->l_target_cpu == NULL);
tspc = &tci->ci_schedstate;
switch (lstat) {
case LSRUN:
l->l_target_cpu = tci;
break;
case LSSLEEP:
l->l_cpu = tci;
break;
case LSIDL:
case LSSTOP:
case LSSUSPENDED:
l->l_cpu = tci;
if (l->l_wchan == NULL) {
lwp_unlock_to(l, tspc->spc_lwplock);
return;
}
break;
case LSONPROC:
l->l_target_cpu = tci;
spc_lock(l->l_cpu);
sched_resched_cpu(l->l_cpu, PRI_USER_RT, true);
/* spc now unlocked */
break;
}
lwp_unlock(l);
}
#define lwp_find_exclude(l) \
((l)->l_stat == LSIDL || (l)->l_stat == LSZOMB)
/*
* Find the LWP in the process. Arguments may be zero, in such case,
* the calling process and first LWP in the list will be used.
* On success - returns proc locked.
*
* => pid == 0 -> look in curproc.
* => pid == -1 -> match any proc.
* => otherwise look up the proc.
*
* => lid == 0 -> first LWP in the proc
* => otherwise specific LWP
*/
struct lwp *
lwp_find2(pid_t pid, lwpid_t lid)
{
proc_t *p;
lwp_t *l;
/* First LWP of specified proc. */
if (lid == 0) {
switch (pid) {
case -1:
/* No lookup keys. */
return NULL;
case 0:
p = curproc;
mutex_enter(p->p_lock);
break;
default:
mutex_enter(&proc_lock);
p = proc_find(pid);
if (__predict_false(p == NULL)) {
mutex_exit(&proc_lock);
return NULL;
}
mutex_enter(p->p_lock);
mutex_exit(&proc_lock);
break;
}
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if (__predict_true(!lwp_find_exclude(l)))
break;
}
goto out;
}
l = proc_find_lwp_acquire_proc(lid, &p);
if (l == NULL)
return NULL;
KASSERT(p != NULL);
KASSERT(mutex_owned(p->p_lock));
if (__predict_false(lwp_find_exclude(l))) {
l = NULL;
goto out;
}
/* Apply proc filter, if applicable. */
switch (pid) {
case -1:
/* Match anything. */
break;
case 0:
if (p != curproc)
l = NULL;
break;
default:
if (p->p_pid != pid)
l = NULL;
break;
}
out:
if (__predict_false(l == NULL)) {
mutex_exit(p->p_lock);
}
return l;
}
/*
* Look up a live LWP within the specified process.
*
* Must be called with p->p_lock held (as it looks at the radix tree,
* and also wants to exclude idle and zombie LWPs).
*/
struct lwp *
lwp_find(struct proc *p, lwpid_t id)
{
struct lwp *l;
KASSERT(mutex_owned(p->p_lock));
l = proc_find_lwp(p, id);
KASSERT(l == NULL || l->l_lid == id);
/*
* No need to lock - all of these conditions will
* be visible with the process level mutex held.
*/
if (__predict_false(l != NULL && lwp_find_exclude(l)))
l = NULL;
return l;
}
/*
* Verify that an LWP is locked, and optionally verify that the lock matches
* one we specify.
*/
int
lwp_locked(struct lwp *l, kmutex_t *mtx)
{
kmutex_t *cur = l->l_mutex;
return mutex_owned(cur) && (mtx == cur || mtx == NULL);
}
/*
* Lend a new mutex to an LWP. The old mutex must be held.
*/
kmutex_t *
lwp_setlock(struct lwp *l, kmutex_t *mtx)
{
kmutex_t *oldmtx = l->l_mutex;
KASSERT(mutex_owned(oldmtx));
atomic_store_release(&l->l_mutex, mtx);
return oldmtx;
}
/*
* Lend a new mutex to an LWP, and release the old mutex. The old mutex
* must be held.
*/
void
lwp_unlock_to(struct lwp *l, kmutex_t *mtx)
{
kmutex_t *old;
KASSERT(lwp_locked(l, NULL));
old = l->l_mutex;
atomic_store_release(&l->l_mutex, mtx);
mutex_spin_exit(old);
}
int
lwp_trylock(struct lwp *l)
{
kmutex_t *old;
for (;;) {
if (!mutex_tryenter(old = atomic_load_consume(&l->l_mutex)))
return 0;
if (__predict_true(atomic_load_relaxed(&l->l_mutex) == old))
return 1;
mutex_spin_exit(old);
}
}
void
lwp_unsleep(lwp_t *l, bool unlock)
{
KASSERT(mutex_owned(l->l_mutex));
(*l->l_syncobj->sobj_unsleep)(l, unlock);
}
/*
* Lock an LWP.
*/
void
lwp_lock(lwp_t *l)
{
kmutex_t *old = atomic_load_consume(&l->l_mutex);
/*
* Note: mutex_spin_enter() will have posted a read barrier.
* Re-test l->l_mutex. If it has changed, we need to try again.
*/
mutex_spin_enter(old);
while (__predict_false(atomic_load_relaxed(&l->l_mutex) != old)) {
mutex_spin_exit(old);
old = atomic_load_consume(&l->l_mutex);
mutex_spin_enter(old);
}
}
/*
* Unlock an LWP.
*/
void
lwp_unlock(lwp_t *l)
{
mutex_spin_exit(l->l_mutex);
}
void
lwp_changepri(lwp_t *l, pri_t pri)
{
KASSERT(mutex_owned(l->l_mutex));
if (l->l_priority == pri)
return;
(*l->l_syncobj->sobj_changepri)(l, pri);
KASSERT(l->l_priority == pri);
}
void
lwp_lendpri(lwp_t *l, pri_t pri)
{
KASSERT(mutex_owned(l->l_mutex));
(*l->l_syncobj->sobj_lendpri)(l, pri);
KASSERT(l->l_inheritedprio == pri);
}
pri_t
lwp_eprio(lwp_t *l)
{
pri_t pri = l->l_priority;
KASSERT(mutex_owned(l->l_mutex));
/*
* Timeshared/user LWPs get a temporary priority boost for blocking
* in kernel. This is key to good interactive response on a loaded
* system: without it, things will seem very sluggish to the user.
*
* The function of the boost is to get the LWP onto a CPU and
* running quickly. Once that happens the LWP loses the priority
* boost and could be preempted very quickly by another LWP but that
* won't happen often enough to be an annoyance.
*/
if (pri <= MAXPRI_USER && l->l_boostpri > MAXPRI_USER)
pri = (pri >> 1) + l->l_boostpri;
return MAX(l->l_auxprio, pri);
}
/*
* Handle exceptions for mi_userret(). Called if a member of LW_USERRET is
* set or a preemption is required.
*/
void
lwp_userret(struct lwp *l)
{
struct proc *p;
int sig, f;
KASSERT(l == curlwp);
KASSERT(l->l_stat == LSONPROC);
p = l->l_proc;
for (;;) {
/*
* This is the main location that user preemptions are
* processed.
*/
preempt_point();
/*
* It is safe to do this unlocked and without raised SPL,
* since whenever a flag of interest is added to l_flag the
* LWP will take an AST and come down this path again. If a
* remote CPU posts the AST, it will be done with an IPI
* (strongly synchronising).
*/
if ((f = atomic_load_relaxed(&l->l_flag) & LW_USERRET) == 0) {
return;
}
/*
* Start out with the correct credentials.
*/
if ((f & LW_CACHECRED) != 0) {
kauth_cred_t oc = l->l_cred;
mutex_enter(p->p_lock);
l->l_cred = kauth_cred_hold(p->p_cred);
lwp_lock(l);
l->l_flag &= ~LW_CACHECRED;
lwp_unlock(l);
mutex_exit(p->p_lock);
kauth_cred_free(oc);
}
/*
* Process pending signals first, unless the process
* is dumping core or exiting, where we will instead
* enter the LW_WSUSPEND case below.
*/
if ((f & (LW_PENDSIG | LW_WCORE | LW_WEXIT)) == LW_PENDSIG) {
mutex_enter(p->p_lock);
while ((sig = issignal(l)) != 0)
postsig(sig);
mutex_exit(p->p_lock);
continue;
}
/*
* Core-dump or suspend pending.
*
* In case of core dump, suspend ourselves, so that the kernel
* stack and therefore the userland registers saved in the
* trapframe are around for coredump() to write them out.
* We also need to save any PCU resources that we have so that
* they accessible for coredump(). We issue a wakeup on
* p->p_lwpcv so that sigexit() will write the core file out
* once all other LWPs are suspended.
*/
if ((f & LW_WSUSPEND) != 0) {
pcu_save_all(l);
mutex_enter(p->p_lock);
p->p_nrlwps--;
lwp_lock(l);
l->l_stat = LSSUSPENDED;
lwp_unlock(l);
mutex_exit(p->p_lock);
cv_broadcast(&p->p_lwpcv);
lwp_lock(l);
spc_lock(l->l_cpu);
mi_switch(l);
continue;
}
/*
* Process is exiting. The core dump and signal cases must
* be handled first.
*/
if ((f & LW_WEXIT) != 0) {
lwp_exit(l);
KASSERT(0);
/* NOTREACHED */
}
/*
* Update lwpctl processor (for vfork child_return).
*/
if ((f & LW_LWPCTL) != 0) {
lwp_lock(l);
KASSERT(kpreempt_disabled());
l->l_lwpctl->lc_curcpu = (int)cpu_index(l->l_cpu);
l->l_lwpctl->lc_pctr++;
l->l_flag &= ~LW_LWPCTL;
lwp_unlock(l);
continue;
}
}
}
/*
* Force an LWP to enter the kernel, to take a trip through lwp_userret().
*/
void
lwp_need_userret(struct lwp *l)
{
KASSERT(!cpu_intr_p());
KASSERT(lwp_locked(l, NULL) || l->l_stat == LSIDL);
/*
* If the LWP is in any state other than LSONPROC, we know that it
* is executing in-kernel and will hit userret() on the way out.
*
* If the LWP is curlwp, then we know we'll be back out to userspace
* soon (can't be called from a hardware interrupt here).
*
* Otherwise, we can't be sure what the LWP is doing, so first make
* sure the update to l_flag will be globally visible, and then
* force the LWP to take a trip through trap() where it will do
* userret().
*/
if (l->l_stat == LSONPROC && l != curlwp) {
membar_producer();
cpu_signotify(l);
}
}
/*
* Add one reference to an LWP. This will prevent the LWP from
* exiting, thus keep the lwp structure and PCB around to inspect.
*/
void
lwp_addref(struct lwp *l)
{
KASSERT(mutex_owned(l->l_proc->p_lock));
KASSERT(l->l_stat != LSZOMB);
l->l_refcnt++;
}
/*
* Remove one reference to an LWP. If this is the last reference,
* then we must finalize the LWP's death.
*/
void
lwp_delref(struct lwp *l)
{
struct proc *p = l->l_proc;
mutex_enter(p->p_lock);
lwp_delref2(l);
mutex_exit(p->p_lock);
}
/*
* Remove one reference to an LWP. If this is the last reference,
* then we must finalize the LWP's death. The proc mutex is held
* on entry.
*/
void
lwp_delref2(struct lwp *l)
{
struct proc *p = l->l_proc;
KASSERT(mutex_owned(p->p_lock));
KASSERT(l->l_stat != LSZOMB);
KASSERT(l->l_refcnt > 0);
if (--l->l_refcnt == 0)
cv_broadcast(&p->p_lwpcv);
}
/*
* Drain all references to the current LWP. Returns true if
* we blocked.
*/
bool
lwp_drainrefs(struct lwp *l)
{
struct proc *p = l->l_proc;
bool rv = false;
KASSERT(mutex_owned(p->p_lock));
l->l_prflag |= LPR_DRAINING;
while (l->l_refcnt > 0) {
rv = true;
cv_wait(&p->p_lwpcv, p->p_lock);
}
return rv;
}
/*
* Return true if the specified LWP is 'alive'. Only p->p_lock need
* be held.
*/
bool
lwp_alive(lwp_t *l)
{
KASSERT(mutex_owned(l->l_proc->p_lock));
switch (l->l_stat) {
case LSSLEEP:
case LSRUN:
case LSONPROC:
case LSSTOP:
case LSSUSPENDED:
return true;
default:
return false;
}
}
/*
* Return first live LWP in the process.
*/
lwp_t *
lwp_find_first(proc_t *p)
{
lwp_t *l;
KASSERT(mutex_owned(p->p_lock));
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if (lwp_alive(l)) {
return l;
}
}
return NULL;
}
/*
* Allocate a new lwpctl structure for a user LWP.
*/
int
lwp_ctl_alloc(vaddr_t *uaddr)
{
lcproc_t *lp;
u_int bit, i, offset;
struct uvm_object *uao;
int error;
lcpage_t *lcp;
proc_t *p;
lwp_t *l;
l = curlwp;
p = l->l_proc;
/* don't allow a vforked process to create lwp ctls */
if (p->p_lflag & PL_PPWAIT)
return EBUSY;
if (l->l_lcpage != NULL) {
lcp = l->l_lcpage;
*uaddr = lcp->lcp_uaddr + (vaddr_t)l->l_lwpctl - lcp->lcp_kaddr;
return 0;
}
/* First time around, allocate header structure for the process. */
if ((lp = p->p_lwpctl) == NULL) {
lp = kmem_alloc(sizeof(*lp), KM_SLEEP);
mutex_init(&lp->lp_lock, MUTEX_DEFAULT, IPL_NONE);
lp->lp_uao = NULL;
TAILQ_INIT(&lp->lp_pages);
mutex_enter(p->p_lock);
if (p->p_lwpctl == NULL) {
p->p_lwpctl = lp;
mutex_exit(p->p_lock);
} else {
mutex_exit(p->p_lock);
mutex_destroy(&lp->lp_lock);
kmem_free(lp, sizeof(*lp));
lp = p->p_lwpctl;
}
}
/*
* Set up an anonymous memory region to hold the shared pages.
* Map them into the process' address space. The user vmspace
* gets the first reference on the UAO.
*/
mutex_enter(&lp->lp_lock);
if (lp->lp_uao == NULL) {
lp->lp_uao = uao_create(LWPCTL_UAREA_SZ, 0);
lp->lp_cur = 0;
lp->lp_max = LWPCTL_UAREA_SZ;
lp->lp_uva = p->p_emul->e_vm_default_addr(p,
(vaddr_t)p->p_vmspace->vm_daddr, LWPCTL_UAREA_SZ,
p->p_vmspace->vm_map.flags & VM_MAP_TOPDOWN);
error = uvm_map(&p->p_vmspace->vm_map, &lp->lp_uva,
LWPCTL_UAREA_SZ, lp->lp_uao, 0, 0, UVM_MAPFLAG(UVM_PROT_RW,
UVM_PROT_RW, UVM_INH_NONE, UVM_ADV_NORMAL, 0));
if (error != 0) {
uao_detach(lp->lp_uao);
lp->lp_uao = NULL;
mutex_exit(&lp->lp_lock);
return error;
}
}
/* Get a free block and allocate for this LWP. */
TAILQ_FOREACH(lcp, &lp->lp_pages, lcp_chain) {
if (lcp->lcp_nfree != 0)
break;
}
if (lcp == NULL) {
/* Nothing available - try to set up a free page. */
if (lp->lp_cur == lp->lp_max) {
mutex_exit(&lp->lp_lock);
return ENOMEM;
}
lcp = kmem_alloc(LWPCTL_LCPAGE_SZ, KM_SLEEP);
/*
* Wire the next page down in kernel space. Since this
* is a new mapping, we must add a reference.
*/
uao = lp->lp_uao;
(*uao->pgops->pgo_reference)(uao);
lcp->lcp_kaddr = vm_map_min(kernel_map);
error = uvm_map(kernel_map, &lcp->lcp_kaddr, PAGE_SIZE,
uao, lp->lp_cur, PAGE_SIZE,
UVM_MAPFLAG(UVM_PROT_RW, UVM_PROT_RW,
UVM_INH_NONE, UVM_ADV_RANDOM, 0));
if (error != 0) {
mutex_exit(&lp->lp_lock);
kmem_free(lcp, LWPCTL_LCPAGE_SZ);
(*uao->pgops->pgo_detach)(uao);
return error;
}
error = uvm_map_pageable(kernel_map, lcp->lcp_kaddr,
lcp->lcp_kaddr + PAGE_SIZE, FALSE, 0);
if (error != 0) {
mutex_exit(&lp->lp_lock);
uvm_unmap(kernel_map, lcp->lcp_kaddr,
lcp->lcp_kaddr + PAGE_SIZE);
kmem_free(lcp, LWPCTL_LCPAGE_SZ);
return error;
}
/* Prepare the page descriptor and link into the list. */
lcp->lcp_uaddr = lp->lp_uva + lp->lp_cur;
lp->lp_cur += PAGE_SIZE;
lcp->lcp_nfree = LWPCTL_PER_PAGE;
lcp->lcp_rotor = 0;
memset(lcp->lcp_bitmap, 0xff, LWPCTL_BITMAP_SZ);
TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
}
for (i = lcp->lcp_rotor; lcp->lcp_bitmap[i] == 0;) {
if (++i >= LWPCTL_BITMAP_ENTRIES)
i = 0;
}
bit = ffs(lcp->lcp_bitmap[i]) - 1;
lcp->lcp_bitmap[i] ^= (1U << bit);
lcp->lcp_rotor = i;
lcp->lcp_nfree--;
l->l_lcpage = lcp;
offset = (i << 5) + bit;
l->l_lwpctl = (lwpctl_t *)lcp->lcp_kaddr + offset;
*uaddr = lcp->lcp_uaddr + offset * sizeof(lwpctl_t);
mutex_exit(&lp->lp_lock);
KPREEMPT_DISABLE(l);
l->l_lwpctl->lc_curcpu = (int)cpu_index(curcpu());
KPREEMPT_ENABLE(l);
return 0;
}
/*
* Free an lwpctl structure back to the per-process list.
*/
void
lwp_ctl_free(lwp_t *l)
{
struct proc *p = l->l_proc;
lcproc_t *lp;
lcpage_t *lcp;
u_int map, offset;
/* don't free a lwp context we borrowed for vfork */
if (p->p_lflag & PL_PPWAIT) {
l->l_lwpctl = NULL;
return;
}
lp = p->p_lwpctl;
KASSERT(lp != NULL);
lcp = l->l_lcpage;
offset = (u_int)((lwpctl_t *)l->l_lwpctl - (lwpctl_t *)lcp->lcp_kaddr);
KASSERT(offset < LWPCTL_PER_PAGE);
mutex_enter(&lp->lp_lock);
lcp->lcp_nfree++;
map = offset >> 5;
lcp->lcp_bitmap[map] |= (1U << (offset & 31));
if (lcp->lcp_bitmap[lcp->lcp_rotor] == 0)
lcp->lcp_rotor = map;
if (TAILQ_FIRST(&lp->lp_pages)->lcp_nfree == 0) {
TAILQ_REMOVE(&lp->lp_pages, lcp, lcp_chain);
TAILQ_INSERT_HEAD(&lp->lp_pages, lcp, lcp_chain);
}
mutex_exit(&lp->lp_lock);
}
/*
* Process is exiting; tear down lwpctl state. This can only be safely
* called by the last LWP in the process.
*/
void
lwp_ctl_exit(void)
{
lcpage_t *lcp, *next;
lcproc_t *lp;
proc_t *p;
lwp_t *l;
l = curlwp;
l->l_lwpctl = NULL;
l->l_lcpage = NULL;
p = l->l_proc;
lp = p->p_lwpctl;
KASSERT(lp != NULL);
KASSERT(p->p_nlwps == 1);
for (lcp = TAILQ_FIRST(&lp->lp_pages); lcp != NULL; lcp = next) {
next = TAILQ_NEXT(lcp, lcp_chain);
uvm_unmap(kernel_map, lcp->lcp_kaddr,
lcp->lcp_kaddr + PAGE_SIZE);
kmem_free(lcp, LWPCTL_LCPAGE_SZ);
}
if (lp->lp_uao != NULL) {
uvm_unmap(&p->p_vmspace->vm_map, lp->lp_uva,
lp->lp_uva + LWPCTL_UAREA_SZ);
}
mutex_destroy(&lp->lp_lock);
kmem_free(lp, sizeof(*lp));
p->p_lwpctl = NULL;
}
/*
* Return the current LWP's "preemption counter". Used to detect
* preemption across operations that can tolerate preemption without
* crashing, but which may generate incorrect results if preempted.
*
* We do arithmetic in unsigned long to avoid undefined behaviour in
* the event of arithmetic overflow on LP32, and issue __insn_barrier()
* on both sides so this can safely be used to detect changes to the
* preemption counter in loops around other memory accesses even in the
* event of whole-program optimization (e.g., gcc -flto).
*/
long
lwp_pctr(void)
{
unsigned long pctr;
__insn_barrier();
pctr = curlwp->l_ru.ru_nvcsw;
pctr += curlwp->l_ru.ru_nivcsw;
__insn_barrier();
return pctr;
}
/*
* Set an LWP's private data pointer.
*/
int
lwp_setprivate(struct lwp *l, void *ptr)
{
int error = 0;
l->l_private = ptr;
#ifdef __HAVE_CPU_LWP_SETPRIVATE
error = cpu_lwp_setprivate(l, ptr);
#endif
return error;
}
/*
* Perform any thread-related cleanup on LWP exit.
* N.B. l->l_proc->p_lock must be HELD on entry but will
* be released before returning!
*/
void
lwp_thread_cleanup(struct lwp *l)
{
KASSERT(mutex_owned(l->l_proc->p_lock));
mutex_exit(l->l_proc->p_lock);
/*
* If the LWP has robust futexes, release them all
* now.
*/
if (__predict_false(l->l_robust_head != 0)) {
futex_release_all_lwp(l);
}
}
#if defined(DDB)
#include <machine/pcb.h>
void
lwp_whatis(uintptr_t addr, void (*pr)(const char *, ...))
{
lwp_t *l;
LIST_FOREACH(l, &alllwp, l_list) {
uintptr_t stack = (uintptr_t)KSTACK_LOWEST_ADDR(l);
if (addr < stack || stack + KSTACK_SIZE <= addr) {
continue;
}
(*pr)("%p is %p+%zu, LWP %p's stack\n",
(void *)addr, (void *)stack,
(size_t)(addr - stack), l);
}
}
#endif /* defined(DDB) */