NetBSD/sys/kern/kern_condvar.c

572 lines
15 KiB
C

/* $NetBSD: kern_condvar.c,v 1.63 2023/11/02 10:31:55 martin Exp $ */
/*-
* Copyright (c) 2006, 2007, 2008, 2019, 2020, 2023
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Kernel condition variable implementation.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_condvar.c,v 1.63 2023/11/02 10:31:55 martin Exp $");
#include <sys/param.h>
#include <sys/condvar.h>
#include <sys/cpu.h>
#include <sys/kernel.h>
#include <sys/lockdebug.h>
#include <sys/lwp.h>
#include <sys/sleepq.h>
#include <sys/syncobj.h>
#include <sys/systm.h>
/*
* Accessors for the private contents of the kcondvar_t data type.
*
* cv_opaque[0] sleepq_t
* cv_opaque[1] description for ps(1)
*
* cv_opaque[0] is protected by the interlock passed to cv_wait() (enqueue
* only), and the sleep queue lock acquired with sleepq_hashlock() (enqueue
* and dequeue).
*
* cv_opaque[1] (the wmesg) is static and does not change throughout the life
* of the CV.
*/
#define CV_SLEEPQ(cv) ((sleepq_t *)(cv)->cv_opaque)
#define CV_WMESG(cv) ((const char *)(cv)->cv_opaque[1])
#define CV_SET_WMESG(cv, v) (cv)->cv_opaque[1] = __UNCONST(v)
#define CV_DEBUG_P(cv) (CV_WMESG(cv) != nodebug)
#define CV_RA ((uintptr_t)__builtin_return_address(0))
static void cv_unsleep(lwp_t *, bool);
static inline void cv_wakeup_one(kcondvar_t *);
static inline void cv_wakeup_all(kcondvar_t *);
syncobj_t cv_syncobj = {
.sobj_name = "cv",
.sobj_flag = SOBJ_SLEEPQ_SORTED,
.sobj_boostpri = PRI_KERNEL,
.sobj_unsleep = cv_unsleep,
.sobj_changepri = sleepq_changepri,
.sobj_lendpri = sleepq_lendpri,
.sobj_owner = syncobj_noowner,
};
static const char deadcv[] = "deadcv";
/*
* cv_init:
*
* Initialize a condition variable for use.
*/
void
cv_init(kcondvar_t *cv, const char *wmesg)
{
KASSERT(wmesg != NULL);
CV_SET_WMESG(cv, wmesg);
sleepq_init(CV_SLEEPQ(cv));
}
/*
* cv_destroy:
*
* Tear down a condition variable.
*/
void
cv_destroy(kcondvar_t *cv)
{
sleepq_destroy(CV_SLEEPQ(cv));
#ifdef DIAGNOSTIC
KASSERT(cv_is_valid(cv));
KASSERT(!cv_has_waiters(cv));
CV_SET_WMESG(cv, deadcv);
#endif
}
/*
* cv_enter:
*
* Look up and lock the sleep queue corresponding to the given
* condition variable, and increment the number of waiters.
*/
static inline int
cv_enter(kcondvar_t *cv, kmutex_t *mtx, lwp_t *l, bool catch_p)
{
sleepq_t *sq;
kmutex_t *mp;
int nlocks;
KASSERT(cv_is_valid(cv));
KASSERT(!cpu_intr_p());
KASSERT((l->l_pflag & LP_INTR) == 0 || panicstr != NULL);
mp = sleepq_hashlock(cv);
sq = CV_SLEEPQ(cv);
nlocks = sleepq_enter(sq, l, mp);
sleepq_enqueue(sq, cv, CV_WMESG(cv), &cv_syncobj, catch_p);
mutex_exit(mtx);
KASSERT(cv_has_waiters(cv));
return nlocks;
}
/*
* cv_unsleep:
*
* Remove an LWP from the condition variable and sleep queue. This
* is called when the LWP has not been awoken normally but instead
* interrupted: for example, when a signal is received. Must be
* called with the LWP locked. Will unlock if "unlock" is true.
*/
static void
cv_unsleep(lwp_t *l, bool unlock)
{
kcondvar_t *cv __diagused;
cv = (kcondvar_t *)(uintptr_t)l->l_wchan;
KASSERT(l->l_wchan == (wchan_t)cv);
KASSERT(l->l_sleepq == CV_SLEEPQ(cv));
KASSERT(cv_is_valid(cv));
KASSERT(cv_has_waiters(cv));
sleepq_unsleep(l, unlock);
}
/*
* cv_wait:
*
* Wait non-interruptably on a condition variable until awoken.
*/
void
cv_wait(kcondvar_t *cv, kmutex_t *mtx)
{
lwp_t *l = curlwp;
int nlocks;
KASSERT(mutex_owned(mtx));
nlocks = cv_enter(cv, mtx, l, false);
(void)sleepq_block(0, false, &cv_syncobj, nlocks);
mutex_enter(mtx);
}
/*
* cv_wait_sig:
*
* Wait on a condition variable until a awoken or a signal is received.
* Will also return early if the process is exiting. Returns zero if
* awoken normally, ERESTART if a signal was received and the system
* call is restartable, or EINTR otherwise.
*/
int
cv_wait_sig(kcondvar_t *cv, kmutex_t *mtx)
{
lwp_t *l = curlwp;
int error, nlocks;
KASSERT(mutex_owned(mtx));
nlocks = cv_enter(cv, mtx, l, true);
error = sleepq_block(0, true, &cv_syncobj, nlocks);
mutex_enter(mtx);
return error;
}
/*
* cv_timedwait:
*
* Wait on a condition variable until awoken or the specified timeout
* expires. Returns zero if awoken normally or EWOULDBLOCK if the
* timeout expired.
*
* timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
*/
int
cv_timedwait(kcondvar_t *cv, kmutex_t *mtx, int timo)
{
lwp_t *l = curlwp;
int error, nlocks;
KASSERT(mutex_owned(mtx));
nlocks = cv_enter(cv, mtx, l, false);
error = sleepq_block(timo, false, &cv_syncobj, nlocks);
mutex_enter(mtx);
return error;
}
/*
* cv_timedwait_sig:
*
* Wait on a condition variable until a timeout expires, awoken or a
* signal is received. Will also return early if the process is
* exiting. Returns zero if awoken normally, EWOULDBLOCK if the
* timeout expires, ERESTART if a signal was received and the system
* call is restartable, or EINTR otherwise.
*
* timo is a timeout in ticks. timo = 0 specifies an infinite timeout.
*/
int
cv_timedwait_sig(kcondvar_t *cv, kmutex_t *mtx, int timo)
{
lwp_t *l = curlwp;
int error, nlocks;
KASSERT(mutex_owned(mtx));
nlocks = cv_enter(cv, mtx, l, true);
error = sleepq_block(timo, true, &cv_syncobj, nlocks);
mutex_enter(mtx);
return error;
}
/*
* Given a number of seconds, sec, and 2^64ths of a second, frac, we
* want a number of ticks for a timeout:
*
* timo = hz*(sec + frac/2^64)
* = hz*sec + hz*frac/2^64
* = hz*sec + hz*(frachi*2^32 + fraclo)/2^64
* = hz*sec + hz*frachi/2^32 + hz*fraclo/2^64,
*
* where frachi is the high 32 bits of frac and fraclo is the
* low 32 bits.
*
* We assume hz < INT_MAX/2 < UINT32_MAX, so
*
* hz*fraclo/2^64 < fraclo*2^32/2^64 <= 1,
*
* since fraclo < 2^32.
*
* We clamp the result at INT_MAX/2 for a timeout in ticks, since we
* can't represent timeouts higher than INT_MAX in cv_timedwait, and
* spurious wakeup is OK. Moreover, we don't want to wrap around,
* because we compute end - start in ticks in order to compute the
* remaining timeout, and that difference cannot wrap around, so we use
* a timeout less than INT_MAX. Using INT_MAX/2 provides plenty of
* margin for paranoia and will exceed most waits in practice by far.
*/
static unsigned
bintime2timo(const struct bintime *bt)
{
KASSERT(hz < INT_MAX/2);
CTASSERT(INT_MAX/2 < UINT32_MAX);
if (bt->sec > ((INT_MAX/2)/hz))
return INT_MAX/2;
if ((hz*(bt->frac >> 32) >> 32) > (INT_MAX/2 - hz*bt->sec))
return INT_MAX/2;
return hz*bt->sec + (hz*(bt->frac >> 32) >> 32);
}
/*
* timo is in units of ticks. We want units of seconds and 2^64ths of
* a second. We know hz = 1 sec/tick, and 2^64 = 1 sec/(2^64th of a
* second), from which we can conclude 2^64 / hz = 1 (2^64th of a
* second)/tick. So for the fractional part, we compute
*
* frac = rem * 2^64 / hz
* = ((rem * 2^32) / hz) * 2^32
*
* Using truncating integer division instead of real division will
* leave us with only about 32 bits of precision, which means about
* 1/4-nanosecond resolution, which is good enough for our purposes.
*/
static struct bintime
timo2bintime(unsigned timo)
{
return (struct bintime) {
.sec = timo / hz,
.frac = (((uint64_t)(timo % hz) << 32)/hz << 32),
};
}
/*
* cv_timedwaitbt:
*
* Wait on a condition variable until awoken or the specified
* timeout expires. Returns zero if awoken normally or
* EWOULDBLOCK if the timeout expires.
*
* On entry, bt is a timeout in bintime. cv_timedwaitbt subtracts
* the time slept, so on exit, bt is the time remaining after
* sleeping, possibly negative if the complete time has elapsed.
* No infinite timeout; use cv_wait_sig instead.
*
* epsilon is a requested maximum error in timeout (excluding
* spurious wakeups). Currently not used, will be used in the
* future to choose between low- and high-resolution timers.
* Actual wakeup time will be somewhere in [t, t + max(e, r) + s)
* where r is the finest resolution of clock available and s is
* scheduling delays for scheduler overhead and competing threads.
* Time is measured by the interrupt source implementing the
* timeout, not by another timecounter.
*/
int
cv_timedwaitbt(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
const struct bintime *epsilon __diagused)
{
struct bintime slept;
unsigned start, end;
int timo;
int error;
KASSERTMSG(bt->sec >= 0, "negative timeout");
KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
/* If there's nothing left to wait, time out. */
if (bt->sec == 0 && bt->frac == 0)
return EWOULDBLOCK;
/* Convert to ticks, but clamp to be >=1. */
timo = bintime2timo(bt);
KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
if (timo == 0)
timo = 1;
/*
* getticks() is technically int, but nothing special
* happens instead of overflow, so we assume two's-complement
* wraparound and just treat it as unsigned.
*/
start = getticks();
error = cv_timedwait(cv, mtx, timo);
end = getticks();
/*
* Set it to the time left, or zero, whichever is larger. We
* do not fail with EWOULDBLOCK here because this may have been
* an explicit wakeup, so the caller needs to check before they
* give up or else cv_signal would be lost.
*/
slept = timo2bintime(end - start);
if (bintimecmp(bt, &slept, <=)) {
bt->sec = 0;
bt->frac = 0;
} else {
/* bt := bt - slept */
bintime_sub(bt, &slept);
}
return error;
}
/*
* cv_timedwaitbt_sig:
*
* Wait on a condition variable until awoken, the specified
* timeout expires, or interrupted by a signal. Returns zero if
* awoken normally, EWOULDBLOCK if the timeout expires, or
* EINTR/ERESTART if interrupted by a signal.
*
* On entry, bt is a timeout in bintime. cv_timedwaitbt_sig
* subtracts the time slept, so on exit, bt is the time remaining
* after sleeping. No infinite timeout; use cv_wait instead.
*
* epsilon is a requested maximum error in timeout (excluding
* spurious wakeups). Currently not used, will be used in the
* future to choose between low- and high-resolution timers.
*/
int
cv_timedwaitbt_sig(kcondvar_t *cv, kmutex_t *mtx, struct bintime *bt,
const struct bintime *epsilon __diagused)
{
struct bintime slept;
unsigned start, end;
int timo;
int error;
KASSERTMSG(bt->sec >= 0, "negative timeout");
KASSERTMSG(epsilon != NULL, "specify maximum requested delay");
/* If there's nothing left to wait, time out. */
if (bt->sec == 0 && bt->frac == 0)
return EWOULDBLOCK;
/* Convert to ticks, but clamp to be >=1. */
timo = bintime2timo(bt);
KASSERTMSG(timo >= 0, "negative ticks: %d", timo);
if (timo == 0)
timo = 1;
/*
* getticks() is technically int, but nothing special
* happens instead of overflow, so we assume two's-complement
* wraparound and just treat it as unsigned.
*/
start = getticks();
error = cv_timedwait_sig(cv, mtx, timo);
end = getticks();
/*
* Set it to the time left, or zero, whichever is larger. We
* do not fail with EWOULDBLOCK here because this may have been
* an explicit wakeup, so the caller needs to check before they
* give up or else cv_signal would be lost.
*/
slept = timo2bintime(end - start);
if (bintimecmp(bt, &slept, <=)) {
bt->sec = 0;
bt->frac = 0;
} else {
/* bt := bt - slept */
bintime_sub(bt, &slept);
}
return error;
}
/*
* cv_signal:
*
* Wake the highest priority LWP waiting on a condition variable. Must
* be called with the interlocking mutex held or just after it has been
* released (so the awoken LWP will see the changed condition).
*/
void
cv_signal(kcondvar_t *cv)
{
KASSERT(cv_is_valid(cv));
if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
/*
* Compiler turns into a tail call usually, i.e. jmp,
* because the arguments are the same and no locals.
*/
cv_wakeup_one(cv);
}
}
/*
* cv_wakeup_one:
*
* Slow path for cv_signal(). Deliberately marked __noinline to
* prevent the compiler pulling it in to cv_signal(), which adds
* extra prologue and epilogue code.
*/
static __noinline void
cv_wakeup_one(kcondvar_t *cv)
{
sleepq_t *sq;
kmutex_t *mp;
lwp_t *l;
mp = sleepq_hashlock(cv);
sq = CV_SLEEPQ(cv);
if (__predict_true((l = LIST_FIRST(sq)) != NULL)) {
KASSERT(l->l_sleepq == sq);
KASSERT(l->l_mutex == mp);
KASSERT(l->l_wchan == cv);
sleepq_remove(sq, l, true);
}
mutex_spin_exit(mp);
}
/*
* cv_broadcast:
*
* Wake all LWPs waiting on a condition variable. Must be called with
* the interlocking mutex held or just after it has been released (so
* the awoken LWP will see the changed condition).
*/
void
cv_broadcast(kcondvar_t *cv)
{
KASSERT(cv_is_valid(cv));
if (__predict_false(!LIST_EMPTY(CV_SLEEPQ(cv)))) {
/*
* Compiler turns into a tail call usually, i.e. jmp,
* because the arguments are the same and no locals.
*/
cv_wakeup_all(cv);
}
}
/*
* cv_wakeup_all:
*
* Slow path for cv_broadcast(). Deliberately marked __noinline to
* prevent the compiler pulling it in to cv_broadcast(), which adds
* extra prologue and epilogue code.
*/
static __noinline void
cv_wakeup_all(kcondvar_t *cv)
{
sleepq_t *sq;
kmutex_t *mp;
lwp_t *l;
mp = sleepq_hashlock(cv);
sq = CV_SLEEPQ(cv);
while ((l = LIST_FIRST(sq)) != NULL) {
KASSERT(l->l_sleepq == sq);
KASSERT(l->l_mutex == mp);
KASSERT(l->l_wchan == cv);
sleepq_remove(sq, l, true);
}
mutex_spin_exit(mp);
}
/*
* cv_has_waiters:
*
* For diagnostic assertions: return non-zero if a condition
* variable has waiters.
*/
bool
cv_has_waiters(kcondvar_t *cv)
{
return !LIST_EMPTY(CV_SLEEPQ(cv));
}
/*
* cv_is_valid:
*
* For diagnostic assertions: return non-zero if a condition
* variable appears to be valid. No locks need be held.
*/
bool
cv_is_valid(kcondvar_t *cv)
{
return CV_WMESG(cv) != deadcv && CV_WMESG(cv) != NULL;
}