711 lines
20 KiB
C
711 lines
20 KiB
C
/* $NetBSD: blocksort.c,v 1.6 1999/08/30 05:12:58 simonb Exp $ */
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- Block sorting machinery ---*/
|
|
/*--- blocksort.c ---*/
|
|
/*-------------------------------------------------------------*/
|
|
|
|
/*--
|
|
This file is a part of bzip2 and/or libbzip2, a program and
|
|
library for lossless, block-sorting data compression.
|
|
|
|
Copyright (C) 1996-1998 Julian R Seward. All rights reserved.
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
|
|
2. The origin of this software must not be misrepresented; you must
|
|
not claim that you wrote the original software. If you use this
|
|
software in a product, an acknowledgment in the product
|
|
documentation would be appreciated but is not required.
|
|
|
|
3. Altered source versions must be plainly marked as such, and must
|
|
not be misrepresented as being the original software.
|
|
|
|
4. The name of the author may not be used to endorse or promote
|
|
products derived from this software without specific prior written
|
|
permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS
|
|
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
|
|
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
|
|
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
Julian Seward, Guildford, Surrey, UK.
|
|
jseward@acm.org
|
|
bzip2/libbzip2 version 0.9.0 of 28 June 1998
|
|
|
|
This program is based on (at least) the work of:
|
|
Mike Burrows
|
|
David Wheeler
|
|
Peter Fenwick
|
|
Alistair Moffat
|
|
Radford Neal
|
|
Ian H. Witten
|
|
Robert Sedgewick
|
|
Jon L. Bentley
|
|
|
|
For more information on these sources, see the manual.
|
|
--*/
|
|
|
|
|
|
#include "bzlib_private.h"
|
|
|
|
/*---------------------------------------------*/
|
|
/*--
|
|
Compare two strings in block. We assume (see
|
|
discussion above) that i1 and i2 have a max
|
|
offset of 10 on entry, and that the first
|
|
bytes of both block and quadrant have been
|
|
copied into the "overshoot area", ie
|
|
into the subscript range
|
|
[nblock .. nblock+NUM_OVERSHOOT_BYTES-1].
|
|
--*/
|
|
static __inline__ Bool fullGtU ( UChar* block,
|
|
UInt16* quadrant,
|
|
UInt32 nblock,
|
|
Int32* workDone,
|
|
Int32 i1,
|
|
Int32 i2
|
|
)
|
|
{
|
|
Int32 k;
|
|
UChar c1, c2;
|
|
UInt16 s1, s2;
|
|
|
|
AssertD ( i1 != i2, "fullGtU(1)" );
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
i1++; i2++;
|
|
|
|
k = nblock;
|
|
|
|
do {
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1];
|
|
s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1];
|
|
s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1];
|
|
s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
|
|
c1 = block[i1];
|
|
c2 = block[i2];
|
|
if (c1 != c2) return (c1 > c2);
|
|
s1 = quadrant[i1];
|
|
s2 = quadrant[i2];
|
|
if (s1 != s2) return (s1 > s2);
|
|
i1++; i2++;
|
|
|
|
if (i1 >= nblock) i1 -= nblock;
|
|
if (i2 >= nblock) i2 -= nblock;
|
|
|
|
k -= 4;
|
|
(*workDone)++;
|
|
}
|
|
while (k >= 0);
|
|
|
|
return False;
|
|
}
|
|
|
|
/*---------------------------------------------*/
|
|
/*--
|
|
Knuth's increments seem to work better
|
|
than Incerpi-Sedgewick here. Possibly
|
|
because the number of elems to sort is
|
|
usually small, typically <= 20.
|
|
--*/
|
|
static Int32 incs[14] = { 1, 4, 13, 40, 121, 364, 1093, 3280,
|
|
9841, 29524, 88573, 265720,
|
|
797161, 2391484 };
|
|
|
|
static void simpleSort ( EState* s, Int32 lo, Int32 hi, Int32 d )
|
|
{
|
|
Int32 i, j, h, bigN, hp;
|
|
Int32 v;
|
|
|
|
UChar* block = s->block;
|
|
UInt32* zptr = s->zptr;
|
|
UInt16* quadrant = s->quadrant;
|
|
Int32* workDone = &(s->workDone);
|
|
Int32 nblock = s->nblock;
|
|
Int32 workLimit = s->workLimit;
|
|
Bool firstAttempt = s->firstAttempt;
|
|
|
|
bigN = hi - lo + 1;
|
|
if (bigN < 2) return;
|
|
|
|
hp = 0;
|
|
while (incs[hp] < bigN) hp++;
|
|
hp--;
|
|
|
|
for (; hp >= 0; hp--) {
|
|
h = incs[hp];
|
|
i = lo + h;
|
|
while (True) {
|
|
|
|
/*-- copy 1 --*/
|
|
if (i > hi) break;
|
|
v = zptr[i];
|
|
j = i;
|
|
while ( fullGtU ( block, quadrant, nblock, workDone,
|
|
zptr[j-h]+d, v+d ) ) {
|
|
zptr[j] = zptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
zptr[j] = v;
|
|
i++;
|
|
|
|
/*-- copy 2 --*/
|
|
if (i > hi) break;
|
|
v = zptr[i];
|
|
j = i;
|
|
while ( fullGtU ( block, quadrant, nblock, workDone,
|
|
zptr[j-h]+d, v+d ) ) {
|
|
zptr[j] = zptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
zptr[j] = v;
|
|
i++;
|
|
|
|
/*-- copy 3 --*/
|
|
if (i > hi) break;
|
|
v = zptr[i];
|
|
j = i;
|
|
while ( fullGtU ( block, quadrant, nblock, workDone,
|
|
zptr[j-h]+d, v+d ) ) {
|
|
zptr[j] = zptr[j-h];
|
|
j = j - h;
|
|
if (j <= (lo + h - 1)) break;
|
|
}
|
|
zptr[j] = v;
|
|
i++;
|
|
|
|
if (*workDone > workLimit && firstAttempt) return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
/*--
|
|
The following is an implementation of
|
|
an elegant 3-way quicksort for strings,
|
|
described in a paper "Fast Algorithms for
|
|
Sorting and Searching Strings", by Robert
|
|
Sedgewick and Jon L. Bentley.
|
|
--*/
|
|
|
|
#define swap(lv1, lv2) \
|
|
{ Int32 tmp = lv1; lv1 = lv2; lv2 = tmp; }
|
|
|
|
static void vswap ( UInt32* zptr, Int32 p1, Int32 p2, Int32 n )
|
|
{
|
|
while (n > 0) {
|
|
swap(zptr[p1], zptr[p2]);
|
|
p1++; p2++; n--;
|
|
}
|
|
}
|
|
|
|
static UChar med3 ( UChar a, UChar b, UChar c )
|
|
{
|
|
UChar t;
|
|
if (a > b) { t = a; a = b; b = t; };
|
|
if (b > c) { t = b; b = c; c = t; };
|
|
if (a > b) b = a;
|
|
return b;
|
|
}
|
|
|
|
|
|
#define min(a,b) ((a) < (b)) ? (a) : (b)
|
|
|
|
typedef
|
|
struct { Int32 ll; Int32 hh; Int32 dd; }
|
|
StackElem;
|
|
|
|
#define push(lz,hz,dz) { stack[sp].ll = lz; \
|
|
stack[sp].hh = hz; \
|
|
stack[sp].dd = dz; \
|
|
sp++; }
|
|
|
|
#define pop(lz,hz,dz) { sp--; \
|
|
lz = stack[sp].ll; \
|
|
hz = stack[sp].hh; \
|
|
dz = stack[sp].dd; }
|
|
|
|
#define SMALL_THRESH 20
|
|
#define DEPTH_THRESH 10
|
|
|
|
/*--
|
|
If you are ever unlucky/improbable enough
|
|
to get a stack overflow whilst sorting,
|
|
increase the following constant and try
|
|
again. In practice I have never seen the
|
|
stack go above 27 elems, so the following
|
|
limit seems very generous.
|
|
--*/
|
|
#define QSORT_STACK_SIZE 1000
|
|
|
|
|
|
static void qSort3 ( EState* s, Int32 loSt, Int32 hiSt, Int32 dSt )
|
|
{
|
|
Int32 unLo, unHi, ltLo, gtHi, med, n, m;
|
|
Int32 sp, lo, hi, d;
|
|
StackElem stack[QSORT_STACK_SIZE];
|
|
|
|
UChar* block = s->block;
|
|
UInt32* zptr = s->zptr;
|
|
Int32* workDone = &(s->workDone);
|
|
Int32 workLimit = s->workLimit;
|
|
Bool firstAttempt = s->firstAttempt;
|
|
|
|
sp = 0;
|
|
push ( loSt, hiSt, dSt );
|
|
|
|
while (sp > 0) {
|
|
|
|
AssertH ( sp < QSORT_STACK_SIZE, 1001 );
|
|
|
|
pop ( lo, hi, d );
|
|
|
|
if (hi - lo < SMALL_THRESH || d > DEPTH_THRESH) {
|
|
simpleSort ( s, lo, hi, d );
|
|
if (*workDone > workLimit && firstAttempt) return;
|
|
continue;
|
|
}
|
|
|
|
med = med3 ( block[zptr[ lo ]+d],
|
|
block[zptr[ hi ]+d],
|
|
block[zptr[ (lo+hi)>>1 ]+d] );
|
|
|
|
unLo = ltLo = lo;
|
|
unHi = gtHi = hi;
|
|
|
|
while (True) {
|
|
while (True) {
|
|
if (unLo > unHi) break;
|
|
n = ((Int32)block[zptr[unLo]+d]) - med;
|
|
if (n == 0) { swap(zptr[unLo], zptr[ltLo]); ltLo++; unLo++; continue; };
|
|
if (n > 0) break;
|
|
unLo++;
|
|
}
|
|
while (True) {
|
|
if (unLo > unHi) break;
|
|
n = ((Int32)block[zptr[unHi]+d]) - med;
|
|
if (n == 0) { swap(zptr[unHi], zptr[gtHi]); gtHi--; unHi--; continue; };
|
|
if (n < 0) break;
|
|
unHi--;
|
|
}
|
|
if (unLo > unHi) break;
|
|
swap(zptr[unLo], zptr[unHi]); unLo++; unHi--;
|
|
}
|
|
|
|
AssertD ( unHi == unLo-1, "bad termination in qSort3" );
|
|
|
|
if (gtHi < ltLo) {
|
|
push(lo, hi, d+1 );
|
|
continue;
|
|
}
|
|
|
|
n = min(ltLo-lo, unLo-ltLo); vswap(zptr, lo, unLo-n, n);
|
|
m = min(hi-gtHi, gtHi-unHi); vswap(zptr, unLo, hi-m+1, m);
|
|
|
|
n = lo + unLo - ltLo - 1;
|
|
m = hi - (gtHi - unHi) + 1;
|
|
|
|
push ( lo, n, d );
|
|
push ( n+1, m-1, d+1 );
|
|
push ( m, hi, d );
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
|
|
#define BIGFREQ(b) (ftab[((b)+1) << 8] - ftab[(b) << 8])
|
|
|
|
#define SETMASK (1 << 21)
|
|
#define CLEARMASK (~(SETMASK))
|
|
|
|
static void sortMain ( EState* s )
|
|
{
|
|
Int32 i, j, k, ss, sb;
|
|
Int32 runningOrder[256];
|
|
Int32 copy[256];
|
|
Bool bigDone[256];
|
|
UChar c1, c2;
|
|
Int32 numQSorted;
|
|
|
|
UChar* block = s->block;
|
|
UInt32* zptr = s->zptr;
|
|
UInt16* quadrant = s->quadrant;
|
|
Int32* ftab = s->ftab;
|
|
Int32* workDone = &(s->workDone);
|
|
Int32 nblock = s->nblock;
|
|
Int32 workLimit = s->workLimit;
|
|
Bool firstAttempt = s->firstAttempt;
|
|
|
|
/*--
|
|
In the various block-sized structures, live data runs
|
|
from 0 to last+NUM_OVERSHOOT_BYTES inclusive. First,
|
|
set up the overshoot area for block.
|
|
--*/
|
|
|
|
if (s->verbosity >= 4)
|
|
VPrintf0( " sort initialise ...\n" );
|
|
|
|
for (i = 0; i < BZ_NUM_OVERSHOOT_BYTES; i++)
|
|
block[nblock+i] = block[i % nblock];
|
|
for (i = 0; i < nblock+BZ_NUM_OVERSHOOT_BYTES; i++)
|
|
quadrant[i] = 0;
|
|
|
|
|
|
if (nblock <= 4000) {
|
|
|
|
/*--
|
|
Use simpleSort(), since the full sorting mechanism
|
|
has quite a large constant overhead.
|
|
--*/
|
|
if (s->verbosity >= 4) VPrintf0( " simpleSort ...\n" );
|
|
for (i = 0; i < nblock; i++) zptr[i] = i;
|
|
firstAttempt = False;
|
|
*workDone = workLimit = 0;
|
|
simpleSort ( s, 0, nblock-1, 0 );
|
|
if (s->verbosity >= 4) VPrintf0( " simpleSort done.\n" );
|
|
|
|
} else {
|
|
|
|
numQSorted = 0;
|
|
for (i = 0; i <= 255; i++) bigDone[i] = False;
|
|
|
|
if (s->verbosity >= 4) VPrintf0( " bucket sorting ...\n" );
|
|
|
|
for (i = 0; i <= 65536; i++) ftab[i] = 0;
|
|
|
|
c1 = block[nblock-1];
|
|
for (i = 0; i < nblock; i++) {
|
|
c2 = block[i];
|
|
ftab[(c1 << 8) + c2]++;
|
|
c1 = c2;
|
|
}
|
|
|
|
for (i = 1; i <= 65536; i++) ftab[i] += ftab[i-1];
|
|
|
|
c1 = block[0];
|
|
for (i = 0; i < nblock-1; i++) {
|
|
c2 = block[i+1];
|
|
j = (c1 << 8) + c2;
|
|
c1 = c2;
|
|
ftab[j]--;
|
|
zptr[ftab[j]] = i;
|
|
}
|
|
j = (block[nblock-1] << 8) + block[0];
|
|
ftab[j]--;
|
|
zptr[ftab[j]] = nblock-1;
|
|
|
|
/*--
|
|
Now ftab contains the first loc of every small bucket.
|
|
Calculate the running order, from smallest to largest
|
|
big bucket.
|
|
--*/
|
|
|
|
for (i = 0; i <= 255; i++) runningOrder[i] = i;
|
|
|
|
{
|
|
Int32 vv;
|
|
Int32 h = 1;
|
|
do h = 3 * h + 1; while (h <= 256);
|
|
do {
|
|
h = h / 3;
|
|
for (i = h; i <= 255; i++) {
|
|
vv = runningOrder[i];
|
|
j = i;
|
|
while ( BIGFREQ(runningOrder[j-h]) > BIGFREQ(vv) ) {
|
|
runningOrder[j] = runningOrder[j-h];
|
|
j = j - h;
|
|
if (j <= (h - 1)) goto zero;
|
|
}
|
|
zero:
|
|
runningOrder[j] = vv;
|
|
}
|
|
} while (h != 1);
|
|
}
|
|
|
|
/*--
|
|
The main sorting loop.
|
|
--*/
|
|
|
|
for (i = 0; i <= 255; i++) {
|
|
|
|
/*--
|
|
Process big buckets, starting with the least full.
|
|
Basically this is a 4-step process in which we call
|
|
qSort3 to sort the small buckets [ss, j], but
|
|
also make a big effort to avoid the calls if we can.
|
|
--*/
|
|
ss = runningOrder[i];
|
|
|
|
/*--
|
|
Step 1:
|
|
Complete the big bucket [ss] by quicksorting
|
|
any unsorted small buckets [ss, j], for j != ss.
|
|
Hopefully previous pointer-scanning phases have already
|
|
completed many of the small buckets [ss, j], so
|
|
we don't have to sort them at all.
|
|
--*/
|
|
for (j = 0; j <= 255; j++) {
|
|
if (j != ss) {
|
|
sb = (ss << 8) + j;
|
|
if ( ! (ftab[sb] & SETMASK) ) {
|
|
Int32 lo = ftab[sb] & CLEARMASK;
|
|
Int32 hi = (ftab[sb+1] & CLEARMASK) - 1;
|
|
if (hi > lo) {
|
|
if (s->verbosity >= 4)
|
|
VPrintf4( " qsort [0x%x, 0x%x] done %d this %d\n",
|
|
ss, j, numQSorted, hi - lo + 1 );
|
|
qSort3 ( s, lo, hi, 2 );
|
|
numQSorted += ( hi - lo + 1 );
|
|
if (*workDone > workLimit && firstAttempt) return;
|
|
}
|
|
}
|
|
ftab[sb] |= SETMASK;
|
|
}
|
|
}
|
|
|
|
/*--
|
|
Step 2:
|
|
Deal specially with case [ss, ss]. This establishes the
|
|
sorted order for [ss, ss] without any comparisons.
|
|
A clever trick, cryptically described as steps Q6b and Q6c
|
|
in SRC-124 (aka BW94). This makes it entirely practical to
|
|
not use a preliminary run-length coder, but unfortunately
|
|
we are now stuck with the .bz2 file format.
|
|
--*/
|
|
{
|
|
Int32 put0, get0, put1, get1;
|
|
Int32 sbn = (ss << 8) + ss;
|
|
Int32 lo = ftab[sbn] & CLEARMASK;
|
|
Int32 hi = (ftab[sbn+1] & CLEARMASK) - 1;
|
|
UChar ssc = (UChar)ss;
|
|
put0 = lo;
|
|
get0 = ftab[ss << 8] & CLEARMASK;
|
|
put1 = hi;
|
|
get1 = (ftab[(ss+1) << 8] & CLEARMASK) - 1;
|
|
while (get0 < put0) {
|
|
j = zptr[get0]-1; if (j < 0) j += nblock;
|
|
c1 = block[j];
|
|
if (c1 == ssc) { zptr[put0] = j; put0++; };
|
|
get0++;
|
|
}
|
|
while (get1 > put1) {
|
|
j = zptr[get1]-1; if (j < 0) j += nblock;
|
|
c1 = block[j];
|
|
if (c1 == ssc) { zptr[put1] = j; put1--; };
|
|
get1--;
|
|
}
|
|
ftab[sbn] |= SETMASK;
|
|
}
|
|
|
|
/*--
|
|
Step 3:
|
|
The [ss] big bucket is now done. Record this fact,
|
|
and update the quadrant descriptors. Remember to
|
|
update quadrants in the overshoot area too, if
|
|
necessary. The "if (i < 255)" test merely skips
|
|
this updating for the last bucket processed, since
|
|
updating for the last bucket is pointless.
|
|
|
|
The quadrant array provides a way to incrementally
|
|
cache sort orderings, as they appear, so as to
|
|
make subsequent comparisons in fullGtU() complete
|
|
faster. For repetitive blocks this makes a big
|
|
difference (but not big enough to be able to avoid
|
|
randomisation for very repetitive data.)
|
|
|
|
The precise meaning is: at all times:
|
|
|
|
for 0 <= i < nblock and 0 <= j <= nblock
|
|
|
|
if block[i] != block[j],
|
|
|
|
then the relative values of quadrant[i] and
|
|
quadrant[j] are meaningless.
|
|
|
|
else {
|
|
if quadrant[i] < quadrant[j]
|
|
then the string starting at i lexicographically
|
|
precedes the string starting at j
|
|
|
|
else if quadrant[i] > quadrant[j]
|
|
then the string starting at j lexicographically
|
|
precedes the string starting at i
|
|
|
|
else
|
|
the relative ordering of the strings starting
|
|
at i and j has not yet been determined.
|
|
}
|
|
--*/
|
|
bigDone[ss] = True;
|
|
|
|
if (i < 255) {
|
|
Int32 bbStart = ftab[ss << 8] & CLEARMASK;
|
|
Int32 bbSize = (ftab[(ss+1) << 8] & CLEARMASK) - bbStart;
|
|
Int32 shifts = 0;
|
|
|
|
while ((bbSize >> shifts) > 65534) shifts++;
|
|
|
|
for (j = 0; j < bbSize; j++) {
|
|
Int32 a2update = zptr[bbStart + j];
|
|
UInt16 qVal = (UInt16)(j >> shifts);
|
|
quadrant[a2update] = qVal;
|
|
if (a2update < BZ_NUM_OVERSHOOT_BYTES)
|
|
quadrant[a2update + nblock] = qVal;
|
|
}
|
|
|
|
AssertH ( ( ((bbSize-1) >> shifts) <= 65535 ), 1002 );
|
|
}
|
|
|
|
/*--
|
|
Step 4:
|
|
Now scan this big bucket [ss] so as to synthesise the
|
|
sorted order for small buckets [t, ss] for all t != ss.
|
|
This will avoid doing Real Work in subsequent Step 1's.
|
|
--*/
|
|
for (j = 0; j <= 255; j++)
|
|
copy[j] = ftab[(j << 8) + ss] & CLEARMASK;
|
|
|
|
for (j = ftab[ss << 8] & CLEARMASK;
|
|
j < (ftab[(ss+1) << 8] & CLEARMASK);
|
|
j++) {
|
|
k = zptr[j]-1; if (k < 0) k += nblock;
|
|
c1 = block[k];
|
|
if ( ! bigDone[c1] ) {
|
|
zptr[copy[c1]] = k;
|
|
copy[c1] ++;
|
|
}
|
|
}
|
|
|
|
for (j = 0; j <= 255; j++) ftab[(j << 8) + ss] |= SETMASK;
|
|
}
|
|
if (s->verbosity >= 4)
|
|
VPrintf3( " %d pointers, %d sorted, %d scanned\n",
|
|
nblock, numQSorted, nblock - numQSorted );
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
static void randomiseBlock ( EState* s )
|
|
{
|
|
Int32 i;
|
|
BZ_RAND_INIT_MASK;
|
|
for (i = 0; i < 256; i++) s->inUse[i] = False;
|
|
|
|
for (i = 0; i < s->nblock; i++) {
|
|
BZ_RAND_UPD_MASK;
|
|
s->block[i] ^= BZ_RAND_MASK;
|
|
s->inUse[s->block[i]] = True;
|
|
}
|
|
}
|
|
|
|
|
|
/*---------------------------------------------*/
|
|
void _BZblockSort ( EState* s )
|
|
{
|
|
Int32 i;
|
|
|
|
s->workLimit = s->workFactor * (s->nblock - 1);
|
|
s->workDone = 0;
|
|
s->blockRandomised = False;
|
|
s->firstAttempt = True;
|
|
|
|
sortMain ( s );
|
|
|
|
if (s->verbosity >= 3)
|
|
VPrintf3( " %d work, %d block, ratio %5.2f\n",
|
|
s->workDone, s->nblock-1,
|
|
(float)(s->workDone) / (float)(s->nblock-1) );
|
|
|
|
if (s->workDone > s->workLimit && s->firstAttempt) {
|
|
if (s->verbosity >= 2)
|
|
VPrintf0( " sorting aborted; randomising block\n" );
|
|
randomiseBlock ( s );
|
|
s->workLimit = s->workDone = 0;
|
|
s->blockRandomised = True;
|
|
s->firstAttempt = False;
|
|
sortMain ( s );
|
|
if (s->verbosity >= 3)
|
|
VPrintf3( " %d work, %d block, ratio %f\n",
|
|
s->workDone, s->nblock-1,
|
|
(float)(s->workDone) / (float)(s->nblock-1) );
|
|
}
|
|
|
|
s->origPtr = -1;
|
|
for (i = 0; i < s->nblock; i++)
|
|
if (s->zptr[i] == 0)
|
|
{ s->origPtr = i; break; };
|
|
|
|
AssertH( s->origPtr != -1, 1003 );
|
|
}
|
|
|
|
/*-------------------------------------------------------------*/
|
|
/*--- end blocksort.c ---*/
|
|
/*-------------------------------------------------------------*/
|