NetBSD/sys/arch/hp300/dev/if_le.c

948 lines
23 KiB
C

/*
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)if_le.c 7.6 (Berkeley) 5/8/91
* $Id: if_le.c,v 1.8 1994/02/06 00:46:02 mycroft Exp $
*/
#include "le.h"
#if NLE > 0
#include "bpfilter.h"
/*
* AMD 7990 LANCE
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/buf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/netisr.h>
#include <net/route.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#include <machine/cpu.h>
#include <hp300/hp300/isr.h>
#include <machine/mtpr.h>
#include <hp300/dev/device.h>
#include <hp300/dev/if_lereg.h>
/* offsets for: ID, REGS, MEM, NVRAM */
int lestd[] = { 0, 0x4000, 0x8000, 0xC008 };
struct isr le_isr[NLE];
int ledebug = 0; /* console error messages */
/*
* Ethernet software status per interface.
*
* Each interface is referenced by a network interface structure,
* le_if, which the routing code uses to locate the interface.
* This structure contains the output queue for the interface, its address, ...
*/
struct le_softc {
struct arpcom sc_ac; /* common Ethernet structures */
#define sc_if sc_ac.ac_if /* network-visible interface */
#define sc_addr sc_ac.ac_enaddr /* hardware Ethernet address */
struct lereg0 *sc_r0; /* DIO registers */
struct lereg1 *sc_r1; /* LANCE registers */
struct lereg2 *sc_r2; /* dual-port RAM */
int sc_rmd; /* predicted next rmd to process */
int sc_tmd; /* next available tmd */
int sc_txcnt; /* # of transmit buffers in use */
/* stats */
int sc_runt;
int sc_jab;
int sc_merr;
int sc_babl;
int sc_cerr;
int sc_miss;
int sc_rown;
int sc_xint;
int sc_xown;
int sc_xown2;
int sc_uflo;
int sc_rxlen;
int sc_rxoff;
int sc_txoff;
int sc_busy;
short sc_iflags;
#if NBPFILTER > 0
caddr_t sc_bpf;
#endif
} le_softc[NLE];
/* access LANCE registers */
#define LERDWR(cntl, src, dst) \
do { \
(dst) = (src); \
} while (((cntl)->ler0_status & LE_ACK) == 0);
int leattach __P((struct hp_device *));
void lesetladrf __P((struct le_softc *));
void ledrinit __P((struct lereg2 *));
void lereset __P((struct le_softc *));
void leinit __P((int));
int lestart __P((struct ifnet *));
int leintr __P((int));
void lexint __P((struct le_softc *));
void lerint __P((struct le_softc *));
void leread __P((struct le_softc *, char *, int));
int leput __P((char *, struct mbuf *));
struct mbuf *leget __P((char *, int, int, struct ifnet *));
int leioctl __P((struct ifnet *, int, caddr_t));
void leerror __P((struct le_softc *, int));
void lererror __P((struct le_softc *, char *));
void lexerror __P((struct le_softc *));
int ether_output();
struct driver ledriver = {
leattach, "le",
};
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets.
*/
int
leattach(hd)
struct hp_device *hd;
{
register struct lereg0 *ler0;
register struct lereg2 *ler2;
struct lereg2 *lemem = 0;
struct le_softc *sc = &le_softc[hd->hp_unit];
struct ifnet *ifp = &sc->sc_if;
char *cp;
int i;
ler0 = sc->sc_r0 = (struct lereg0 *)(lestd[0] + (int)hd->hp_addr);
sc->sc_r1 = (struct lereg1 *)(lestd[1] + (int)hd->hp_addr);
ler2 = sc->sc_r2 = (struct lereg2 *)(lestd[2] + (int)hd->hp_addr);
if (ler0->ler0_id != LEID)
return(0);
le_isr[hd->hp_unit].isr_intr = leintr;
hd->hp_ipl = le_isr[hd->hp_unit].isr_ipl = LE_IPL(ler0->ler0_status);
le_isr[hd->hp_unit].isr_arg = hd->hp_unit;
ler0->ler0_id = 0xFF;
DELAY(100);
/*
* Read the ethernet address off the board, one nibble at a time.
*/
cp = (char *)(lestd[3] + (int)hd->hp_addr);
for (i = 0; i < sizeof(sc->sc_addr); i++) {
sc->sc_addr[i] = (*++cp & 0xF) << 4;
cp++;
sc->sc_addr[i] |= *++cp & 0xF;
cp++;
}
printf("le%d: hardware address %s\n", hd->hp_unit,
ether_sprintf(sc->sc_addr));
/*
* Setup for transmit/receive
*/
ler2->ler2_mode = LE_MODE;
ler2->ler2_rlen = LE_RLEN;
ler2->ler2_rdra = (int)lemem->ler2_rmd;
ler2->ler2_tlen = LE_TLEN;
ler2->ler2_tdra = (int)lemem->ler2_tmd;
isrlink(&le_isr[hd->hp_unit]);
ler0->ler0_status = LE_IE;
ifp->if_unit = hd->hp_unit;
ifp->if_name = "le";
ifp->if_mtu = ETHERMTU;
ifp->if_ioctl = leioctl;
ifp->if_output = ether_output;
ifp->if_start = lestart;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST |
IFF_NOTRAILERS;
#if NBPFILTER > 0
bpfattach(&sc->sc_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
if_attach(ifp);
return (1);
}
/*
* Set up the logical address filter
*/
void
lesetladrf(sc)
struct le_softc *sc;
{
struct lereg2 *ler2 = sc->sc_r2;
struct ifnet *ifp = &sc->sc_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast
* addresses through a crc generator, and then using the high
* order 6 bits as a index into the 64 bit logical address
* filter. The high order two bits select the word, while the
* rest of the bits select the bit within the word.
*/
ler2->ler2_ladrf[0] = 0;
ler2->ler2_ladrf[1] = 0;
ifp->if_flags &= ~IFF_ALLMULTI;
ETHER_FIRST_MULTI(step, &sc->sc_ac, enm);
while (enm != NULL) {
if (bcmp((caddr_t)&enm->enm_addrlo,
(caddr_t)&enm->enm_addrhi, sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast
* addresses. For now, just accept all
* multicasts, rather than trying to set only
* those filter bits needed to match the range.
* (At this time, the only use of address
* ranges is for IP multicast routing, for
* which the range is big enough to require all
* bits set.)
*/
ler2->ler2_ladrf[0] = 0xffffffff;
ler2->ler2_ladrf[1] = 0xffffffff;
ifp->if_flags |= IFF_ALLMULTI;
return;
}
/*
* One would think, given the AM7990 document's polynomial
* of 0x04c11db6, that this should be 0x6db88320 (the bit
* reversal of the AMD value), but that is not right. See
* the BASIC listing: bit 0 (our bit 31) must then be set.
*/
cp = (unsigned char *)&enm->enm_addrlo;
crc = 0xffffffff;
for (len = 6; --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if ((c & 0x01) ^ (crc & 0x01)) {
crc >>= 1;
crc = crc ^ 0xedb88320;
} else
crc >>= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc = crc >> 26;
/* Turn on the corresponding bit in the filter. */
ler2->ler2_ladrf[crc >> 5] |= 1 << (crc & 0x1f);
ETHER_NEXT_MULTI(step, enm);
}
}
void
ledrinit(ler2)
register struct lereg2 *ler2;
{
register struct lereg2 *lemem = 0;
register int i;
for (i = 0; i < LERBUF; i++) {
ler2->ler2_rmd[i].rmd0 = (int)lemem->ler2_rbuf[i];
ler2->ler2_rmd[i].rmd1 = LE_OWN;
ler2->ler2_rmd[i].rmd2 = -LEMTU;
ler2->ler2_rmd[i].rmd3 = 0;
}
for (i = 0; i < LETBUF; i++) {
ler2->ler2_tmd[i].tmd0 = (int)lemem->ler2_tbuf[i];
ler2->ler2_tmd[i].tmd1 = 0;
ler2->ler2_tmd[i].tmd2 = 0;
ler2->ler2_tmd[i].tmd3 = 0;
}
}
void
lereset(sc)
register struct le_softc *sc;
{
register struct lereg0 *ler0 = sc->sc_r0;
register struct lereg1 *ler1 = sc->sc_r1;
register struct lereg2 *ler2 = sc->sc_r2;
struct lereg2 *lemem = 0;
register int timo, stat;
#if NBPFILTER > 0
if (sc->sc_if.if_flags & IFF_PROMISC)
/* set the promiscuous bit */
ler2->ler2_mode = LE_MODE|0x8000;
else
#endif
ler2->ler2_mode = LE_MODE;
LERDWR(ler0, LE_CSR0, ler1->ler1_rap);
LERDWR(ler0, LE_STOP, ler1->ler1_rdp);
ler2->ler2_padr[0] = sc->sc_addr[1];
ler2->ler2_padr[1] = sc->sc_addr[0];
ler2->ler2_padr[2] = sc->sc_addr[3];
ler2->ler2_padr[3] = sc->sc_addr[2];
ler2->ler2_padr[4] = sc->sc_addr[5];
ler2->ler2_padr[5] = sc->sc_addr[4];
lesetladrf(sc);
ledrinit(ler2);
sc->sc_rmd = sc->sc_tmd = sc->sc_txcnt = 0;
LERDWR(ler0, LE_CSR1, ler1->ler1_rap);
LERDWR(ler0, (int)&lemem->ler2_mode, ler1->ler1_rdp);
LERDWR(ler0, LE_CSR2, ler1->ler1_rap);
LERDWR(ler0, 0, ler1->ler1_rdp);
LERDWR(ler0, LE_CSR3, ler1->ler1_rap);
LERDWR(ler0, LE_BSWP, ler1->ler1_rdp);
LERDWR(ler0, LE_CSR0, ler1->ler1_rap);
LERDWR(ler0, LE_INIT, ler1->ler1_rdp);
timo = 100000;
do {
if (--timo == 0) {
printf("le%d: init timeout, stat=0x%x\n",
sc->sc_if.if_unit, stat);
break;
}
LERDWR(ler0, ler1->ler1_rdp, stat);
} while ((stat & (LE_IDON | LE_ERR)) == 0);
if (stat & LE_ERR)
printf("le%d: init failed, stat=0x%x\n",
sc->sc_if.if_unit, stat);
else
LERDWR(ler0, LE_IDON, ler1->ler1_rdp);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
LERDWR(ler0, LE_STRT | LE_INEA, ler1->ler1_rdp);
}
/*
* Initialization of interface
*/
void
leinit(unit)
int unit;
{
struct le_softc *sc = &le_softc[unit];
register struct ifnet *ifp = &sc->sc_if;
int s;
/* not yet, if address still unknown */
if (ifp->if_addrlist == (struct ifaddr *)0)
return;
if ((ifp->if_flags & IFF_RUNNING) == 0) {
s = splimp();
ifp->if_flags |= IFF_RUNNING;
lereset(sc);
(void) lestart(ifp);
splx(s);
}
}
#define LENEXTTMP \
if (++bix == LETBUF) bix = 0, tmd = sc->sc_r2->ler2_tmd; else ++tmd
/*
* Start output on interface. Get another datagram to send
* off of the interface queue, and copy it to the interface
* before starting the output.
*/
int
lestart(ifp)
struct ifnet *ifp;
{
register struct le_softc *sc = &le_softc[ifp->if_unit];
register int bix;
register struct letmd *tmd;
register struct mbuf *m;
int len, gotone = 0;
if ((sc->sc_if.if_flags & IFF_RUNNING) == 0)
return (0);
bix = sc->sc_tmd;
tmd = &sc->sc_r2->ler2_tmd[bix];
do {
if (tmd->tmd1 & LE_OWN) {
if (gotone)
break;
sc->sc_xown2++;
return (0);
}
IF_DEQUEUE(&sc->sc_if.if_snd, m);
if (m == 0) {
if (gotone)
break;
return (0);
}
len = leput(sc->sc_r2->ler2_tbuf[bix], m);
#if NBPFILTER > 0
/*
* If bpf is listening on this interface, let it
* see the packet before we commit it to the wire.
*/
if (sc->sc_bpf)
bpf_tap(sc->sc_bpf, sc->sc_r2->ler2_tbuf[bix], len);
#endif
tmd->tmd3 = 0;
tmd->tmd2 = -len;
tmd->tmd1 = LE_OWN | LE_STP | LE_ENP;
LENEXTTMP;
gotone++;
} while (++sc->sc_txcnt < LETBUF);
sc->sc_tmd = bix;
sc->sc_if.if_flags |= IFF_OACTIVE;
/* transmit as soon as possible */
LERDWR(sc->sc_r0, LE_INEA|LE_TDMD, sc->sc_r1->ler1_rdp);
return (0);
}
int
leintr(unit)
register int unit;
{
register struct le_softc *sc = &le_softc[unit];
register struct lereg0 *ler0 = sc->sc_r0;
register struct lereg1 *ler1;
register int stat;
if ((ler0->ler0_status & LE_IR) == 0)
return(0);
if (ler0->ler0_status & LE_JAB) {
sc->sc_jab++;
lereset(sc);
return(1);
}
ler1 = sc->sc_r1;
LERDWR(ler0, ler1->ler1_rdp, stat);
if (stat & LE_SERR) {
leerror(sc, stat);
if (stat & LE_MERR) {
sc->sc_merr++;
lereset(sc);
return(1);
}
if (stat & LE_BABL)
sc->sc_babl++;
if (stat & LE_CERR)
sc->sc_cerr++;
if (stat & LE_MISS)
sc->sc_miss++;
LERDWR(ler0, LE_BABL|LE_CERR|LE_MISS|LE_INEA, ler1->ler1_rdp);
}
if ((stat & LE_RXON) == 0) {
sc->sc_rxoff++;
lereset(sc);
return(1);
}
if ((stat & LE_TXON) == 0) {
sc->sc_txoff++;
lereset(sc);
return(1);
}
if (stat & LE_RINT)
lerint(sc);
if (stat & LE_TINT)
lexint(sc);
return(1);
}
/*
* Ethernet interface transmitter interrupt.
* Start another output if more data to send.
*/
void
lexint(sc)
register struct le_softc *sc;
{
register struct letmd *tmd;
int bix, gotone = 0;
if ((sc->sc_if.if_flags & IFF_OACTIVE) == 0) {
sc->sc_xint++;
return;
}
if ((bix = sc->sc_tmd - sc->sc_txcnt) < 0)
bix += LETBUF;
tmd = &sc->sc_r2->ler2_tmd[bix];
do {
if (tmd->tmd1 & LE_OWN) {
if (gotone)
break;
sc->sc_xown++;
return;
}
/* clear interrupt */
LERDWR(sc->sc_r0, LE_TINT|LE_INEA, sc->sc_r1->ler1_rdp);
/* XXX documentation says BUFF not included in ERR */
if ((tmd->tmd1 & LE_ERR) || (tmd->tmd3 & LE_TBUFF)) {
lexerror(sc);
sc->sc_if.if_oerrors++;
if (tmd->tmd3 & (LE_TBUFF|LE_UFLO)) {
sc->sc_uflo++;
lereset(sc);
} else if (tmd->tmd3 & LE_LCOL)
sc->sc_if.if_collisions++;
else if (tmd->tmd3 & LE_RTRY)
sc->sc_if.if_collisions += 16;
}
else if (tmd->tmd1 & LE_ONE)
sc->sc_if.if_collisions++;
else if (tmd->tmd1 & LE_MORE)
/* what is the real number? */
sc->sc_if.if_collisions += 2;
else
sc->sc_if.if_opackets++;
LENEXTTMP;
gotone++;
} while (--sc->sc_txcnt > 0);
sc->sc_if.if_flags &= ~IFF_OACTIVE;
(void) lestart(&sc->sc_if);
}
#define LENEXTRMP \
if (++bix == LERBUF) bix = 0, rmd = sc->sc_r2->ler2_rmd; else ++rmd
/*
* Ethernet interface receiver interrupt.
* If input error just drop packet.
* Decapsulate packet based on type and pass to type specific
* higher-level input routine.
*/
void
lerint(sc)
register struct le_softc *sc;
{
register int bix = sc->sc_rmd;
register struct lermd *rmd = &sc->sc_r2->ler2_rmd[bix];
/*
* Out of sync with hardware, should never happen?
*/
if (rmd->rmd1 & LE_OWN) {
sc->sc_rown++;
do {
LENEXTRMP;
} while ((rmd->rmd1 & LE_OWN) && bix != sc->sc_rmd);
if (bix == sc->sc_rmd) {
printf("le%d: rint with no buffer\n",
sc->sc_if.if_unit);
LERDWR(sc->sc_r0, LE_RINT|LE_INEA, sc->sc_r1->ler1_rdp);
return;
}
}
/*
* Process all buffers with valid data
*/
while ((rmd->rmd1 & LE_OWN) == 0) {
int len = rmd->rmd3;
/* Clear interrupt to avoid race condition */
LERDWR(sc->sc_r0, LE_RINT|LE_INEA, sc->sc_r1->ler1_rdp);
if (rmd->rmd1 & LE_ERR) {
sc->sc_rmd = bix;
lererror(sc, "bad packet");
sc->sc_if.if_ierrors++;
} else if ((rmd->rmd1 & (LE_STP|LE_ENP)) != (LE_STP|LE_ENP)) {
/*
* Find the end of the packet so we can see how long
* it was. We still throw it away.
*/
do {
LERDWR(sc->sc_r0, LE_RINT|LE_INEA,
sc->sc_r1->ler1_rdp);
rmd->rmd3 = 0;
rmd->rmd1 = LE_OWN;
LENEXTRMP;
} while (!(rmd->rmd1 & (LE_OWN|LE_ERR|LE_STP|LE_ENP)));
sc->sc_rmd = bix;
lererror(sc, "chained buffer");
sc->sc_rxlen++;
/*
* If search terminated without successful completion
* we reset the hardware (conservative).
*/
if ((rmd->rmd1 & (LE_OWN|LE_ERR|LE_STP|LE_ENP)) !=
LE_ENP) {
lereset(sc);
return;
}
} else
leread(sc, sc->sc_r2->ler2_rbuf[bix], len);
rmd->rmd3 = 0;
rmd->rmd1 = LE_OWN;
LENEXTRMP;
}
sc->sc_rmd = bix;
}
void
leread(sc, buf, len)
register struct le_softc *sc;
char *buf;
int len;
{
register struct ether_header *et;
register struct ifnet *ifp = &sc->sc_if;
struct mbuf *m;
ifp->if_ipackets++;
et = (struct ether_header *)buf;
/* adjust input length to account for header and CRC */
len -= sizeof(struct ether_header) + 4;
if (len <= 0) {
if (ledebug)
log(LOG_WARNING,
"le%d: ierror(runt packet): from %s: len=%d\n",
sc->sc_if.if_unit, ether_sprintf(et->ether_shost),
len);
sc->sc_runt++;
ifp->if_ierrors++;
return;
}
#if NBPFILTER > 0
/*
* Check if there's a bpf filter listening on this interface.
* If so, hand off the raw packet to bpf, then discard things
* not destined for us (but be sure to keep broadcast/multicast).
*/
if (sc->sc_bpf) {
bpf_tap(sc->sc_bpf, buf, len + sizeof(struct ether_header));
if ((ifp->if_flags & IFF_PROMISC) &&
(et->ether_dhost[0] & 1) == 0 &&
bcmp(et->ether_dhost, sc->sc_addr,
sizeof(et->ether_dhost)) != 0 &&
bcmp(et->ether_dhost, etherbroadcastaddr,
sizeof(et->ether_dhost)) != 0)
return;
}
#endif
m = leget(buf, len, 0, ifp);
if (m == 0)
return;
ether_input(ifp, et, m);
}
/*
* Routine to copy from mbuf chain to transmit
* buffer in board local memory.
*/
int
leput(lebuf, m)
register char *lebuf;
register struct mbuf *m;
{
register struct mbuf *mp;
register int len, tlen = 0;
for (mp = m; mp; mp = mp->m_next) {
len = mp->m_len;
if (len == 0)
continue;
tlen += len;
bcopy(mtod(mp, char *), lebuf, len);
lebuf += len;
}
m_freem(m);
if (tlen < LEMINSIZE) {
bzero(lebuf, LEMINSIZE - tlen);
tlen = LEMINSIZE;
}
return(tlen);
}
/*
* Routine to copy from board local memory into mbufs.
*/
struct mbuf *
leget(lebuf, totlen, off0, ifp)
char *lebuf;
int totlen, off0;
struct ifnet *ifp;
{
register struct mbuf *m;
struct mbuf *top = 0, **mp = &top;
register int off = off0, len;
register char *cp;
char *epkt;
lebuf += sizeof (struct ether_header);
cp = lebuf;
epkt = cp + totlen;
if (off) {
cp += off + 2 * sizeof(u_short);
totlen -= 2 * sizeof(u_short);
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = totlen;
m->m_len = MHLEN;
while (totlen > 0) {
if (top) {
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0) {
m_freem(top);
return (0);
}
m->m_len = MLEN;
}
len = min(totlen, epkt - cp);
if (len >= MINCLSIZE) {
MCLGET(m, M_DONTWAIT);
if (m->m_flags & M_EXT)
m->m_len = len = min(len, MCLBYTES);
else
len = m->m_len;
} else {
/*
* Place initial small packet/header at end of mbuf.
*/
if (len < m->m_len) {
if (top == 0 && len + max_linkhdr <= m->m_len)
m->m_data += max_linkhdr;
m->m_len = len;
} else
len = m->m_len;
}
bcopy(cp, mtod(m, caddr_t), (unsigned)len);
cp += len;
*mp = m;
mp = &m->m_next;
totlen -= len;
if (cp == epkt)
cp = lebuf;
}
return (top);
}
/*
* Process an ioctl request.
*/
int
leioctl(ifp, cmd, data)
register struct ifnet *ifp;
int cmd;
caddr_t data;
{
register struct ifaddr *ifa;
struct le_softc *sc = &le_softc[ifp->if_unit];
int s = splimp(), error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
leinit(ifp->if_unit); /* before arpwhohas */
((struct arpcom *)ifp)->ac_ipaddr =
IA_SIN(ifa)->sin_addr;
arpwhohas((struct arpcom *)ifp, &IA_SIN(ifa)->sin_addr);
break;
#endif
#ifdef NS
case AF_NS:
{
register struct ns_addr *ina = &(IA_SNS(ifa)->sns_addr);
if (ns_nullhost(*ina))
ina->x_host = *(union ns_host *)(sc->sc_addr);
else {
/*
* The manual says we can't change the address
* while the receiver is armed,
* so reset everything
*/
ifp->if_flags &= ~IFF_RUNNING;
LERDWR(sc->sc_r0, LE_STOP, sc->sc_r1->ler1_rdp);
bcopy((caddr_t)ina->x_host.c_host,
(caddr_t)sc->sc_addr, sizeof(sc->sc_addr));
}
leinit(ifp->if_unit); /* does le_setaddr() */
break;
}
#endif
default:
leinit(ifp->if_unit);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
ifp->if_flags & IFF_RUNNING) {
ifp->if_flags &= ~IFF_RUNNING;
LERDWR(sc->sc_r0, LE_STOP, sc->sc_r1->ler1_rdp);
} else if (ifp->if_flags & IFF_UP &&
(ifp->if_flags & IFF_RUNNING) == 0)
leinit(ifp->if_unit);
/*
* If the state of the promiscuous bit changes, the interface
* must be reset to effect the change.
*/
if (((ifp->if_flags ^ sc->sc_iflags) & IFF_PROMISC) &&
(ifp->if_flags & IFF_RUNNING)) {
sc->sc_iflags = ifp->if_flags;
lereset(sc);
lestart(ifp);
}
break;
case SIOCADDMULTI:
error = ether_addmulti((struct ifreq *)data, &sc->sc_ac);
goto update_multicast;
case SIOCDELMULTI:
error = ether_delmulti((struct ifreq *)data, &sc->sc_ac);
update_multicast:
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware
* filter accordingly.
*/
lereset(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
void
leerror(sc, stat)
register struct le_softc *sc;
int stat;
{
if (!ledebug)
return;
/*
* Not all transceivers implement heartbeat
* so we only log CERR once.
*/
if ((stat & LE_CERR) && sc->sc_cerr)
return;
log(LOG_WARNING,
"le%d: error: stat=%b\n", sc->sc_if.if_unit, stat,
"\20\20ERR\17BABL\16CERR\15MISS\14MERR\13RINT\12TINT\11IDON\10INTR\07INEA\06RXON\05TXON\04TDMD\03STOP\02STRT\01INIT");
}
void
lererror(sc, msg)
register struct le_softc *sc;
char *msg;
{
register struct lermd *rmd;
int len;
if (!ledebug)
return;
rmd = &sc->sc_r2->ler2_rmd[sc->sc_rmd];
len = rmd->rmd3;
log(LOG_WARNING,
"le%d: ierror(%s): from %s: buf=%d, len=%d, rmd1=%b\n",
sc->sc_if.if_unit, msg,
len > 11 ? ether_sprintf(&sc->sc_r2->ler2_rbuf[sc->sc_rmd][6]) : "unknown",
sc->sc_rmd, len, rmd->rmd1,
"\20\20OWN\17ERR\16FRAM\15OFLO\14CRC\13RBUF\12STP\11ENP");
}
void
lexerror(sc)
register struct le_softc *sc;
{
register struct letmd *tmd;
register int len;
if (!ledebug)
return;
tmd = sc->sc_r2->ler2_tmd;
len = -tmd->tmd2;
log(LOG_WARNING,
"le%d: oerror: to %s: buf=%d, len=%d, tmd1=%b, tmd3=%b\n",
sc->sc_if.if_unit,
len > 5 ? ether_sprintf(&sc->sc_r2->ler2_tbuf[0][0]) : "unknown",
0, len, tmd->tmd1,
"\20\20OWN\17ERR\16RES\15MORE\14ONE\13DEF\12STP\11ENP",
tmd->tmd3,
"\20\20BUFF\17UFLO\16RES\15LCOL\14LCAR\13RTRY");
}
#endif