NetBSD/sys/netinet/if_arp.c

1710 lines
42 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* $NetBSD: if_arp.c,v 1.158 2014/06/03 01:24:32 ozaki-r Exp $ */
/*-
* Copyright (c) 1998, 2000, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_ether.c 8.2 (Berkeley) 9/26/94
*/
/*
* Ethernet address resolution protocol.
* TODO:
* add "inuse/lock" bit (or ref. count) along with valid bit
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_arp.c,v 1.158 2014/06/03 01:24:32 ozaki-r Exp $");
#include "opt_ddb.h"
#include "opt_inet.h"
#ifdef INET
#include "bridge.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/domain.h>
#include <sys/sysctl.h>
#include <sys/socketvar.h>
#include <sys/percpu.h>
#include <net/ethertypes.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_token.h>
#include <net/if_types.h>
#include <net/if_ether.h>
#include <net/route.h>
#include <net/net_stats.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_inarp.h>
#include "arcnet.h"
#if NARCNET > 0
#include <net/if_arc.h>
#endif
#include "fddi.h"
#if NFDDI > 0
#include <net/if_fddi.h>
#endif
#include "token.h"
#include "carp.h"
#if NCARP > 0
#include <netinet/ip_carp.h>
#endif
#define SIN(s) ((struct sockaddr_in *)s)
#define SRP(s) ((struct sockaddr_inarp *)s)
/*
* ARP trailer negotiation. Trailer protocol is not IP specific,
* but ARP request/response use IP addresses.
*/
#define ETHERTYPE_IPTRAILERS ETHERTYPE_TRAIL
/* timer values */
int arpt_prune = (5*60*1); /* walk list every 5 minutes */
int arpt_keep = (20*60); /* once resolved, good for 20 more minutes */
int arpt_down = 20; /* once declared down, don't send for 20 secs */
int arpt_refresh = (5*60); /* time left before refreshing */
#define rt_expire rt_rmx.rmx_expire
#define rt_pksent rt_rmx.rmx_pksent
static struct sockaddr *arp_setgate(struct rtentry *, struct sockaddr *,
const struct sockaddr *);
static void arptfree(struct llinfo_arp *);
static void arptimer(void *);
static struct llinfo_arp *arplookup1(struct mbuf *, const struct in_addr *,
int, int, struct rtentry *);
static struct llinfo_arp *arplookup(struct mbuf *, const struct in_addr *,
int, int);
static void in_arpinput(struct mbuf *);
static void arp_drainstub(void);
LIST_HEAD(, llinfo_arp) llinfo_arp;
struct ifqueue arpintrq = {
.ifq_head = NULL,
.ifq_tail = NULL,
.ifq_len = 0,
.ifq_maxlen = 50,
.ifq_drops = 0,
};
int arp_inuse, arp_allocated;
int arp_maxtries = 5;
int useloopback = 1; /* use loopback interface for local traffic */
int arpinit_done = 0;
static percpu_t *arpstat_percpu;
#define ARP_STAT_GETREF() _NET_STAT_GETREF(arpstat_percpu)
#define ARP_STAT_PUTREF() _NET_STAT_PUTREF(arpstat_percpu)
#define ARP_STATINC(x) _NET_STATINC(arpstat_percpu, x)
#define ARP_STATADD(x, v) _NET_STATADD(arpstat_percpu, x, v)
struct callout arptimer_ch;
/* revarp state */
struct in_addr myip, srv_ip;
int myip_initialized = 0;
int revarp_in_progress = 0;
struct ifnet *myip_ifp = NULL;
#ifdef DDB
static void db_print_sa(const struct sockaddr *);
static void db_print_ifa(struct ifaddr *);
static void db_print_llinfo(void *);
static int db_show_rtentry(struct rtentry *, void *);
#endif
static int arp_drainwanted;
static int log_movements = 1;
static int log_permanent_modify = 1;
static int log_wrong_iface = 1;
/*
* this should be elsewhere.
*/
static char *
lla_snprintf(u_int8_t *, int);
static char *
lla_snprintf(u_int8_t *adrp, int len)
{
#define NUMBUFS 3
static char buf[NUMBUFS][16*3];
static int bnum = 0;
int i;
char *p;
p = buf[bnum];
*p++ = hexdigits[(*adrp)>>4];
*p++ = hexdigits[(*adrp++)&0xf];
for (i=1; i<len && i<16; i++) {
*p++ = ':';
*p++ = hexdigits[(*adrp)>>4];
*p++ = hexdigits[(*adrp++)&0xf];
}
*p = 0;
p = buf[bnum];
bnum = (bnum + 1) % NUMBUFS;
return p;
}
DOMAIN_DEFINE(arpdomain); /* forward declare and add to link set */
static void
arp_fasttimo(void)
{
if (arp_drainwanted) {
arp_drain();
arp_drainwanted = 0;
}
}
const struct protosw arpsw[] = {
{ .pr_type = 0,
.pr_domain = &arpdomain,
.pr_protocol = 0,
.pr_flags = 0,
.pr_input = 0,
.pr_output = 0,
.pr_ctlinput = 0,
.pr_ctloutput = 0,
.pr_usrreqs = 0,
.pr_init = arp_init,
.pr_fasttimo = arp_fasttimo,
.pr_slowtimo = 0,
.pr_drain = arp_drainstub,
}
};
struct domain arpdomain = {
.dom_family = PF_ARP,
.dom_name = "arp",
.dom_protosw = arpsw,
.dom_protoswNPROTOSW = &arpsw[__arraycount(arpsw)],
};
/*
* ARP table locking.
*
* to prevent lossage vs. the arp_drain routine (which may be called at
* any time, including in a device driver context), we do two things:
*
* 1) manipulation of la->la_hold is done at splnet() (for all of
* about two instructions).
*
* 2) manipulation of the arp table's linked list is done under the
* protection of the ARP_LOCK; if arp_drain() or arptimer is called
* while the arp table is locked, we punt and try again later.
*/
static int arp_locked;
static inline int arp_lock_try(int);
static inline void arp_unlock(void);
static inline int
arp_lock_try(int recurse)
{
int s;
/*
* Use splvm() -- we're blocking things that would cause
* mbuf allocation.
*/
s = splvm();
if (!recurse && arp_locked) {
splx(s);
return 0;
}
arp_locked++;
splx(s);
return 1;
}
static inline void
arp_unlock(void)
{
int s;
s = splvm();
arp_locked--;
splx(s);
}
#ifdef DIAGNOSTIC
#define ARP_LOCK(recurse) \
do { \
if (arp_lock_try(recurse) == 0) { \
printf("%s:%d: arp already locked\n", __FILE__, __LINE__); \
panic("arp_lock"); \
} \
} while (/*CONSTCOND*/ 0)
#define ARP_LOCK_CHECK() \
do { \
if (arp_locked == 0) { \
printf("%s:%d: arp lock not held\n", __FILE__, __LINE__); \
panic("arp lock check"); \
} \
} while (/*CONSTCOND*/ 0)
#else
#define ARP_LOCK(x) (void) arp_lock_try(x)
#define ARP_LOCK_CHECK() /* nothing */
#endif
#define ARP_UNLOCK() arp_unlock()
static void sysctl_net_inet_arp_setup(struct sysctllog **);
void
arp_init(void)
{
sysctl_net_inet_arp_setup(NULL);
arpstat_percpu = percpu_alloc(sizeof(uint64_t) * ARP_NSTATS);
}
static void
arp_drainstub(void)
{
arp_drainwanted = 1;
}
/*
* ARP protocol drain routine. Called when memory is in short supply.
* Called at splvm(); don't acquire softnet_lock as can be called from
* hardware interrupt handlers.
*/
void
arp_drain(void)
{
struct llinfo_arp *la, *nla;
int count = 0;
struct mbuf *mold;
KERNEL_LOCK(1, NULL);
if (arp_lock_try(0) == 0) {
KERNEL_UNLOCK_ONE(NULL);
return;
}
for (la = LIST_FIRST(&llinfo_arp); la != NULL; la = nla) {
nla = LIST_NEXT(la, la_list);
mold = la->la_hold;
la->la_hold = 0;
if (mold) {
m_freem(mold);
count++;
}
}
ARP_UNLOCK();
ARP_STATADD(ARP_STAT_DFRDROPPED, count);
KERNEL_UNLOCK_ONE(NULL);
}
/*
* Timeout routine. Age arp_tab entries periodically.
*/
/* ARGSUSED */
static void
arptimer(void *arg)
{
struct llinfo_arp *la, *nla;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
if (arp_lock_try(0) == 0) {
/* get it later.. */
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
return;
}
callout_reset(&arptimer_ch, arpt_prune * hz, arptimer, NULL);
for (la = LIST_FIRST(&llinfo_arp); la != NULL; la = nla) {
struct rtentry *rt = la->la_rt;
nla = LIST_NEXT(la, la_list);
if (rt->rt_expire == 0)
continue;
if ((rt->rt_expire - time_second) < arpt_refresh &&
rt->rt_pksent > (time_second - arpt_keep)) {
/*
* If the entry has been used during since last
* refresh, try to renew it before deleting.
*/
arprequest(rt->rt_ifp,
&satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
&satocsin(rt_getkey(rt))->sin_addr,
CLLADDR(rt->rt_ifp->if_sadl));
} else if (rt->rt_expire <= time_second)
arptfree(la); /* timer has expired; clear */
}
ARP_UNLOCK();
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* We set the gateway for RTF_CLONING routes to a "prototype"
* link-layer sockaddr whose interface type (if_type) and interface
* index (if_index) fields are prepared.
*/
static struct sockaddr *
arp_setgate(struct rtentry *rt, struct sockaddr *gate,
const struct sockaddr *netmask)
{
const struct ifnet *ifp = rt->rt_ifp;
uint8_t namelen = strlen(ifp->if_xname);
uint8_t addrlen = ifp->if_addrlen;
/*
* XXX: If this is a manually added route to interface
* such as older version of routed or gated might provide,
* restore cloning bit.
*/
if ((rt->rt_flags & RTF_HOST) == 0 && netmask != NULL &&
satocsin(netmask)->sin_addr.s_addr != 0xffffffff)
rt->rt_flags |= RTF_CLONING;
if (rt->rt_flags & RTF_CLONING) {
union {
struct sockaddr sa;
struct sockaddr_storage ss;
struct sockaddr_dl sdl;
} u;
/*
* Case 1: This route should come from a route to iface.
*/
sockaddr_dl_init(&u.sdl, sizeof(u.ss),
ifp->if_index, ifp->if_type, NULL, namelen, NULL, addrlen);
rt_setgate(rt, &u.sa);
gate = rt->rt_gateway;
}
return gate;
}
/*
* Parallel to llc_rtrequest.
*/
void
arp_rtrequest(int req, struct rtentry *rt, const struct rt_addrinfo *info)
{
struct sockaddr *gate = rt->rt_gateway;
struct llinfo_arp *la = (struct llinfo_arp *)rt->rt_llinfo;
size_t allocsize;
struct mbuf *mold;
int s;
struct in_ifaddr *ia;
struct ifaddr *ifa;
struct ifnet *ifp = rt->rt_ifp;
if (!arpinit_done) {
arpinit_done = 1;
/*
* We generate expiration times from time_second
* so avoid accidentally creating permanent routes.
*/
if (time_second == 0) {
struct timespec ts;
ts.tv_sec = 1;
ts.tv_nsec = 0;
tc_setclock(&ts);
}
callout_init(&arptimer_ch, CALLOUT_MPSAFE);
callout_reset(&arptimer_ch, hz, arptimer, NULL);
}
if (req == RTM_LLINFO_UPD) {
struct in_addr *in;
if ((ifa = info->rti_ifa) == NULL)
return;
in = &ifatoia(ifa)->ia_addr.sin_addr;
arprequest(ifa->ifa_ifp, in, in,
CLLADDR(ifa->ifa_ifp->if_sadl));
return;
}
if ((rt->rt_flags & RTF_GATEWAY) != 0) {
if (req != RTM_ADD)
return;
/*
* linklayers with particular link MTU limitation.
*/
switch(ifp->if_type) {
#if NFDDI > 0
case IFT_FDDI:
if (ifp->if_mtu > FDDIIPMTU)
rt->rt_rmx.rmx_mtu = FDDIIPMTU;
break;
#endif
#if NARC > 0
case IFT_ARCNET:
{
int arcipifmtu;
if (ifp->if_flags & IFF_LINK0)
arcipifmtu = arc_ipmtu;
else
arcipifmtu = ARCMTU;
if (ifp->if_mtu > arcipifmtu)
rt->rt_rmx.rmx_mtu = arcipifmtu;
break;
}
#endif
}
return;
}
ARP_LOCK(1); /* we may already be locked here. */
switch (req) {
case RTM_SETGATE:
gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
break;
case RTM_ADD:
gate = arp_setgate(rt, gate, info->rti_info[RTAX_NETMASK]);
if (rt->rt_flags & RTF_CLONING) {
/*
* Give this route an expiration time, even though
* it's a "permanent" route, so that routes cloned
* from it do not need their expiration time set.
*/
rt->rt_expire = time_second;
/*
* linklayers with particular link MTU limitation.
*/
switch (ifp->if_type) {
#if NFDDI > 0
case IFT_FDDI:
if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
(rt->rt_rmx.rmx_mtu > FDDIIPMTU ||
(rt->rt_rmx.rmx_mtu == 0 &&
ifp->if_mtu > FDDIIPMTU)))
rt->rt_rmx.rmx_mtu = FDDIIPMTU;
break;
#endif
#if NARC > 0
case IFT_ARCNET:
{
int arcipifmtu;
if (ifp->if_flags & IFF_LINK0)
arcipifmtu = arc_ipmtu;
else
arcipifmtu = ARCMTU;
if ((rt->rt_rmx.rmx_locks & RTV_MTU) == 0 &&
(rt->rt_rmx.rmx_mtu > arcipifmtu ||
(rt->rt_rmx.rmx_mtu == 0 &&
ifp->if_mtu > arcipifmtu)))
rt->rt_rmx.rmx_mtu = arcipifmtu;
break;
}
#endif
}
break;
}
/* Announce a new entry if requested. */
if (rt->rt_flags & RTF_ANNOUNCE) {
arprequest(ifp,
&satocsin(rt_getkey(rt))->sin_addr,
&satocsin(rt_getkey(rt))->sin_addr,
CLLADDR(satocsdl(gate)));
}
/*FALLTHROUGH*/
case RTM_RESOLVE:
if (gate->sa_family != AF_LINK ||
gate->sa_len < sockaddr_dl_measure(0, ifp->if_addrlen)) {
log(LOG_DEBUG, "arp_rtrequest: bad gateway value\n");
break;
}
satosdl(gate)->sdl_type = ifp->if_type;
satosdl(gate)->sdl_index = ifp->if_index;
if (la != NULL)
break; /* This happens on a route change */
/*
* Case 2: This route may come from cloning, or a manual route
* add with a LL address.
*/
switch (ifp->if_type) {
#if NTOKEN > 0
case IFT_ISO88025:
allocsize = sizeof(*la) + sizeof(struct token_rif);
break;
#endif /* NTOKEN > 0 */
default:
allocsize = sizeof(*la);
}
R_Malloc(la, struct llinfo_arp *, allocsize);
rt->rt_llinfo = (void *)la;
if (la == NULL) {
log(LOG_DEBUG, "arp_rtrequest: malloc failed\n");
break;
}
arp_inuse++, arp_allocated++;
memset(la, 0, allocsize);
la->la_rt = rt;
rt->rt_flags |= RTF_LLINFO;
LIST_INSERT_HEAD(&llinfo_arp, la, la_list);
INADDR_TO_IA(satocsin(rt_getkey(rt))->sin_addr, ia);
while (ia && ia->ia_ifp != ifp)
NEXT_IA_WITH_SAME_ADDR(ia);
if (ia) {
/*
* This test used to be
* if (lo0ifp->if_flags & IFF_UP)
* It allowed local traffic to be forced through
* the hardware by configuring the loopback down.
* However, it causes problems during network
* configuration for boards that can't receive
* packets they send. It is now necessary to clear
* "useloopback" and remove the route to force
* traffic out to the hardware.
*
* In 4.4BSD, the above "if" statement checked
* rt->rt_ifa against rt_getkey(rt). It was changed
* to the current form so that we can provide a
* better support for multiple IPv4 addresses on a
* interface.
*/
rt->rt_expire = 0;
if (sockaddr_dl_init(satosdl(gate), gate->sa_len,
ifp->if_index, ifp->if_type, NULL, 0,
CLLADDR(ifp->if_sadl), ifp->if_addrlen) == NULL) {
panic("%s(%s): sockaddr_dl_init cannot fail",
__func__, ifp->if_xname);
}
if (useloopback)
ifp = rt->rt_ifp = lo0ifp;
/*
* make sure to set rt->rt_ifa to the interface
* address we are using, otherwise we will have trouble
* with source address selection.
*/
ifa = &ia->ia_ifa;
if (ifa != rt->rt_ifa)
rt_replace_ifa(rt, ifa);
}
break;
case RTM_DELETE:
if (la == NULL)
break;
arp_inuse--;
LIST_REMOVE(la, la_list);
rt->rt_llinfo = NULL;
rt->rt_flags &= ~RTF_LLINFO;
s = splnet();
mold = la->la_hold;
la->la_hold = 0;
splx(s);
if (mold)
m_freem(mold);
Free((void *)la);
}
ARP_UNLOCK();
}
/*
* Broadcast an ARP request. Caller specifies:
* - arp header source ip address
* - arp header target ip address
* - arp header source ethernet address
*/
void
arprequest(struct ifnet *ifp,
const struct in_addr *sip, const struct in_addr *tip,
const u_int8_t *enaddr)
{
struct mbuf *m;
struct arphdr *ah;
struct sockaddr sa;
uint64_t *arps;
if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
return;
MCLAIM(m, &arpdomain.dom_mowner);
switch (ifp->if_type) {
case IFT_IEEE1394:
m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
ifp->if_addrlen;
break;
default:
m->m_len = sizeof(*ah) + 2 * sizeof(struct in_addr) +
2 * ifp->if_addrlen;
break;
}
m->m_pkthdr.len = m->m_len;
MH_ALIGN(m, m->m_len);
ah = mtod(m, struct arphdr *);
memset(ah, 0, m->m_len);
switch (ifp->if_type) {
case IFT_IEEE1394: /* RFC2734 */
/* fill it now for ar_tpa computation */
ah->ar_hrd = htons(ARPHRD_IEEE1394);
break;
default:
/* ifp->if_output will fill ar_hrd */
break;
}
ah->ar_pro = htons(ETHERTYPE_IP);
ah->ar_hln = ifp->if_addrlen; /* hardware address length */
ah->ar_pln = sizeof(struct in_addr); /* protocol address length */
ah->ar_op = htons(ARPOP_REQUEST);
memcpy(ar_sha(ah), enaddr, ah->ar_hln);
memcpy(ar_spa(ah), sip, ah->ar_pln);
memcpy(ar_tpa(ah), tip, ah->ar_pln);
sa.sa_family = AF_ARP;
sa.sa_len = 2;
m->m_flags |= M_BCAST;
arps = ARP_STAT_GETREF();
arps[ARP_STAT_SNDTOTAL]++;
arps[ARP_STAT_SENDREQUEST]++;
ARP_STAT_PUTREF();
(*ifp->if_output)(ifp, m, &sa, NULL);
}
/*
* Resolve an IP address into an ethernet address. If success,
* desten is filled in. If there is no entry in arptab,
* set one up and broadcast a request for the IP address.
* Hold onto this mbuf and resend it once the address
* is finally resolved. A return value of 1 indicates
* that desten has been filled in and the packet should be sent
* normally; a 0 return indicates that the packet has been
* taken over here, either now or for later transmission.
*/
int
arpresolve(struct ifnet *ifp, struct rtentry *rt, struct mbuf *m,
const struct sockaddr *dst, u_char *desten)
{
struct llinfo_arp *la;
const struct sockaddr_dl *sdl;
struct mbuf *mold;
int s;
if ((la = arplookup1(m, &satocsin(dst)->sin_addr, 1, 0, rt)) != NULL)
rt = la->la_rt;
if (la == NULL || rt == NULL) {
ARP_STATINC(ARP_STAT_ALLOCFAIL);
log(LOG_DEBUG,
"arpresolve: can't allocate llinfo on %s for %s\n",
ifp->if_xname, in_fmtaddr(satocsin(dst)->sin_addr));
m_freem(m);
return 0;
}
sdl = satocsdl(rt->rt_gateway);
/*
* Check the address family and length is valid, the address
* is resolved; otherwise, try to resolve.
*/
if ((rt->rt_expire == 0 || rt->rt_expire > time_second) &&
sdl->sdl_family == AF_LINK && sdl->sdl_alen != 0) {
memcpy(desten, CLLADDR(sdl),
min(sdl->sdl_alen, ifp->if_addrlen));
rt->rt_pksent = time_second; /* Time for last pkt sent */
return 1;
}
/*
* There is an arptab entry, but no ethernet address
* response yet. Replace the held mbuf with this
* latest one.
*/
ARP_STATINC(ARP_STAT_DFRTOTAL);
s = splnet();
mold = la->la_hold;
la->la_hold = m;
splx(s);
if (mold) {
ARP_STATINC(ARP_STAT_DFRDROPPED);
m_freem(mold);
}
/*
* Re-send the ARP request when appropriate.
*/
#ifdef DIAGNOSTIC
if (rt->rt_expire == 0) {
/* This should never happen. (Should it? -gwr) */
printf("arpresolve: unresolved and rt_expire == 0\n");
/* Set expiration time to now (expired). */
rt->rt_expire = time_second;
}
#endif
if (rt->rt_expire) {
rt->rt_flags &= ~RTF_REJECT;
if (la->la_asked == 0 || rt->rt_expire != time_second) {
rt->rt_expire = time_second;
if (la->la_asked++ < arp_maxtries) {
arprequest(ifp,
&satocsin(rt->rt_ifa->ifa_addr)->sin_addr,
&satocsin(dst)->sin_addr,
#if NCARP > 0
(rt->rt_ifp->if_type == IFT_CARP) ?
CLLADDR(rt->rt_ifp->if_sadl):
#endif
CLLADDR(ifp->if_sadl));
} else {
rt->rt_flags |= RTF_REJECT;
rt->rt_expire += arpt_down;
la->la_asked = 0;
}
}
}
return 0;
}
/*
* Common length and type checks are done here,
* then the protocol-specific routine is called.
*/
void
arpintr(void)
{
struct mbuf *m;
struct arphdr *ar;
int s;
int arplen;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
while (arpintrq.ifq_head) {
s = splnet();
IF_DEQUEUE(&arpintrq, m);
splx(s);
if (m == 0 || (m->m_flags & M_PKTHDR) == 0)
panic("arpintr");
MCLAIM(m, &arpdomain.dom_mowner);
ARP_STATINC(ARP_STAT_RCVTOTAL);
/*
* First, make sure we have at least struct arphdr.
*/
if (m->m_len < sizeof(struct arphdr) ||
(ar = mtod(m, struct arphdr *)) == NULL)
goto badlen;
switch (m->m_pkthdr.rcvif->if_type) {
case IFT_IEEE1394:
arplen = sizeof(struct arphdr) +
ar->ar_hln + 2 * ar->ar_pln;
break;
default:
arplen = sizeof(struct arphdr) +
2 * ar->ar_hln + 2 * ar->ar_pln;
break;
}
if (/* XXX ntohs(ar->ar_hrd) == ARPHRD_ETHER && */
m->m_len >= arplen)
switch (ntohs(ar->ar_pro)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPTRAILERS:
in_arpinput(m);
continue;
default:
ARP_STATINC(ARP_STAT_RCVBADPROTO);
}
else {
badlen:
ARP_STATINC(ARP_STAT_RCVBADLEN);
}
m_freem(m);
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* ARP for Internet protocols on 10 Mb/s Ethernet.
* Algorithm is that given in RFC 826.
* In addition, a sanity check is performed on the sender
* protocol address, to catch impersonators.
* We no longer handle negotiations for use of trailer protocol:
* Formerly, ARP replied for protocol type ETHERTYPE_TRAIL sent
* along with IP replies if we wanted trailers sent to us,
* and also sent them in response to IP replies.
* This allowed either end to announce the desire to receive
* trailer packets.
* We no longer reply to requests for ETHERTYPE_TRAIL protocol either,
* but formerly didn't normally send requests.
*/
static void
in_arpinput(struct mbuf *m)
{
struct arphdr *ah;
struct ifnet *ifp = m->m_pkthdr.rcvif;
struct llinfo_arp *la = NULL;
struct rtentry *rt;
struct in_ifaddr *ia;
#if NBRIDGE > 0
struct in_ifaddr *bridge_ia = NULL;
#endif
#if NCARP > 0
u_int32_t count = 0, index = 0;
#endif
struct sockaddr_dl *sdl;
struct sockaddr sa;
struct in_addr isaddr, itaddr, myaddr;
int op;
struct mbuf *mold;
void *tha;
int s;
uint64_t *arps;
if (__predict_false(m_makewritable(&m, 0, m->m_pkthdr.len, M_DONTWAIT)))
goto out;
ah = mtod(m, struct arphdr *);
op = ntohs(ah->ar_op);
/*
* Fix up ah->ar_hrd if necessary, before using ar_tha() or
* ar_tpa().
*/
switch (ifp->if_type) {
case IFT_IEEE1394:
if (ntohs(ah->ar_hrd) == ARPHRD_IEEE1394)
;
else {
/* XXX this is to make sure we compute ar_tha right */
/* XXX check ar_hrd more strictly? */
ah->ar_hrd = htons(ARPHRD_IEEE1394);
}
break;
default:
/* XXX check ar_hrd? */
break;
}
memcpy(&isaddr, ar_spa(ah), sizeof (isaddr));
memcpy(&itaddr, ar_tpa(ah), sizeof (itaddr));
if (m->m_flags & (M_BCAST|M_MCAST))
ARP_STATINC(ARP_STAT_RCVMCAST);
/*
* If the target IP address is zero, ignore the packet.
* This prevents the code below from tring to answer
* when we are using IP address zero (booting).
*/
if (in_nullhost(itaddr)) {
ARP_STATINC(ARP_STAT_RCVZEROTPA);
goto out;
}
/*
* Search for a matching interface address
* or any address on the interface to use
* as a dummy address in the rest of this function
*/
INADDR_TO_IA(itaddr, ia);
while (ia != NULL) {
#if NCARP > 0
if (ia->ia_ifp->if_type == IFT_CARP &&
((ia->ia_ifp->if_flags & (IFF_UP|IFF_RUNNING)) ==
(IFF_UP|IFF_RUNNING))) {
index++;
if (ia->ia_ifp == m->m_pkthdr.rcvif &&
carp_iamatch(ia, ar_sha(ah),
&count, index)) {
break;
}
} else
#endif
if (ia->ia_ifp == m->m_pkthdr.rcvif)
break;
#if NBRIDGE > 0
/*
* If the interface we received the packet on
* is part of a bridge, check to see if we need
* to "bridge" the packet to ourselves at this
* layer. Note we still prefer a perfect match,
* but allow this weaker match if necessary.
*/
if (m->m_pkthdr.rcvif->if_bridge != NULL &&
m->m_pkthdr.rcvif->if_bridge == ia->ia_ifp->if_bridge)
bridge_ia = ia;
#endif /* NBRIDGE > 0 */
NEXT_IA_WITH_SAME_ADDR(ia);
}
#if NBRIDGE > 0
if (ia == NULL && bridge_ia != NULL) {
ia = bridge_ia;
ifp = bridge_ia->ia_ifp;
}
#endif
if (ia == NULL) {
INADDR_TO_IA(isaddr, ia);
while ((ia != NULL) && ia->ia_ifp != m->m_pkthdr.rcvif)
NEXT_IA_WITH_SAME_ADDR(ia);
if (ia == NULL) {
IFP_TO_IA(ifp, ia);
if (ia == NULL) {
ARP_STATINC(ARP_STAT_RCVNOINT);
goto out;
}
}
}
myaddr = ia->ia_addr.sin_addr;
/* XXX checks for bridge case? */
if (!memcmp(ar_sha(ah), CLLADDR(ifp->if_sadl), ifp->if_addrlen)) {
ARP_STATINC(ARP_STAT_RCVLOCALSHA);
goto out; /* it's from me, ignore it. */
}
/* XXX checks for bridge case? */
if (!memcmp(ar_sha(ah), ifp->if_broadcastaddr, ifp->if_addrlen)) {
ARP_STATINC(ARP_STAT_RCVBCASTSHA);
log(LOG_ERR,
"%s: arp: link address is broadcast for IP address %s!\n",
ifp->if_xname, in_fmtaddr(isaddr));
goto out;
}
/*
* If the source IP address is zero, this is an RFC 5227 ARP probe
*/
if (in_nullhost(isaddr)) {
ARP_STATINC(ARP_STAT_RCVZEROSPA);
goto reply;
}
if (in_hosteq(isaddr, myaddr)) {
ARP_STATINC(ARP_STAT_RCVLOCALSPA);
log(LOG_ERR,
"duplicate IP address %s sent from link address %s\n",
in_fmtaddr(isaddr), lla_snprintf(ar_sha(ah), ah->ar_hln));
itaddr = myaddr;
goto reply;
}
la = arplookup(m, &isaddr, in_hosteq(itaddr, myaddr), 0);
if (la != NULL && (rt = la->la_rt) && (sdl = satosdl(rt->rt_gateway))) {
if (sdl->sdl_alen &&
memcmp(ar_sha(ah), CLLADDR(sdl), sdl->sdl_alen)) {
if (rt->rt_flags & RTF_STATIC) {
ARP_STATINC(ARP_STAT_RCVOVERPERM);
if (!log_permanent_modify)
goto out;
log(LOG_INFO,
"%s tried to overwrite permanent arp info"
" for %s\n",
lla_snprintf(ar_sha(ah), ah->ar_hln),
in_fmtaddr(isaddr));
goto out;
} else if (rt->rt_ifp != ifp) {
ARP_STATINC(ARP_STAT_RCVOVERINT);
if (!log_wrong_iface)
goto out;
log(LOG_INFO,
"%s on %s tried to overwrite "
"arp info for %s on %s\n",
lla_snprintf(ar_sha(ah), ah->ar_hln),
ifp->if_xname, in_fmtaddr(isaddr),
rt->rt_ifp->if_xname);
goto out;
} else {
ARP_STATINC(ARP_STAT_RCVOVER);
if (log_movements)
log(LOG_INFO, "arp info overwritten "
"for %s by %s\n",
in_fmtaddr(isaddr),
lla_snprintf(ar_sha(ah),
ah->ar_hln));
}
}
/*
* sanity check for the address length.
* XXX this does not work for protocols with variable address
* length. -is
*/
if (sdl->sdl_alen &&
sdl->sdl_alen != ah->ar_hln) {
ARP_STATINC(ARP_STAT_RCVLENCHG);
log(LOG_WARNING,
"arp from %s: new addr len %d, was %d\n",
in_fmtaddr(isaddr), ah->ar_hln, sdl->sdl_alen);
}
if (ifp->if_addrlen != ah->ar_hln) {
ARP_STATINC(ARP_STAT_RCVBADLEN);
log(LOG_WARNING,
"arp from %s: addr len: new %d, i/f %d (ignored)\n",
in_fmtaddr(isaddr), ah->ar_hln,
ifp->if_addrlen);
goto reply;
}
#if NTOKEN > 0
/*
* XXX uses m_data and assumes the complete answer including
* XXX token-ring headers is in the same buf
*/
if (ifp->if_type == IFT_ISO88025) {
struct token_header *trh;
trh = (struct token_header *)M_TRHSTART(m);
if (trh->token_shost[0] & TOKEN_RI_PRESENT) {
struct token_rif *rif;
size_t riflen;
rif = TOKEN_RIF(trh);
riflen = (ntohs(rif->tr_rcf) &
TOKEN_RCF_LEN_MASK) >> 8;
if (riflen > 2 &&
riflen < sizeof(struct token_rif) &&
(riflen & 1) == 0) {
rif->tr_rcf ^= htons(TOKEN_RCF_DIRECTION);
rif->tr_rcf &= htons(~TOKEN_RCF_BROADCAST_MASK);
memcpy(TOKEN_RIF(la), rif, riflen);
}
}
}
#endif /* NTOKEN > 0 */
(void)sockaddr_dl_setaddr(sdl, sdl->sdl_len, ar_sha(ah),
ah->ar_hln);
if (rt->rt_expire)
rt->rt_expire = time_second + arpt_keep;
rt->rt_flags &= ~RTF_REJECT;
la->la_asked = 0;
s = splnet();
mold = la->la_hold;
la->la_hold = 0;
splx(s);
if (mold) {
ARP_STATINC(ARP_STAT_DFRSENT);
(*ifp->if_output)(ifp, mold, rt_getkey(rt), rt);
}
}
reply:
if (op != ARPOP_REQUEST) {
if (op == ARPOP_REPLY)
ARP_STATINC(ARP_STAT_RCVREPLY);
out:
m_freem(m);
return;
}
ARP_STATINC(ARP_STAT_RCVREQUEST);
if (in_hosteq(itaddr, myaddr)) {
/* I am the target */
tha = ar_tha(ah);
if (tha)
memcpy(tha, ar_sha(ah), ah->ar_hln);
memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
} else {
la = arplookup(m, &itaddr, 0, SIN_PROXY);
if (la == NULL)
goto out;
rt = la->la_rt;
if (rt->rt_ifp->if_type == IFT_CARP &&
m->m_pkthdr.rcvif->if_type != IFT_CARP)
goto out;
tha = ar_tha(ah);
if (tha)
memcpy(tha, ar_sha(ah), ah->ar_hln);
sdl = satosdl(rt->rt_gateway);
memcpy(ar_sha(ah), CLLADDR(sdl), ah->ar_hln);
}
memcpy(ar_tpa(ah), ar_spa(ah), ah->ar_pln);
memcpy(ar_spa(ah), &itaddr, ah->ar_pln);
ah->ar_op = htons(ARPOP_REPLY);
ah->ar_pro = htons(ETHERTYPE_IP); /* let's be sure! */
switch (ifp->if_type) {
case IFT_IEEE1394:
/*
* ieee1394 arp reply is broadcast
*/
m->m_flags &= ~M_MCAST;
m->m_flags |= M_BCAST;
m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + ah->ar_hln;
break;
default:
m->m_flags &= ~(M_BCAST|M_MCAST); /* never reply by broadcast */
m->m_len = sizeof(*ah) + (2 * ah->ar_pln) + (2 * ah->ar_hln);
break;
}
m->m_pkthdr.len = m->m_len;
sa.sa_family = AF_ARP;
sa.sa_len = 2;
arps = ARP_STAT_GETREF();
arps[ARP_STAT_SNDTOTAL]++;
arps[ARP_STAT_SNDREPLY]++;
ARP_STAT_PUTREF();
(*ifp->if_output)(ifp, m, &sa, NULL);
return;
}
/*
* Free an arp entry.
*/
static void arptfree(struct llinfo_arp *la)
{
struct rtentry *rt = la->la_rt;
struct sockaddr_dl *sdl;
ARP_LOCK_CHECK();
if (rt == NULL)
panic("arptfree");
if (rt->rt_refcnt > 0 && (sdl = satosdl(rt->rt_gateway)) &&
sdl->sdl_family == AF_LINK) {
sdl->sdl_alen = 0;
la->la_asked = 0;
rt->rt_flags &= ~RTF_REJECT;
return;
}
rtrequest(RTM_DELETE, rt_getkey(rt), NULL, rt_mask(rt), 0, NULL);
}
static struct llinfo_arp *
arplookup(struct mbuf *m, const struct in_addr *addr, int create, int proxy)
{
return arplookup1(m, addr, create, proxy, NULL);
}
/*
* Lookup or enter a new address in arptab.
*/
static struct llinfo_arp *
arplookup1(struct mbuf *m, const struct in_addr *addr, int create, int proxy,
struct rtentry *rt0)
{
struct arphdr *ah;
struct ifnet *ifp = m->m_pkthdr.rcvif;
struct rtentry *rt;
struct sockaddr_inarp sin;
const char *why = NULL;
ah = mtod(m, struct arphdr *);
if (rt0 == NULL) {
memset(&sin, 0, sizeof(sin));
sin.sin_len = sizeof(sin);
sin.sin_family = AF_INET;
sin.sin_addr = *addr;
sin.sin_other = proxy ? SIN_PROXY : 0;
rt = rtalloc1(sintosa(&sin), create);
if (rt == NULL)
return NULL;
rt->rt_refcnt--;
} else
rt = rt0;
#define IS_LLINFO(__rt) \
(((__rt)->rt_flags & (RTF_GATEWAY | RTF_LLINFO)) == RTF_LLINFO && \
(__rt)->rt_gateway->sa_family == AF_LINK)
if (IS_LLINFO(rt))
return (struct llinfo_arp *)rt->rt_llinfo;
if (create) {
if (rt->rt_flags & RTF_GATEWAY)
why = "host is not on local network";
else if ((rt->rt_flags & RTF_LLINFO) == 0) {
ARP_STATINC(ARP_STAT_ALLOCFAIL);
why = "could not allocate llinfo";
} else
why = "gateway route is not ours";
log(LOG_DEBUG, "arplookup: unable to enter address"
" for %s@%s on %s (%s)\n",
in_fmtaddr(*addr), lla_snprintf(ar_sha(ah), ah->ar_hln),
(ifp) ? ifp->if_xname : "null", why);
if (rt->rt_refcnt <= 0 && (rt->rt_flags & RTF_CLONED) != 0) {
rtrequest(RTM_DELETE, rt_getkey(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
}
}
return NULL;
}
int
arpioctl(u_long cmd, void *data)
{
return EOPNOTSUPP;
}
void
arp_ifinit(struct ifnet *ifp, struct ifaddr *ifa)
{
struct in_addr *ip;
/*
* Warn the user if another station has this IP address,
* but only if the interface IP address is not zero.
*/
ip = &IA_SIN(ifa)->sin_addr;
if (!in_nullhost(*ip))
arprequest(ifp, ip, ip, CLLADDR(ifp->if_sadl));
ifa->ifa_rtrequest = arp_rtrequest;
ifa->ifa_flags |= RTF_CLONING;
}
/*
* Called from 10 Mb/s Ethernet interrupt handlers
* when ether packet type ETHERTYPE_REVARP
* is received. Common length and type checks are done here,
* then the protocol-specific routine is called.
*/
void
revarpinput(struct mbuf *m)
{
struct arphdr *ar;
if (m->m_len < sizeof(struct arphdr))
goto out;
ar = mtod(m, struct arphdr *);
#if 0 /* XXX I don't think we need this... and it will prevent other LL */
if (ntohs(ar->ar_hrd) != ARPHRD_ETHER)
goto out;
#endif
if (m->m_len < sizeof(struct arphdr) + 2 * (ar->ar_hln + ar->ar_pln))
goto out;
switch (ntohs(ar->ar_pro)) {
case ETHERTYPE_IP:
case ETHERTYPE_IPTRAILERS:
in_revarpinput(m);
return;
default:
break;
}
out:
m_freem(m);
}
/*
* RARP for Internet protocols on 10 Mb/s Ethernet.
* Algorithm is that given in RFC 903.
* We are only using for bootstrap purposes to get an ip address for one of
* our interfaces. Thus we support no user-interface.
*
* Since the contents of the RARP reply are specific to the interface that
* sent the request, this code must ensure that they are properly associated.
*
* Note: also supports ARP via RARP packets, per the RFC.
*/
void
in_revarpinput(struct mbuf *m)
{
struct ifnet *ifp;
struct arphdr *ah;
void *tha;
int op;
ah = mtod(m, struct arphdr *);
op = ntohs(ah->ar_op);
switch (m->m_pkthdr.rcvif->if_type) {
case IFT_IEEE1394:
/* ARP without target hardware address is not supported */
goto out;
default:
break;
}
switch (op) {
case ARPOP_REQUEST:
case ARPOP_REPLY: /* per RFC */
in_arpinput(m);
return;
case ARPOP_REVREPLY:
break;
case ARPOP_REVREQUEST: /* handled by rarpd(8) */
default:
goto out;
}
if (!revarp_in_progress)
goto out;
ifp = m->m_pkthdr.rcvif;
if (ifp != myip_ifp) /* !same interface */
goto out;
if (myip_initialized)
goto wake;
tha = ar_tha(ah);
if (tha == NULL)
goto out;
if (memcmp(tha, CLLADDR(ifp->if_sadl), ifp->if_sadl->sdl_alen))
goto out;
memcpy(&srv_ip, ar_spa(ah), sizeof(srv_ip));
memcpy(&myip, ar_tpa(ah), sizeof(myip));
myip_initialized = 1;
wake: /* Do wakeup every time in case it was missed. */
wakeup((void *)&myip);
out:
m_freem(m);
}
/*
* Send a RARP request for the ip address of the specified interface.
* The request should be RFC 903-compliant.
*/
void
revarprequest(struct ifnet *ifp)
{
struct sockaddr sa;
struct mbuf *m;
struct arphdr *ah;
void *tha;
if ((m = m_gethdr(M_DONTWAIT, MT_DATA)) == NULL)
return;
MCLAIM(m, &arpdomain.dom_mowner);
m->m_len = sizeof(*ah) + 2*sizeof(struct in_addr) +
2*ifp->if_addrlen;
m->m_pkthdr.len = m->m_len;
MH_ALIGN(m, m->m_len);
ah = mtod(m, struct arphdr *);
memset(ah, 0, m->m_len);
ah->ar_pro = htons(ETHERTYPE_IP);
ah->ar_hln = ifp->if_addrlen; /* hardware address length */
ah->ar_pln = sizeof(struct in_addr); /* protocol address length */
ah->ar_op = htons(ARPOP_REVREQUEST);
memcpy(ar_sha(ah), CLLADDR(ifp->if_sadl), ah->ar_hln);
tha = ar_tha(ah);
if (tha == NULL) {
m_free(m);
return;
}
memcpy(tha, CLLADDR(ifp->if_sadl), ah->ar_hln);
sa.sa_family = AF_ARP;
sa.sa_len = 2;
m->m_flags |= M_BCAST;
KERNEL_LOCK(1, NULL);
(*ifp->if_output)(ifp, m, &sa, NULL);
KERNEL_UNLOCK_ONE(NULL);
}
/*
* RARP for the ip address of the specified interface, but also
* save the ip address of the server that sent the answer.
* Timeout if no response is received.
*/
int
revarpwhoarewe(struct ifnet *ifp, struct in_addr *serv_in,
struct in_addr *clnt_in)
{
int result, count = 20;
myip_initialized = 0;
myip_ifp = ifp;
revarp_in_progress = 1;
while (count--) {
revarprequest(ifp);
result = tsleep((void *)&myip, PSOCK, "revarp", hz/2);
if (result != EWOULDBLOCK)
break;
}
revarp_in_progress = 0;
if (!myip_initialized)
return ENETUNREACH;
memcpy(serv_in, &srv_ip, sizeof(*serv_in));
memcpy(clnt_in, &myip, sizeof(*clnt_in));
return 0;
}
#ifdef DDB
#include <machine/db_machdep.h>
#include <ddb/db_interface.h>
#include <ddb/db_output.h>
static void
db_print_sa(const struct sockaddr *sa)
{
int len;
const u_char *p;
if (sa == NULL) {
db_printf("[NULL]");
return;
}
p = (const u_char *)sa;
len = sa->sa_len;
db_printf("[");
while (len > 0) {
db_printf("%d", *p);
p++; len--;
if (len) db_printf(",");
}
db_printf("]\n");
}
static void
db_print_ifa(struct ifaddr *ifa)
{
if (ifa == NULL)
return;
db_printf(" ifa_addr=");
db_print_sa(ifa->ifa_addr);
db_printf(" ifa_dsta=");
db_print_sa(ifa->ifa_dstaddr);
db_printf(" ifa_mask=");
db_print_sa(ifa->ifa_netmask);
db_printf(" flags=0x%x,refcnt=%d,metric=%d\n",
ifa->ifa_flags,
ifa->ifa_refcnt,
ifa->ifa_metric);
}
static void
db_print_llinfo(void *li)
{
struct llinfo_arp *la;
if (li == NULL)
return;
la = (struct llinfo_arp *)li;
db_printf(" la_rt=%p la_hold=%p, la_asked=0x%lx\n",
la->la_rt, la->la_hold, la->la_asked);
}
/*
* Function to pass to rt_walktree().
* Return non-zero error to abort walk.
*/
static int
db_show_rtentry(struct rtentry *rt, void *w)
{
db_printf("rtentry=%p", rt);
db_printf(" flags=0x%x refcnt=%d use=%"PRId64" expire=%"PRId64"\n",
rt->rt_flags, rt->rt_refcnt,
rt->rt_use, (uint64_t)rt->rt_expire);
db_printf(" key="); db_print_sa(rt_getkey(rt));
db_printf(" mask="); db_print_sa(rt_mask(rt));
db_printf(" gw="); db_print_sa(rt->rt_gateway);
db_printf(" ifp=%p ", rt->rt_ifp);
if (rt->rt_ifp)
db_printf("(%s)", rt->rt_ifp->if_xname);
else
db_printf("(NULL)");
db_printf(" ifa=%p\n", rt->rt_ifa);
db_print_ifa(rt->rt_ifa);
db_printf(" gwroute=%p llinfo=%p\n",
rt->rt_gwroute, rt->rt_llinfo);
db_print_llinfo(rt->rt_llinfo);
return 0;
}
/*
* Function to print all the route trees.
* Use this from ddb: "show arptab"
*/
void
db_show_arptab(db_expr_t addr, bool have_addr,
db_expr_t count, const char *modif)
{
rt_walktree(AF_INET, db_show_rtentry, NULL);
}
#endif
static int
sysctl_net_inet_arp_stats(SYSCTLFN_ARGS)
{
return NETSTAT_SYSCTL(arpstat_percpu, ARP_NSTATS);
}
static void
sysctl_net_inet_arp_setup(struct sysctllog **clog)
{
const struct sysctlnode *node;
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "inet", NULL,
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_EOL);
sysctl_createv(clog, 0, NULL, &node,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "arp",
SYSCTL_DESCR("Address Resolution Protocol"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "prune",
SYSCTL_DESCR("ARP cache pruning interval in seconds"),
NULL, 0, &arpt_prune, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "keep",
SYSCTL_DESCR("Valid ARP entry lifetime in seconds"),
NULL, 0, &arpt_keep, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "down",
SYSCTL_DESCR("Failed ARP entry lifetime in seconds"),
NULL, 0, &arpt_down, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "refresh",
SYSCTL_DESCR("ARP entry refresh interval"),
NULL, 0, &arpt_refresh, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("ARP statistics"),
sysctl_net_inet_arp_stats, 0, NULL, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_movements",
SYSCTL_DESCR("log ARP replies from MACs different than"
" the one in the cache"),
NULL, 0, &log_movements, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_permanent_modify",
SYSCTL_DESCR("log ARP replies from MACs different than"
" the one in the permanent arp entry"),
NULL, 0, &log_permanent_modify, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "log_wrong_iface",
SYSCTL_DESCR("log ARP packets arriving on the wrong"
" interface"),
NULL, 0, &log_wrong_iface, 0,
CTL_NET,PF_INET, node->sysctl_num, CTL_CREATE, CTL_EOL);
}
#endif /* INET */