1149 lines
28 KiB
C
1149 lines
28 KiB
C
/*
|
|
* Copyright (c) 1982, 1986, 1988 Regents of the University of California.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: @(#)ip_input.c 7.19 (Berkeley) 5/25/91
|
|
* $Id: ip_input.c,v 1.9 1994/01/10 20:14:19 mycroft Exp $
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/time.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/route.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/in_pcb.h>
|
|
#include <netinet/in_var.h>
|
|
#include <netinet/ip_var.h>
|
|
#include <netinet/ip_icmp.h>
|
|
#include <netinet/ip_mroute.h>
|
|
|
|
#ifndef IPFORWARDING
|
|
#ifdef GATEWAY
|
|
#define IPFORWARDING 1 /* forward IP packets not for us */
|
|
#else /* GATEWAY */
|
|
#define IPFORWARDING 0 /* don't forward IP packets not for us */
|
|
#endif /* GATEWAY */
|
|
#endif /* IPFORWARDING */
|
|
#ifndef IPSENDREDIRECTS
|
|
#define IPSENDREDIRECTS 1
|
|
#endif
|
|
int ipforwarding = IPFORWARDING;
|
|
int ipsendredirects = IPSENDREDIRECTS;
|
|
#ifdef DIAGNOSTIC
|
|
int ipprintfs = 0;
|
|
#endif
|
|
|
|
extern struct domain inetdomain;
|
|
extern struct protosw inetsw[];
|
|
u_char ip_protox[IPPROTO_MAX];
|
|
int ipqmaxlen = IFQ_MAXLEN;
|
|
struct in_ifaddr *in_ifaddr; /* first inet address */
|
|
|
|
/*
|
|
* We need to save the IP options in case a protocol wants to respond
|
|
* to an incoming packet over the same route if the packet got here
|
|
* using IP source routing. This allows connection establishment and
|
|
* maintenance when the remote end is on a network that is not known
|
|
* to us.
|
|
*/
|
|
int ip_nhops = 0;
|
|
static struct ip_srcrt {
|
|
struct in_addr dst; /* final destination */
|
|
char nop; /* one NOP to align */
|
|
char srcopt[IPOPT_OFFSET + 1]; /* OPTVAL, OLEN and OFFSET */
|
|
struct in_addr route[MAX_IPOPTLEN/sizeof(struct in_addr)];
|
|
} ip_srcrt;
|
|
|
|
#ifdef GATEWAY
|
|
extern int if_index;
|
|
u_long *ip_ifmatrix;
|
|
#endif
|
|
|
|
static void ip_forward __P((struct mbuf *, int));
|
|
static void save_rte __P((u_char *, struct in_addr));
|
|
|
|
/*
|
|
* IP initialization: fill in IP protocol switch table.
|
|
* All protocols not implemented in kernel go to raw IP protocol handler.
|
|
*/
|
|
void
|
|
ip_init()
|
|
{
|
|
register struct protosw *pr;
|
|
register int i;
|
|
|
|
pr = pffindproto(PF_INET, IPPROTO_RAW, SOCK_RAW);
|
|
if (pr == 0)
|
|
panic("ip_init");
|
|
for (i = 0; i < IPPROTO_MAX; i++)
|
|
ip_protox[i] = pr - inetsw;
|
|
for (pr = inetdomain.dom_protosw;
|
|
pr < inetdomain.dom_protoswNPROTOSW; pr++)
|
|
if (pr->pr_domain->dom_family == PF_INET &&
|
|
pr->pr_protocol && pr->pr_protocol != IPPROTO_RAW)
|
|
ip_protox[pr->pr_protocol] = pr - inetsw;
|
|
ipq.next = ipq.prev = &ipq;
|
|
ip_id = time.tv_sec & 0xffff;
|
|
ipintrq.ifq_maxlen = ipqmaxlen;
|
|
#ifdef GATEWAY
|
|
i = (if_index + 1) * (if_index + 1) * sizeof (u_long);
|
|
if ((ip_ifmatrix = (u_long *) malloc(i, M_RTABLE, M_WAITOK)) == 0)
|
|
panic("no memory for ip_ifmatrix");
|
|
#endif
|
|
}
|
|
|
|
struct ip *ip_reass();
|
|
struct sockaddr_in ipaddr = { sizeof(ipaddr), AF_INET };
|
|
struct route ipforward_rt;
|
|
|
|
/*
|
|
* Ip input routine. Checksum and byte swap header. If fragmented
|
|
* try to reassemble. Process options. Pass to next level.
|
|
*/
|
|
void
|
|
ipintr()
|
|
{
|
|
register struct ip *ip;
|
|
register struct mbuf *m;
|
|
register struct ipq *fp;
|
|
register struct in_ifaddr *ia;
|
|
int hlen, s;
|
|
#ifdef PARANOID
|
|
static int busy = 0;
|
|
|
|
if (busy)
|
|
panic("ipintr: called recursively\n");
|
|
++busy;
|
|
#endif
|
|
next:
|
|
/*
|
|
* Get next datagram off input queue and get IP header
|
|
* in first mbuf.
|
|
*/
|
|
s = splimp();
|
|
IF_DEQUEUE(&ipintrq, m);
|
|
splx(s);
|
|
if (m == 0) {
|
|
#ifdef PARANOID
|
|
--busy;
|
|
#endif
|
|
return;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if ((m->m_flags & M_PKTHDR) == 0)
|
|
panic("ipintr no HDR");
|
|
#endif
|
|
/*
|
|
* If no IP addresses have been set yet but the interfaces
|
|
* are receiving, can't do anything with incoming packets yet.
|
|
*/
|
|
if (in_ifaddr == NULL)
|
|
goto bad;
|
|
ipstat.ips_total++;
|
|
if (m->m_len < sizeof (struct ip) &&
|
|
(m = m_pullup(m, sizeof (struct ip))) == 0) {
|
|
ipstat.ips_toosmall++;
|
|
goto next;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
hlen = ip->ip_hl << 2;
|
|
if (hlen < sizeof(struct ip)) { /* minimum header length */
|
|
ipstat.ips_badhlen++;
|
|
goto bad;
|
|
}
|
|
if (hlen > m->m_len) {
|
|
if ((m = m_pullup(m, hlen)) == 0) {
|
|
ipstat.ips_badhlen++;
|
|
goto next;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
}
|
|
if (ip->ip_sum = in_cksum(m, hlen)) {
|
|
ipstat.ips_badsum++;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Convert fields to host representation.
|
|
*/
|
|
NTOHS(ip->ip_len);
|
|
if (ip->ip_len < hlen) {
|
|
ipstat.ips_badlen++;
|
|
goto bad;
|
|
}
|
|
NTOHS(ip->ip_id);
|
|
NTOHS(ip->ip_off);
|
|
|
|
/*
|
|
* Check that the amount of data in the buffers
|
|
* is as at least much as the IP header would have us expect.
|
|
* Trim mbufs if longer than we expect.
|
|
* Drop packet if shorter than we expect.
|
|
*/
|
|
if (m->m_pkthdr.len < ip->ip_len) {
|
|
ipstat.ips_tooshort++;
|
|
goto bad;
|
|
}
|
|
if (m->m_pkthdr.len > ip->ip_len) {
|
|
if (m->m_len == m->m_pkthdr.len) {
|
|
m->m_len = ip->ip_len;
|
|
m->m_pkthdr.len = ip->ip_len;
|
|
} else
|
|
m_adj(m, ip->ip_len - m->m_pkthdr.len);
|
|
}
|
|
|
|
/*
|
|
* Process options and, if not destined for us,
|
|
* ship it on. ip_dooptions returns 1 when an
|
|
* error was detected (causing an icmp message
|
|
* to be sent and the original packet to be freed).
|
|
*/
|
|
ip_nhops = 0; /* for source routed packets */
|
|
if (hlen > sizeof (struct ip) && ip_dooptions(m))
|
|
goto next;
|
|
|
|
/*
|
|
* Check our list of addresses, to see if the packet is for us.
|
|
*/
|
|
for (ia = in_ifaddr; ia; ia = ia->ia_next) {
|
|
#define satosin(sa) ((struct sockaddr_in *)(sa))
|
|
|
|
if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_dst.s_addr)
|
|
goto ours;
|
|
if (
|
|
#ifdef DIRECTED_BROADCAST
|
|
ia->ia_ifp == m->m_pkthdr.rcvif &&
|
|
#endif
|
|
(ia->ia_ifp->if_flags & IFF_BROADCAST)) {
|
|
u_long t;
|
|
|
|
if (satosin(&ia->ia_broadaddr)->sin_addr.s_addr ==
|
|
ip->ip_dst.s_addr)
|
|
goto ours;
|
|
if (ip->ip_dst.s_addr == ia->ia_netbroadcast.s_addr)
|
|
goto ours;
|
|
/*
|
|
* Look for all-0's host part (old broadcast addr),
|
|
* either for subnet or net.
|
|
*/
|
|
t = ntohl(ip->ip_dst.s_addr);
|
|
if (t == ia->ia_subnet)
|
|
goto ours;
|
|
if (t == ia->ia_net)
|
|
goto ours;
|
|
}
|
|
}
|
|
#ifdef MULTICAST
|
|
if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) {
|
|
struct in_multi *inm;
|
|
#ifdef MROUTING
|
|
extern struct socket *ip_mrouter;
|
|
|
|
if (ip_mrouter) {
|
|
/*
|
|
* If we are acting as a multicast router, all
|
|
* incoming multicast packets are passed to the
|
|
* kernel-level multicast forwarding function.
|
|
* The packet is returned (relatively) intact; if
|
|
* ip_mforward() returns a non-zero value, the packet
|
|
* must be discarded, else it may be accepted below.
|
|
*
|
|
* (The IP ident field is put in the same byte order
|
|
* as expected when ip_mforward() is called from
|
|
* ip_output().)
|
|
*/
|
|
ip->ip_id = htons(ip->ip_id);
|
|
if (ip_mforward(ip, m->m_pkthdr.rcvif, m) != 0) {
|
|
m_freem(m);
|
|
goto next;
|
|
}
|
|
ip->ip_id = ntohs(ip->ip_id);
|
|
|
|
/*
|
|
* The process-level routing demon needs to receive
|
|
* all multicast IGMP packets, whether or not this
|
|
* host belongs to their destination groups.
|
|
*/
|
|
if (ip->ip_p == IPPROTO_IGMP)
|
|
goto ours;
|
|
}
|
|
#endif
|
|
/*
|
|
* See if we belong to the destination multicast group on the
|
|
* arrival interface.
|
|
*/
|
|
IN_LOOKUP_MULTI(ip->ip_dst, m->m_pkthdr.rcvif, inm);
|
|
if (inm == NULL) {
|
|
m_freem(m);
|
|
goto next;
|
|
}
|
|
goto ours;
|
|
}
|
|
#endif
|
|
if (ip->ip_dst.s_addr == (u_long)INADDR_BROADCAST)
|
|
goto ours;
|
|
if (ip->ip_dst.s_addr == INADDR_ANY)
|
|
goto ours;
|
|
|
|
/*
|
|
* Not for us; forward if possible and desirable.
|
|
*/
|
|
if (ipforwarding == 0) {
|
|
ipstat.ips_cantforward++;
|
|
m_freem(m);
|
|
} else
|
|
ip_forward(m, 0);
|
|
goto next;
|
|
|
|
ours:
|
|
/*
|
|
* If offset or IP_MF are set, must reassemble.
|
|
* Otherwise, nothing need be done.
|
|
* (We could look in the reassembly queue to see
|
|
* if the packet was previously fragmented,
|
|
* but it's not worth the time; just let them time out.)
|
|
*/
|
|
if (ip->ip_off &~ IP_DF) {
|
|
if (m->m_flags & M_EXT) { /* XXX */
|
|
if ((m = m_pullup(m, sizeof (struct ip))) == 0) {
|
|
ipstat.ips_toosmall++;
|
|
goto next;
|
|
}
|
|
ip = mtod(m, struct ip *);
|
|
}
|
|
/*
|
|
* Look for queue of fragments
|
|
* of this datagram.
|
|
*/
|
|
for (fp = ipq.next; fp != &ipq; fp = fp->next)
|
|
if (ip->ip_id == fp->ipq_id &&
|
|
ip->ip_src.s_addr == fp->ipq_src.s_addr &&
|
|
ip->ip_dst.s_addr == fp->ipq_dst.s_addr &&
|
|
ip->ip_p == fp->ipq_p)
|
|
goto found;
|
|
fp = 0;
|
|
found:
|
|
|
|
/*
|
|
* Adjust ip_len to not reflect header,
|
|
* set ip_mff if more fragments are expected,
|
|
* convert offset of this to bytes.
|
|
*/
|
|
ip->ip_len -= hlen;
|
|
((struct ipasfrag *)ip)->ipf_mff = 0;
|
|
if (ip->ip_off & IP_MF)
|
|
((struct ipasfrag *)ip)->ipf_mff = 1;
|
|
ip->ip_off <<= 3;
|
|
|
|
/*
|
|
* If datagram marked as having more fragments
|
|
* or if this is not the first fragment,
|
|
* attempt reassembly; if it succeeds, proceed.
|
|
*/
|
|
if (((struct ipasfrag *)ip)->ipf_mff || ip->ip_off) {
|
|
ipstat.ips_fragments++;
|
|
ip = ip_reass((struct ipasfrag *)ip, fp);
|
|
if (ip == 0)
|
|
goto next;
|
|
else
|
|
ipstat.ips_reassembled++;
|
|
m = dtom(ip);
|
|
} else
|
|
if (fp)
|
|
ip_freef(fp);
|
|
} else
|
|
ip->ip_len -= hlen;
|
|
|
|
/*
|
|
* Switch out to protocol's input routine.
|
|
*/
|
|
ipstat.ips_delivered++;
|
|
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);
|
|
goto next;
|
|
bad:
|
|
m_freem(m);
|
|
goto next;
|
|
}
|
|
|
|
/*
|
|
* Take incoming datagram fragment and try to
|
|
* reassemble it into whole datagram. If a chain for
|
|
* reassembly of this datagram already exists, then it
|
|
* is given as fp; otherwise have to make a chain.
|
|
*/
|
|
struct ip *
|
|
ip_reass(ip, fp)
|
|
register struct ipasfrag *ip;
|
|
register struct ipq *fp;
|
|
{
|
|
register struct mbuf *m = dtom(ip);
|
|
register struct ipasfrag *q;
|
|
struct mbuf *t;
|
|
int hlen = ip->ip_hl << 2;
|
|
int i, next;
|
|
|
|
/*
|
|
* Presence of header sizes in mbufs
|
|
* would confuse code below.
|
|
*/
|
|
m->m_data += hlen;
|
|
m->m_len -= hlen;
|
|
|
|
/*
|
|
* If first fragment to arrive, create a reassembly queue.
|
|
*/
|
|
if (fp == 0) {
|
|
if ((t = m_get(M_DONTWAIT, MT_FTABLE)) == NULL)
|
|
goto dropfrag;
|
|
fp = mtod(t, struct ipq *);
|
|
insque(fp, &ipq);
|
|
fp->ipq_ttl = IPFRAGTTL;
|
|
fp->ipq_p = ip->ip_p;
|
|
fp->ipq_id = ip->ip_id;
|
|
fp->ipq_next = fp->ipq_prev = (struct ipasfrag *)fp;
|
|
fp->ipq_src = ((struct ip *)ip)->ip_src;
|
|
fp->ipq_dst = ((struct ip *)ip)->ip_dst;
|
|
q = (struct ipasfrag *)fp;
|
|
goto insert;
|
|
}
|
|
|
|
/*
|
|
* Find a segment which begins after this one does.
|
|
*/
|
|
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next)
|
|
if (q->ip_off > ip->ip_off)
|
|
break;
|
|
|
|
/*
|
|
* If there is a preceding segment, it may provide some of
|
|
* our data already. If so, drop the data from the incoming
|
|
* segment. If it provides all of our data, drop us.
|
|
*/
|
|
if (q->ipf_prev != (struct ipasfrag *)fp) {
|
|
i = q->ipf_prev->ip_off + q->ipf_prev->ip_len - ip->ip_off;
|
|
if (i > 0) {
|
|
if (i >= ip->ip_len)
|
|
goto dropfrag;
|
|
m_adj(dtom(ip), i);
|
|
ip->ip_off += i;
|
|
ip->ip_len -= i;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* While we overlap succeeding segments trim them or,
|
|
* if they are completely covered, dequeue them.
|
|
*/
|
|
while (q != (struct ipasfrag *)fp && ip->ip_off + ip->ip_len > q->ip_off) {
|
|
i = (ip->ip_off + ip->ip_len) - q->ip_off;
|
|
if (i < q->ip_len) {
|
|
q->ip_len -= i;
|
|
q->ip_off += i;
|
|
m_adj(dtom(q), i);
|
|
break;
|
|
}
|
|
q = q->ipf_next;
|
|
m_freem(dtom(q->ipf_prev));
|
|
ip_deq(q->ipf_prev);
|
|
}
|
|
|
|
insert:
|
|
/*
|
|
* Stick new segment in its place;
|
|
* check for complete reassembly.
|
|
*/
|
|
ip_enq(ip, q->ipf_prev);
|
|
next = 0;
|
|
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = q->ipf_next) {
|
|
if (q->ip_off != next)
|
|
return (0);
|
|
next += q->ip_len;
|
|
}
|
|
if (q->ipf_prev->ipf_mff)
|
|
return (0);
|
|
|
|
/*
|
|
* Reassembly is complete; concatenate fragments.
|
|
*/
|
|
q = fp->ipq_next;
|
|
m = dtom(q);
|
|
t = m->m_next;
|
|
m->m_next = 0;
|
|
m_cat(m, t);
|
|
q = q->ipf_next;
|
|
while (q != (struct ipasfrag *)fp) {
|
|
t = dtom(q);
|
|
q = q->ipf_next;
|
|
m_cat(m, t);
|
|
}
|
|
|
|
/*
|
|
* Create header for new ip packet by
|
|
* modifying header of first packet;
|
|
* dequeue and discard fragment reassembly header.
|
|
* Make header visible.
|
|
*/
|
|
ip = fp->ipq_next;
|
|
ip->ip_len = next;
|
|
((struct ip *)ip)->ip_src = fp->ipq_src;
|
|
((struct ip *)ip)->ip_dst = fp->ipq_dst;
|
|
remque(fp);
|
|
(void) m_free(dtom(fp));
|
|
m = dtom(ip);
|
|
m->m_len += (ip->ip_hl << 2);
|
|
m->m_data -= (ip->ip_hl << 2);
|
|
/* some debugging cruft by sklower, below, will go away soon */
|
|
if (m->m_flags & M_PKTHDR) { /* XXX this should be done elsewhere */
|
|
register int plen = 0;
|
|
for (t = m; m; m = m->m_next)
|
|
plen += m->m_len;
|
|
t->m_pkthdr.len = plen;
|
|
}
|
|
return ((struct ip *)ip);
|
|
|
|
dropfrag:
|
|
ipstat.ips_fragdropped++;
|
|
m_freem(m);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free a fragment reassembly header and all
|
|
* associated datagrams.
|
|
*/
|
|
void
|
|
ip_freef(fp)
|
|
struct ipq *fp;
|
|
{
|
|
register struct ipasfrag *q, *p;
|
|
|
|
for (q = fp->ipq_next; q != (struct ipasfrag *)fp; q = p) {
|
|
p = q->ipf_next;
|
|
ip_deq(q);
|
|
m_freem(dtom(q));
|
|
}
|
|
remque(fp);
|
|
(void) m_free(dtom(fp));
|
|
}
|
|
|
|
/*
|
|
* Put an ip fragment on a reassembly chain.
|
|
* Like insque, but pointers in middle of structure.
|
|
*/
|
|
void
|
|
ip_enq(p, prev)
|
|
register struct ipasfrag *p, *prev;
|
|
{
|
|
|
|
p->ipf_prev = prev;
|
|
p->ipf_next = prev->ipf_next;
|
|
prev->ipf_next->ipf_prev = p;
|
|
prev->ipf_next = p;
|
|
}
|
|
|
|
/*
|
|
* To ip_enq as remque is to insque.
|
|
*/
|
|
void
|
|
ip_deq(p)
|
|
register struct ipasfrag *p;
|
|
{
|
|
|
|
p->ipf_prev->ipf_next = p->ipf_next;
|
|
p->ipf_next->ipf_prev = p->ipf_prev;
|
|
}
|
|
|
|
/*
|
|
* IP timer processing;
|
|
* if a timer expires on a reassembly
|
|
* queue, discard it.
|
|
*/
|
|
void
|
|
ip_slowtimo()
|
|
{
|
|
register struct ipq *fp;
|
|
int s = splnet();
|
|
|
|
fp = ipq.next;
|
|
if (fp == 0) {
|
|
splx(s);
|
|
return;
|
|
}
|
|
while (fp != &ipq) {
|
|
--fp->ipq_ttl;
|
|
fp = fp->next;
|
|
if (fp->prev->ipq_ttl == 0) {
|
|
ipstat.ips_fragtimeout++;
|
|
ip_freef(fp->prev);
|
|
}
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Drain off all datagram fragments.
|
|
*/
|
|
void
|
|
ip_drain()
|
|
{
|
|
|
|
while (ipq.next != &ipq) {
|
|
ipstat.ips_fragdropped++;
|
|
ip_freef(ipq.next);
|
|
}
|
|
}
|
|
|
|
extern struct in_ifaddr *ifptoia();
|
|
struct in_ifaddr *ip_rtaddr();
|
|
|
|
/*
|
|
* Do option processing on a datagram,
|
|
* possibly discarding it if bad options are encountered,
|
|
* or forwarding it if source-routed.
|
|
* Returns 1 if packet has been forwarded/freed,
|
|
* 0 if the packet should be processed further.
|
|
*/
|
|
int
|
|
ip_dooptions(m)
|
|
struct mbuf *m;
|
|
{
|
|
register struct ip *ip = mtod(m, struct ip *);
|
|
register u_char *cp;
|
|
register struct ip_timestamp *ipt;
|
|
register struct in_ifaddr *ia;
|
|
int opt, optlen, cnt, off, code, type = ICMP_PARAMPROB, forward = 0;
|
|
struct in_addr *sin;
|
|
n_time ntime;
|
|
|
|
cp = (u_char *)(ip + 1);
|
|
cnt = (ip->ip_hl << 2) - sizeof (struct ip);
|
|
for (; cnt > 0; cnt -= optlen, cp += optlen) {
|
|
opt = cp[IPOPT_OPTVAL];
|
|
if (opt == IPOPT_EOL)
|
|
break;
|
|
if (opt == IPOPT_NOP)
|
|
optlen = 1;
|
|
else {
|
|
optlen = cp[IPOPT_OLEN];
|
|
if (optlen <= 0 || optlen > cnt) {
|
|
code = &cp[IPOPT_OLEN] - (u_char *)ip;
|
|
goto bad;
|
|
}
|
|
}
|
|
switch (opt) {
|
|
|
|
default:
|
|
break;
|
|
|
|
/*
|
|
* Source routing with record.
|
|
* Find interface with current destination address.
|
|
* If none on this machine then drop if strictly routed,
|
|
* or do nothing if loosely routed.
|
|
* Record interface address and bring up next address
|
|
* component. If strictly routed make sure next
|
|
* address is on directly accessible net.
|
|
*/
|
|
case IPOPT_LSRR:
|
|
case IPOPT_SSRR:
|
|
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
|
|
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
|
|
goto bad;
|
|
}
|
|
ipaddr.sin_addr = ip->ip_dst;
|
|
ia = (struct in_ifaddr *)
|
|
ifa_ifwithaddr((struct sockaddr *)&ipaddr);
|
|
if (ia == 0) {
|
|
if (opt == IPOPT_SSRR) {
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_SRCFAIL;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* Loose routing, and not at next destination
|
|
* yet; nothing to do except forward.
|
|
*/
|
|
break;
|
|
}
|
|
off--; /* 0 origin */
|
|
if (off > optlen - sizeof(struct in_addr)) {
|
|
/*
|
|
* End of source route. Should be for us.
|
|
*/
|
|
save_rte(cp, ip->ip_src);
|
|
break;
|
|
}
|
|
/*
|
|
* locate outgoing interface
|
|
*/
|
|
bcopy((caddr_t)(cp + off), (caddr_t)&ipaddr.sin_addr,
|
|
sizeof(ipaddr.sin_addr));
|
|
if (opt == IPOPT_SSRR) {
|
|
#define INA struct in_ifaddr *
|
|
#define SA struct sockaddr *
|
|
if ((ia = (INA)ifa_ifwithdstaddr((SA)&ipaddr)) == 0)
|
|
ia = in_iaonnetof(in_netof(ipaddr.sin_addr));
|
|
} else
|
|
ia = ip_rtaddr(ipaddr.sin_addr);
|
|
if (ia == 0) {
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_SRCFAIL;
|
|
goto bad;
|
|
}
|
|
ip->ip_dst = ipaddr.sin_addr;
|
|
bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
|
|
(caddr_t)(cp + off), sizeof(struct in_addr));
|
|
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
|
|
forward = 1;
|
|
break;
|
|
|
|
case IPOPT_RR:
|
|
if ((off = cp[IPOPT_OFFSET]) < IPOPT_MINOFF) {
|
|
code = &cp[IPOPT_OFFSET] - (u_char *)ip;
|
|
goto bad;
|
|
}
|
|
/*
|
|
* If no space remains, ignore.
|
|
*/
|
|
off--; /* 0 origin */
|
|
if (off > optlen - sizeof(struct in_addr))
|
|
break;
|
|
bcopy((caddr_t)(&ip->ip_dst), (caddr_t)&ipaddr.sin_addr,
|
|
sizeof(ipaddr.sin_addr));
|
|
/*
|
|
* locate outgoing interface; if we're the destination,
|
|
* use the incoming interface (should be same).
|
|
*/
|
|
if ((ia = (INA)ifa_ifwithaddr((SA)&ipaddr)) == 0 &&
|
|
(ia = ip_rtaddr(ipaddr.sin_addr)) == 0) {
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_HOST;
|
|
goto bad;
|
|
}
|
|
bcopy((caddr_t)&(IA_SIN(ia)->sin_addr),
|
|
(caddr_t)(cp + off), sizeof(struct in_addr));
|
|
cp[IPOPT_OFFSET] += sizeof(struct in_addr);
|
|
break;
|
|
|
|
case IPOPT_TS:
|
|
code = cp - (u_char *)ip;
|
|
ipt = (struct ip_timestamp *)cp;
|
|
if (ipt->ipt_len < 5)
|
|
goto bad;
|
|
if (ipt->ipt_ptr > ipt->ipt_len - sizeof (long)) {
|
|
if (++ipt->ipt_oflw == 0)
|
|
goto bad;
|
|
break;
|
|
}
|
|
sin = (struct in_addr *)(cp + ipt->ipt_ptr - 1);
|
|
switch (ipt->ipt_flg) {
|
|
|
|
case IPOPT_TS_TSONLY:
|
|
break;
|
|
|
|
case IPOPT_TS_TSANDADDR:
|
|
if (ipt->ipt_ptr + sizeof(n_time) +
|
|
sizeof(struct in_addr) > ipt->ipt_len)
|
|
goto bad;
|
|
ia = ifptoia(m->m_pkthdr.rcvif);
|
|
bcopy((caddr_t)&IA_SIN(ia)->sin_addr,
|
|
(caddr_t)sin, sizeof(struct in_addr));
|
|
ipt->ipt_ptr += sizeof(struct in_addr);
|
|
break;
|
|
|
|
case IPOPT_TS_PRESPEC:
|
|
if (ipt->ipt_ptr + sizeof(n_time) +
|
|
sizeof(struct in_addr) > ipt->ipt_len)
|
|
goto bad;
|
|
bcopy((caddr_t)sin, (caddr_t)&ipaddr.sin_addr,
|
|
sizeof(struct in_addr));
|
|
if (ifa_ifwithaddr((SA)&ipaddr) == 0)
|
|
continue;
|
|
ipt->ipt_ptr += sizeof(struct in_addr);
|
|
break;
|
|
|
|
default:
|
|
goto bad;
|
|
}
|
|
ntime = iptime();
|
|
bcopy((caddr_t)&ntime, (caddr_t)cp + ipt->ipt_ptr - 1,
|
|
sizeof(n_time));
|
|
ipt->ipt_ptr += sizeof(n_time);
|
|
}
|
|
}
|
|
if (forward) {
|
|
ip_forward(m, 1);
|
|
return (1);
|
|
} else
|
|
return (0);
|
|
bad:
|
|
{
|
|
register struct in_addr foo = {};
|
|
icmp_error(m, type, code, foo);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Given address of next destination (final or next hop),
|
|
* return internet address info of interface to be used to get there.
|
|
*/
|
|
struct in_ifaddr *
|
|
ip_rtaddr(dst)
|
|
struct in_addr dst;
|
|
{
|
|
register struct sockaddr_in *sin;
|
|
|
|
sin = (struct sockaddr_in *) &ipforward_rt.ro_dst;
|
|
|
|
if (ipforward_rt.ro_rt == 0 || dst.s_addr != sin->sin_addr.s_addr) {
|
|
if (ipforward_rt.ro_rt) {
|
|
RTFREE(ipforward_rt.ro_rt);
|
|
ipforward_rt.ro_rt = 0;
|
|
}
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = dst;
|
|
|
|
rtalloc(&ipforward_rt);
|
|
}
|
|
if (ipforward_rt.ro_rt == 0)
|
|
return ((struct in_ifaddr *)0);
|
|
return ((struct in_ifaddr *) ipforward_rt.ro_rt->rt_ifa);
|
|
}
|
|
|
|
/*
|
|
* Save incoming source route for use in replies,
|
|
* to be picked up later by ip_srcroute if the receiver is interested.
|
|
*/
|
|
static void
|
|
save_rte(option, dst)
|
|
u_char *option;
|
|
struct in_addr dst;
|
|
{
|
|
unsigned olen;
|
|
|
|
olen = option[IPOPT_OLEN];
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf("save_rte: olen %d\n", olen);
|
|
#endif
|
|
if (olen > sizeof(ip_srcrt) - (1 + sizeof(dst)))
|
|
return;
|
|
bcopy((caddr_t)option, (caddr_t)ip_srcrt.srcopt, olen);
|
|
ip_nhops = (olen - IPOPT_OFFSET - 1) / sizeof(struct in_addr);
|
|
ip_srcrt.dst = dst;
|
|
}
|
|
|
|
/*
|
|
* Retrieve incoming source route for use in replies,
|
|
* in the same form used by setsockopt.
|
|
* The first hop is placed before the options, will be removed later.
|
|
*/
|
|
struct mbuf *
|
|
ip_srcroute()
|
|
{
|
|
register struct in_addr *p, *q;
|
|
register struct mbuf *m;
|
|
|
|
if (ip_nhops == 0)
|
|
return ((struct mbuf *)0);
|
|
m = m_get(M_DONTWAIT, MT_SOOPTS);
|
|
if (m == 0)
|
|
return ((struct mbuf *)0);
|
|
|
|
#define OPTSIZ (sizeof(ip_srcrt.nop) + sizeof(ip_srcrt.srcopt))
|
|
|
|
/* length is (nhops+1)*sizeof(addr) + sizeof(nop + srcrt header) */
|
|
m->m_len = ip_nhops * sizeof(struct in_addr) + sizeof(struct in_addr) +
|
|
OPTSIZ;
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf("ip_srcroute: nhops %d mlen %d", ip_nhops, m->m_len);
|
|
#endif
|
|
|
|
/*
|
|
* First save first hop for return route
|
|
*/
|
|
p = &ip_srcrt.route[ip_nhops - 1];
|
|
*(mtod(m, struct in_addr *)) = *p--;
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf(" hops %lx", ntohl(mtod(m, struct in_addr *)->s_addr));
|
|
#endif
|
|
|
|
/*
|
|
* Copy option fields and padding (nop) to mbuf.
|
|
*/
|
|
ip_srcrt.nop = IPOPT_NOP;
|
|
ip_srcrt.srcopt[IPOPT_OFFSET] = IPOPT_MINOFF;
|
|
bcopy((caddr_t)&ip_srcrt.nop,
|
|
mtod(m, caddr_t) + sizeof(struct in_addr), OPTSIZ);
|
|
q = (struct in_addr *)(mtod(m, caddr_t) +
|
|
sizeof(struct in_addr) + OPTSIZ);
|
|
#undef OPTSIZ
|
|
/*
|
|
* Record return path as an IP source route,
|
|
* reversing the path (pointers are now aligned).
|
|
*/
|
|
while (p >= ip_srcrt.route) {
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf(" %lx", ntohl(q->s_addr));
|
|
#endif
|
|
*q++ = *p--;
|
|
}
|
|
/*
|
|
* Last hop goes to final destination.
|
|
*/
|
|
*q = ip_srcrt.dst;
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf(" %lx\n", ntohl(q->s_addr));
|
|
#endif
|
|
return (m);
|
|
}
|
|
|
|
/*
|
|
* Strip out IP options, at higher
|
|
* level protocol in the kernel.
|
|
* Second argument is buffer to which options
|
|
* will be moved, and return value is their length.
|
|
* XXX should be deleted; last arg currently ignored.
|
|
*/
|
|
void
|
|
ip_stripoptions(m, mopt)
|
|
register struct mbuf *m;
|
|
struct mbuf *mopt;
|
|
{
|
|
register int i;
|
|
struct ip *ip = mtod(m, struct ip *);
|
|
register caddr_t opts;
|
|
int olen;
|
|
|
|
olen = (ip->ip_hl<<2) - sizeof (struct ip);
|
|
opts = (caddr_t)(ip + 1);
|
|
i = m->m_len - (sizeof (struct ip) + olen);
|
|
bcopy(opts + olen, opts, (unsigned)i);
|
|
m->m_len -= olen;
|
|
if (m->m_flags & M_PKTHDR)
|
|
m->m_pkthdr.len -= olen;
|
|
ip->ip_hl = sizeof(struct ip) >> 2;
|
|
}
|
|
|
|
u_char inetctlerrmap[PRC_NCMDS] = {
|
|
0, 0, 0, 0,
|
|
0, EMSGSIZE, EHOSTDOWN, EHOSTUNREACH,
|
|
EHOSTUNREACH, EHOSTUNREACH, ECONNREFUSED, ECONNREFUSED,
|
|
EMSGSIZE, EHOSTUNREACH, 0, 0,
|
|
0, 0, 0, 0,
|
|
ENOPROTOOPT
|
|
};
|
|
|
|
/*
|
|
* Forward a packet. If some error occurs return the sender
|
|
* an icmp packet. Note we can't always generate a meaningful
|
|
* icmp message because icmp doesn't have a large enough repertoire
|
|
* of codes and types.
|
|
*
|
|
* If not forwarding, just drop the packet. This could be confusing
|
|
* if ipforwarding was zero but some routing protocol was advancing
|
|
* us as a gateway to somewhere. However, we must let the routing
|
|
* protocol deal with that.
|
|
*
|
|
* The srcrt parameter indicates whether the packet is being forwarded
|
|
* via a source route.
|
|
*/
|
|
static void
|
|
ip_forward(m, srcrt)
|
|
struct mbuf *m;
|
|
int srcrt;
|
|
{
|
|
register struct ip *ip = mtod(m, struct ip *);
|
|
register struct sockaddr_in *sin;
|
|
register struct rtentry *rt;
|
|
int error, type = 0, code;
|
|
struct mbuf *mcopy;
|
|
struct in_addr dest;
|
|
|
|
dest.s_addr = 0;
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf("forward: src %x dst %x ttl %x\n", ip->ip_src,
|
|
ip->ip_dst, ip->ip_ttl);
|
|
#endif
|
|
if (m->m_flags & M_BCAST || in_canforward(ip->ip_dst) == 0) {
|
|
ipstat.ips_cantforward++;
|
|
m_freem(m);
|
|
return;
|
|
}
|
|
HTONS(ip->ip_id);
|
|
if (ip->ip_ttl <= IPTTLDEC) {
|
|
icmp_error(m, ICMP_TIMXCEED, ICMP_TIMXCEED_INTRANS, dest);
|
|
return;
|
|
}
|
|
ip->ip_ttl -= IPTTLDEC;
|
|
|
|
sin = (struct sockaddr_in *)&ipforward_rt.ro_dst;
|
|
if ((rt = ipforward_rt.ro_rt) == 0 ||
|
|
ip->ip_dst.s_addr != sin->sin_addr.s_addr) {
|
|
if (ipforward_rt.ro_rt) {
|
|
RTFREE(ipforward_rt.ro_rt);
|
|
ipforward_rt.ro_rt = 0;
|
|
}
|
|
sin->sin_family = AF_INET;
|
|
sin->sin_len = sizeof(*sin);
|
|
sin->sin_addr = ip->ip_dst;
|
|
|
|
rtalloc(&ipforward_rt);
|
|
if (ipforward_rt.ro_rt == 0) {
|
|
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_HOST, dest);
|
|
return;
|
|
}
|
|
rt = ipforward_rt.ro_rt;
|
|
}
|
|
|
|
/*
|
|
* Save at most 64 bytes of the packet in case
|
|
* we need to generate an ICMP message to the src.
|
|
*/
|
|
mcopy = m_copy(m, 0, imin((int)ip->ip_len, 64));
|
|
|
|
#ifdef GATEWAY
|
|
ip_ifmatrix[rt->rt_ifp->if_index +
|
|
if_index * m->m_pkthdr.rcvif->if_index]++;
|
|
#endif
|
|
/*
|
|
* If forwarding packet using same interface that it came in on,
|
|
* perhaps should send a redirect to sender to shortcut a hop.
|
|
* Only send redirect if source is sending directly to us,
|
|
* and if packet was not source routed (or has any options).
|
|
* Also, don't send redirect if forwarding using a default route
|
|
* or a route modified by a redirect.
|
|
*/
|
|
#define satosin(sa) ((struct sockaddr_in *)(sa))
|
|
if (rt->rt_ifp == m->m_pkthdr.rcvif &&
|
|
(rt->rt_flags & (RTF_DYNAMIC|RTF_MODIFIED)) == 0 &&
|
|
satosin(rt_key(rt))->sin_addr.s_addr != 0 &&
|
|
ipsendredirects && !srcrt) {
|
|
struct in_ifaddr *ia;
|
|
u_long src = ntohl(ip->ip_src.s_addr);
|
|
u_long dst = ntohl(ip->ip_dst.s_addr);
|
|
|
|
if ((ia = ifptoia(m->m_pkthdr.rcvif)) &&
|
|
(src & ia->ia_subnetmask) == ia->ia_subnet) {
|
|
if (rt->rt_flags & RTF_GATEWAY)
|
|
dest = satosin(rt->rt_gateway)->sin_addr;
|
|
else
|
|
dest = ip->ip_dst;
|
|
/*
|
|
* If the destination is reached by a route to host,
|
|
* is on a subnet of a local net, or is directly
|
|
* on the attached net (!), use host redirect.
|
|
* (We may be the correct first hop for other subnets.)
|
|
*/
|
|
#define RTA(rt) ((struct in_ifaddr *)(rt->rt_ifa))
|
|
type = ICMP_REDIRECT;
|
|
if ((rt->rt_flags & RTF_HOST) ||
|
|
(rt->rt_flags & RTF_GATEWAY) == 0)
|
|
code = ICMP_REDIRECT_HOST;
|
|
else if (RTA(rt)->ia_subnetmask != RTA(rt)->ia_netmask &&
|
|
(dst & RTA(rt)->ia_netmask) == RTA(rt)->ia_net)
|
|
code = ICMP_REDIRECT_HOST;
|
|
else
|
|
code = ICMP_REDIRECT_NET;
|
|
#ifdef DIAGNOSTIC
|
|
if (ipprintfs)
|
|
printf("redirect (%d) to %x\n", code, dest.s_addr);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
error = ip_output(m, NULL, &ipforward_rt, IP_FORWARDING
|
|
#ifdef DIRECTED_BROADCAST
|
|
| IP_ALLOWBROADCAST
|
|
#endif
|
|
, NULL);
|
|
if (error)
|
|
ipstat.ips_cantforward++;
|
|
else {
|
|
ipstat.ips_forward++;
|
|
if (type)
|
|
ipstat.ips_redirectsent++;
|
|
else {
|
|
if (mcopy)
|
|
m_freem(mcopy);
|
|
return;
|
|
}
|
|
}
|
|
if (mcopy == NULL)
|
|
return;
|
|
switch (error) {
|
|
|
|
case 0: /* forwarded, but need redirect */
|
|
/* type, code set above */
|
|
break;
|
|
|
|
case ENETUNREACH: /* shouldn't happen, checked above */
|
|
case EHOSTUNREACH:
|
|
case ENETDOWN:
|
|
case EHOSTDOWN:
|
|
default:
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_HOST;
|
|
break;
|
|
|
|
case EMSGSIZE:
|
|
type = ICMP_UNREACH;
|
|
code = ICMP_UNREACH_NEEDFRAG;
|
|
ipstat.ips_cantfrag++;
|
|
break;
|
|
|
|
case ENOBUFS:
|
|
type = ICMP_SOURCEQUENCH;
|
|
code = 0;
|
|
break;
|
|
}
|
|
icmp_error(mcopy, type, code, dest);
|
|
}
|