1630 lines
38 KiB
C
1630 lines
38 KiB
C
/* $NetBSD: if_vlan.c,v 1.124 2018/01/15 16:36:51 maxv Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2000, 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Doran, and by Jason R. Thorpe of Zembu Labs, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright 1998 Massachusetts Institute of Technology
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software and
|
|
* its documentation for any purpose and without fee is hereby
|
|
* granted, provided that both the above copyright notice and this
|
|
* permission notice appear in all copies, that both the above
|
|
* copyright notice and this permission notice appear in all
|
|
* supporting documentation, and that the name of M.I.T. not be used
|
|
* in advertising or publicity pertaining to distribution of the
|
|
* software without specific, written prior permission. M.I.T. makes
|
|
* no representations about the suitability of this software for any
|
|
* purpose. It is provided "as is" without express or implied
|
|
* warranty.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY M.I.T. ``AS IS''. M.I.T. DISCLAIMS
|
|
* ALL EXPRESS OR IMPLIED WARRANTIES WITH REGARD TO THIS SOFTWARE,
|
|
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT
|
|
* SHALL M.I.T. BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
|
|
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
|
|
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from FreeBSD: if_vlan.c,v 1.16 2000/03/26 15:21:40 charnier Exp
|
|
* via OpenBSD: if_vlan.c,v 1.4 2000/05/15 19:15:00 chris Exp
|
|
*/
|
|
|
|
/*
|
|
* if_vlan.c - pseudo-device driver for IEEE 802.1Q virtual LANs. Might be
|
|
* extended some day to also handle IEEE 802.1P priority tagging. This is
|
|
* sort of sneaky in the implementation, since we need to pretend to be
|
|
* enough of an Ethernet implementation to make ARP work. The way we do
|
|
* this is by telling everyone that we are an Ethernet interface, and then
|
|
* catch the packets that ether_output() left on our output queue when it
|
|
* calls if_start(), rewrite them for use by the real outgoing interface,
|
|
* and ask it to send them.
|
|
*
|
|
* TODO:
|
|
*
|
|
* - Need some way to notify vlan interfaces when the parent
|
|
* interface changes MTU.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: if_vlan.c,v 1.124 2018/01/15 16:36:51 maxv Exp $");
|
|
|
|
#ifdef _KERNEL_OPT
|
|
#include "opt_inet.h"
|
|
#include "opt_net_mpsafe.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/sockio.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/pserialize.h>
|
|
#include <sys/psref.h>
|
|
#include <sys/pslist.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/device.h>
|
|
#include <sys/module.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_types.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_vlanvar.h>
|
|
|
|
#ifdef INET
|
|
#include <netinet/in.h>
|
|
#include <netinet/if_inarp.h>
|
|
#endif
|
|
#ifdef INET6
|
|
#include <netinet6/in6_ifattach.h>
|
|
#include <netinet6/in6_var.h>
|
|
#endif
|
|
|
|
#include "ioconf.h"
|
|
|
|
struct vlan_mc_entry {
|
|
LIST_ENTRY(vlan_mc_entry) mc_entries;
|
|
/*
|
|
* A key to identify this entry. The mc_addr below can't be
|
|
* used since multiple sockaddr may mapped into the same
|
|
* ether_multi (e.g., AF_UNSPEC).
|
|
*/
|
|
union {
|
|
struct ether_multi *mcu_enm;
|
|
} mc_u;
|
|
struct sockaddr_storage mc_addr;
|
|
};
|
|
|
|
#define mc_enm mc_u.mcu_enm
|
|
|
|
|
|
struct ifvlan_linkmib {
|
|
struct ifvlan *ifvm_ifvlan;
|
|
const struct vlan_multisw *ifvm_msw;
|
|
int ifvm_encaplen; /* encapsulation length */
|
|
int ifvm_mtufudge; /* MTU fudged by this much */
|
|
int ifvm_mintu; /* min transmission unit */
|
|
uint16_t ifvm_proto; /* encapsulation ethertype */
|
|
uint16_t ifvm_tag; /* tag to apply on packets */
|
|
struct ifnet *ifvm_p; /* parent interface of this vlan */
|
|
|
|
struct psref_target ifvm_psref;
|
|
};
|
|
|
|
struct ifvlan {
|
|
union {
|
|
struct ethercom ifvu_ec;
|
|
} ifv_u;
|
|
struct ifvlan_linkmib *ifv_mib; /*
|
|
* reader must use vlan_getref_linkmib()
|
|
* instead of direct dereference
|
|
*/
|
|
kmutex_t ifv_lock; /* writer lock for ifv_mib */
|
|
|
|
LIST_HEAD(__vlan_mchead, vlan_mc_entry) ifv_mc_listhead;
|
|
LIST_ENTRY(ifvlan) ifv_list;
|
|
struct pslist_entry ifv_hash;
|
|
int ifv_flags;
|
|
};
|
|
|
|
#define IFVF_PROMISC 0x01 /* promiscuous mode enabled */
|
|
|
|
#define ifv_ec ifv_u.ifvu_ec
|
|
|
|
#define ifv_if ifv_ec.ec_if
|
|
|
|
#define ifv_msw ifv_mib.ifvm_msw
|
|
#define ifv_encaplen ifv_mib.ifvm_encaplen
|
|
#define ifv_mtufudge ifv_mib.ifvm_mtufudge
|
|
#define ifv_mintu ifv_mib.ifvm_mintu
|
|
#define ifv_tag ifv_mib.ifvm_tag
|
|
|
|
struct vlan_multisw {
|
|
int (*vmsw_addmulti)(struct ifvlan *, struct ifreq *);
|
|
int (*vmsw_delmulti)(struct ifvlan *, struct ifreq *);
|
|
void (*vmsw_purgemulti)(struct ifvlan *);
|
|
};
|
|
|
|
static int vlan_ether_addmulti(struct ifvlan *, struct ifreq *);
|
|
static int vlan_ether_delmulti(struct ifvlan *, struct ifreq *);
|
|
static void vlan_ether_purgemulti(struct ifvlan *);
|
|
|
|
const struct vlan_multisw vlan_ether_multisw = {
|
|
.vmsw_addmulti = vlan_ether_addmulti,
|
|
.vmsw_delmulti = vlan_ether_delmulti,
|
|
.vmsw_purgemulti = vlan_ether_purgemulti,
|
|
};
|
|
|
|
static int vlan_clone_create(struct if_clone *, int);
|
|
static int vlan_clone_destroy(struct ifnet *);
|
|
static int vlan_config(struct ifvlan *, struct ifnet *,
|
|
uint16_t);
|
|
static int vlan_ioctl(struct ifnet *, u_long, void *);
|
|
static void vlan_start(struct ifnet *);
|
|
static int vlan_transmit(struct ifnet *, struct mbuf *);
|
|
static void vlan_unconfig(struct ifnet *);
|
|
static int vlan_unconfig_locked(struct ifvlan *,
|
|
struct ifvlan_linkmib *);
|
|
static void vlan_hash_init(void);
|
|
static int vlan_hash_fini(void);
|
|
static int vlan_tag_hash(uint16_t, u_long);
|
|
static struct ifvlan_linkmib* vlan_getref_linkmib(struct ifvlan *,
|
|
struct psref *);
|
|
static void vlan_putref_linkmib(struct ifvlan_linkmib *,
|
|
struct psref *);
|
|
static void vlan_linkmib_update(struct ifvlan *,
|
|
struct ifvlan_linkmib *);
|
|
static struct ifvlan_linkmib* vlan_lookup_tag_psref(struct ifnet *,
|
|
uint16_t, struct psref *);
|
|
|
|
LIST_HEAD(vlan_ifvlist, ifvlan);
|
|
static struct {
|
|
kmutex_t lock;
|
|
struct vlan_ifvlist list;
|
|
} ifv_list __cacheline_aligned;
|
|
|
|
|
|
#if !defined(VLAN_TAG_HASH_SIZE)
|
|
#define VLAN_TAG_HASH_SIZE 32
|
|
#endif
|
|
static struct {
|
|
kmutex_t lock;
|
|
struct pslist_head *lists;
|
|
u_long mask;
|
|
} ifv_hash __cacheline_aligned = {
|
|
.lists = NULL,
|
|
.mask = 0,
|
|
};
|
|
|
|
pserialize_t vlan_psz __read_mostly;
|
|
static struct psref_class *ifvm_psref_class __read_mostly;
|
|
|
|
struct if_clone vlan_cloner =
|
|
IF_CLONE_INITIALIZER("vlan", vlan_clone_create, vlan_clone_destroy);
|
|
|
|
/* Used to pad ethernet frames with < ETHER_MIN_LEN bytes */
|
|
static char vlan_zero_pad_buff[ETHER_MIN_LEN];
|
|
|
|
static inline int
|
|
vlan_safe_ifpromisc(struct ifnet *ifp, int pswitch)
|
|
{
|
|
int e;
|
|
|
|
KERNEL_LOCK_UNLESS_NET_MPSAFE();
|
|
e = ifpromisc(ifp, pswitch);
|
|
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
|
|
|
|
return e;
|
|
}
|
|
|
|
static inline int
|
|
vlan_safe_ifpromisc_locked(struct ifnet *ifp, int pswitch)
|
|
{
|
|
int e;
|
|
|
|
KERNEL_LOCK_UNLESS_NET_MPSAFE();
|
|
e = ifpromisc_locked(ifp, pswitch);
|
|
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
|
|
|
|
return e;
|
|
}
|
|
|
|
void
|
|
vlanattach(int n)
|
|
{
|
|
|
|
/*
|
|
* Nothing to do here, initialization is handled by the
|
|
* module initialization code in vlaninit() below.
|
|
*/
|
|
}
|
|
|
|
static void
|
|
vlaninit(void)
|
|
{
|
|
mutex_init(&ifv_list.lock, MUTEX_DEFAULT, IPL_NONE);
|
|
LIST_INIT(&ifv_list.list);
|
|
|
|
mutex_init(&ifv_hash.lock, MUTEX_DEFAULT, IPL_NONE);
|
|
vlan_psz = pserialize_create();
|
|
ifvm_psref_class = psref_class_create("vlanlinkmib", IPL_SOFTNET);
|
|
if_clone_attach(&vlan_cloner);
|
|
|
|
vlan_hash_init();
|
|
}
|
|
|
|
static int
|
|
vlandetach(void)
|
|
{
|
|
bool is_empty;
|
|
int error;
|
|
|
|
mutex_enter(&ifv_list.lock);
|
|
is_empty = LIST_EMPTY(&ifv_list.list);
|
|
mutex_exit(&ifv_list.lock);
|
|
|
|
if (!is_empty)
|
|
return EBUSY;
|
|
|
|
error = vlan_hash_fini();
|
|
if (error != 0)
|
|
return error;
|
|
|
|
if_clone_detach(&vlan_cloner);
|
|
psref_class_destroy(ifvm_psref_class);
|
|
pserialize_destroy(vlan_psz);
|
|
mutex_destroy(&ifv_hash.lock);
|
|
mutex_destroy(&ifv_list.lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
vlan_reset_linkname(struct ifnet *ifp)
|
|
{
|
|
|
|
/*
|
|
* We start out with a "802.1Q VLAN" type and zero-length
|
|
* addresses. When we attach to a parent interface, we
|
|
* inherit its type, address length, address, and data link
|
|
* type.
|
|
*/
|
|
|
|
ifp->if_type = IFT_L2VLAN;
|
|
ifp->if_addrlen = 0;
|
|
ifp->if_dlt = DLT_NULL;
|
|
if_alloc_sadl(ifp);
|
|
}
|
|
|
|
static int
|
|
vlan_clone_create(struct if_clone *ifc, int unit)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifnet *ifp;
|
|
struct ifvlan_linkmib *mib;
|
|
int rv;
|
|
|
|
ifv = malloc(sizeof(struct ifvlan), M_DEVBUF, M_WAITOK|M_ZERO);
|
|
mib = kmem_zalloc(sizeof(struct ifvlan_linkmib), KM_SLEEP);
|
|
ifp = &ifv->ifv_if;
|
|
LIST_INIT(&ifv->ifv_mc_listhead);
|
|
|
|
mib->ifvm_ifvlan = ifv;
|
|
mib->ifvm_p = NULL;
|
|
psref_target_init(&mib->ifvm_psref, ifvm_psref_class);
|
|
|
|
mutex_init(&ifv->ifv_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
ifv->ifv_mib = mib;
|
|
|
|
mutex_enter(&ifv_list.lock);
|
|
LIST_INSERT_HEAD(&ifv_list.list, ifv, ifv_list);
|
|
mutex_exit(&ifv_list.lock);
|
|
|
|
if_initname(ifp, ifc->ifc_name, unit);
|
|
ifp->if_softc = ifv;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_extflags = IFEF_NO_LINK_STATE_CHANGE;
|
|
#ifdef NET_MPSAFE
|
|
ifp->if_extflags |= IFEF_MPSAFE;
|
|
#endif
|
|
ifp->if_start = vlan_start;
|
|
ifp->if_transmit = vlan_transmit;
|
|
ifp->if_ioctl = vlan_ioctl;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
rv = if_initialize(ifp);
|
|
if (rv != 0) {
|
|
aprint_error("%s: if_initialize failed(%d)\n", ifp->if_xname,
|
|
rv);
|
|
goto fail;
|
|
}
|
|
|
|
vlan_reset_linkname(ifp);
|
|
if_register(ifp);
|
|
return 0;
|
|
|
|
fail:
|
|
mutex_enter(&ifv_list.lock);
|
|
LIST_REMOVE(ifv, ifv_list);
|
|
mutex_exit(&ifv_list.lock);
|
|
|
|
mutex_destroy(&ifv->ifv_lock);
|
|
psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
|
|
kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
|
|
free(ifv, M_DEVBUF);
|
|
|
|
return rv;
|
|
}
|
|
|
|
static int
|
|
vlan_clone_destroy(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
|
|
mutex_enter(&ifv_list.lock);
|
|
LIST_REMOVE(ifv, ifv_list);
|
|
mutex_exit(&ifv_list.lock);
|
|
|
|
IFNET_LOCK(ifp);
|
|
vlan_unconfig(ifp);
|
|
IFNET_UNLOCK(ifp);
|
|
if_detach(ifp);
|
|
|
|
psref_target_destroy(&ifv->ifv_mib->ifvm_psref, ifvm_psref_class);
|
|
kmem_free(ifv->ifv_mib, sizeof(struct ifvlan_linkmib));
|
|
mutex_destroy(&ifv->ifv_lock);
|
|
free(ifv, M_DEVBUF);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Configure a VLAN interface.
|
|
*/
|
|
static int
|
|
vlan_config(struct ifvlan *ifv, struct ifnet *p, uint16_t tag)
|
|
{
|
|
struct ifnet *ifp = &ifv->ifv_if;
|
|
struct ifvlan_linkmib *nmib = NULL;
|
|
struct ifvlan_linkmib *omib = NULL;
|
|
struct ifvlan_linkmib *checkmib;
|
|
struct psref_target *nmib_psref = NULL;
|
|
const uint16_t vid = EVL_VLANOFTAG(tag);
|
|
int error = 0;
|
|
int idx;
|
|
bool omib_cleanup = false;
|
|
struct psref psref;
|
|
|
|
/* VLAN ID 0 and 4095 are reserved in the spec */
|
|
if ((vid == 0) || (vid == 0xfff))
|
|
return EINVAL;
|
|
|
|
nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
|
|
mutex_enter(&ifv->ifv_lock);
|
|
omib = ifv->ifv_mib;
|
|
|
|
if (omib->ifvm_p != NULL) {
|
|
error = EBUSY;
|
|
goto done;
|
|
}
|
|
|
|
/* Duplicate check */
|
|
checkmib = vlan_lookup_tag_psref(p, vid, &psref);
|
|
if (checkmib != NULL) {
|
|
vlan_putref_linkmib(checkmib, &psref);
|
|
error = EEXIST;
|
|
goto done;
|
|
}
|
|
|
|
*nmib = *omib;
|
|
nmib_psref = &nmib->ifvm_psref;
|
|
|
|
psref_target_init(nmib_psref, ifvm_psref_class);
|
|
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ethercom *ec = (void *)p;
|
|
nmib->ifvm_msw = &vlan_ether_multisw;
|
|
nmib->ifvm_encaplen = ETHER_VLAN_ENCAP_LEN;
|
|
nmib->ifvm_mintu = ETHERMIN;
|
|
|
|
if (ec->ec_nvlans++ == 0) {
|
|
IFNET_LOCK(p);
|
|
error = ether_enable_vlan_mtu(p);
|
|
IFNET_UNLOCK(p);
|
|
if (error >= 0) {
|
|
if (error) {
|
|
ec->ec_nvlans--;
|
|
goto done;
|
|
}
|
|
nmib->ifvm_mtufudge = 0;
|
|
} else {
|
|
/*
|
|
* Fudge the MTU by the encapsulation size. This
|
|
* makes us incompatible with strictly compliant
|
|
* 802.1Q implementations, but allows us to use
|
|
* the feature with other NetBSD
|
|
* implementations, which might still be useful.
|
|
*/
|
|
nmib->ifvm_mtufudge = nmib->ifvm_encaplen;
|
|
}
|
|
error = 0;
|
|
}
|
|
|
|
/*
|
|
* If the parent interface can do hardware-assisted
|
|
* VLAN encapsulation, then propagate its hardware-
|
|
* assisted checksumming flags and tcp segmentation
|
|
* offload.
|
|
*/
|
|
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
|
|
ec->ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
|
|
ifp->if_capabilities = p->if_capabilities &
|
|
(IFCAP_TSOv4 | IFCAP_TSOv6 |
|
|
IFCAP_CSUM_IPv4_Tx|IFCAP_CSUM_IPv4_Rx|
|
|
IFCAP_CSUM_TCPv4_Tx|IFCAP_CSUM_TCPv4_Rx|
|
|
IFCAP_CSUM_UDPv4_Tx|IFCAP_CSUM_UDPv4_Rx|
|
|
IFCAP_CSUM_TCPv6_Tx|IFCAP_CSUM_TCPv6_Rx|
|
|
IFCAP_CSUM_UDPv6_Tx|IFCAP_CSUM_UDPv6_Rx);
|
|
}
|
|
|
|
/*
|
|
* We inherit the parent's Ethernet address.
|
|
*/
|
|
ether_ifattach(ifp, CLLADDR(p->if_sadl));
|
|
ifp->if_hdrlen = sizeof(struct ether_vlan_header); /* XXX? */
|
|
break;
|
|
}
|
|
|
|
default:
|
|
error = EPROTONOSUPPORT;
|
|
goto done;
|
|
}
|
|
|
|
nmib->ifvm_p = p;
|
|
nmib->ifvm_tag = vid;
|
|
ifv->ifv_if.if_mtu = p->if_mtu - nmib->ifvm_mtufudge;
|
|
ifv->ifv_if.if_flags = p->if_flags &
|
|
(IFF_UP | IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST);
|
|
|
|
/*
|
|
* Inherit the if_type from the parent. This allows us
|
|
* to participate in bridges of that type.
|
|
*/
|
|
ifv->ifv_if.if_type = p->if_type;
|
|
|
|
PSLIST_ENTRY_INIT(ifv, ifv_hash);
|
|
idx = vlan_tag_hash(vid, ifv_hash.mask);
|
|
|
|
mutex_enter(&ifv_hash.lock);
|
|
PSLIST_WRITER_INSERT_HEAD(&ifv_hash.lists[idx], ifv, ifv_hash);
|
|
mutex_exit(&ifv_hash.lock);
|
|
|
|
vlan_linkmib_update(ifv, nmib);
|
|
nmib = NULL;
|
|
nmib_psref = NULL;
|
|
omib_cleanup = true;
|
|
|
|
done:
|
|
mutex_exit(&ifv->ifv_lock);
|
|
|
|
if (nmib_psref)
|
|
psref_target_destroy(nmib_psref, ifvm_psref_class);
|
|
if (nmib)
|
|
kmem_free(nmib, sizeof(*nmib));
|
|
if (omib_cleanup)
|
|
kmem_free(omib, sizeof(*omib));
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Unconfigure a VLAN interface.
|
|
*/
|
|
static void
|
|
vlan_unconfig(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifvlan_linkmib *nmib = NULL;
|
|
int error;
|
|
|
|
KASSERT(IFNET_LOCKED(ifp));
|
|
|
|
nmib = kmem_alloc(sizeof(*nmib), KM_SLEEP);
|
|
|
|
mutex_enter(&ifv->ifv_lock);
|
|
error = vlan_unconfig_locked(ifv, nmib);
|
|
mutex_exit(&ifv->ifv_lock);
|
|
|
|
if (error)
|
|
kmem_free(nmib, sizeof(*nmib));
|
|
}
|
|
static int
|
|
vlan_unconfig_locked(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
|
|
{
|
|
struct ifnet *p;
|
|
struct ifnet *ifp = &ifv->ifv_if;
|
|
struct psref_target *nmib_psref = NULL;
|
|
struct ifvlan_linkmib *omib;
|
|
int error = 0;
|
|
|
|
KASSERT(IFNET_LOCKED(ifp));
|
|
KASSERT(mutex_owned(&ifv->ifv_lock));
|
|
|
|
ifp->if_flags &= ~(IFF_UP|IFF_RUNNING);
|
|
|
|
omib = ifv->ifv_mib;
|
|
p = omib->ifvm_p;
|
|
|
|
if (p == NULL) {
|
|
error = -1;
|
|
goto done;
|
|
}
|
|
|
|
*nmib = *omib;
|
|
nmib_psref = &nmib->ifvm_psref;
|
|
psref_target_init(nmib_psref, ifvm_psref_class);
|
|
|
|
/*
|
|
* Since the interface is being unconfigured, we need to empty the
|
|
* list of multicast groups that we may have joined while we were
|
|
* alive and remove them from the parent's list also.
|
|
*/
|
|
(*nmib->ifvm_msw->vmsw_purgemulti)(ifv);
|
|
|
|
/* Disconnect from parent. */
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ethercom *ec = (void *)p;
|
|
if (--ec->ec_nvlans == 0) {
|
|
IFNET_LOCK(p);
|
|
(void) ether_disable_vlan_mtu(p);
|
|
IFNET_UNLOCK(p);
|
|
}
|
|
|
|
ether_ifdetach(ifp);
|
|
/* Restore vlan_ioctl overwritten by ether_ifdetach */
|
|
ifp->if_ioctl = vlan_ioctl;
|
|
vlan_reset_linkname(ifp);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
panic("%s: impossible", __func__);
|
|
}
|
|
|
|
nmib->ifvm_p = NULL;
|
|
ifv->ifv_if.if_mtu = 0;
|
|
ifv->ifv_flags = 0;
|
|
|
|
mutex_enter(&ifv_hash.lock);
|
|
PSLIST_WRITER_REMOVE(ifv, ifv_hash);
|
|
pserialize_perform(vlan_psz);
|
|
mutex_exit(&ifv_hash.lock);
|
|
PSLIST_ENTRY_DESTROY(ifv, ifv_hash);
|
|
|
|
vlan_linkmib_update(ifv, nmib);
|
|
|
|
mutex_exit(&ifv->ifv_lock);
|
|
|
|
nmib_psref = NULL;
|
|
kmem_free(omib, sizeof(*omib));
|
|
|
|
#ifdef INET6
|
|
KERNEL_LOCK_UNLESS_NET_MPSAFE();
|
|
/* To delete v6 link local addresses */
|
|
if (in6_present)
|
|
in6_ifdetach(ifp);
|
|
KERNEL_UNLOCK_UNLESS_NET_MPSAFE();
|
|
#endif
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0)
|
|
vlan_safe_ifpromisc_locked(ifp, 0);
|
|
if_down_locked(ifp);
|
|
ifp->if_capabilities = 0;
|
|
mutex_enter(&ifv->ifv_lock);
|
|
done:
|
|
|
|
if (nmib_psref)
|
|
psref_target_destroy(nmib_psref, ifvm_psref_class);
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
vlan_hash_init(void)
|
|
{
|
|
|
|
ifv_hash.lists = hashinit(VLAN_TAG_HASH_SIZE, HASH_PSLIST, true,
|
|
&ifv_hash.mask);
|
|
}
|
|
|
|
static int
|
|
vlan_hash_fini(void)
|
|
{
|
|
int i;
|
|
|
|
mutex_enter(&ifv_hash.lock);
|
|
|
|
for (i = 0; i < ifv_hash.mask + 1; i++) {
|
|
if (PSLIST_WRITER_FIRST(&ifv_hash.lists[i], struct ifvlan,
|
|
ifv_hash) != NULL) {
|
|
mutex_exit(&ifv_hash.lock);
|
|
return EBUSY;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < ifv_hash.mask + 1; i++)
|
|
PSLIST_DESTROY(&ifv_hash.lists[i]);
|
|
|
|
mutex_exit(&ifv_hash.lock);
|
|
|
|
hashdone(ifv_hash.lists, HASH_PSLIST, ifv_hash.mask);
|
|
|
|
ifv_hash.lists = NULL;
|
|
ifv_hash.mask = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
vlan_tag_hash(uint16_t tag, u_long mask)
|
|
{
|
|
uint32_t hash;
|
|
|
|
hash = (tag >> 8) ^ tag;
|
|
hash = (hash >> 2) ^ hash;
|
|
|
|
return hash & mask;
|
|
}
|
|
|
|
static struct ifvlan_linkmib *
|
|
vlan_getref_linkmib(struct ifvlan *sc, struct psref *psref)
|
|
{
|
|
struct ifvlan_linkmib *mib;
|
|
int s;
|
|
|
|
s = pserialize_read_enter();
|
|
mib = sc->ifv_mib;
|
|
if (mib == NULL) {
|
|
pserialize_read_exit(s);
|
|
return NULL;
|
|
}
|
|
membar_datadep_consumer();
|
|
psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
|
|
pserialize_read_exit(s);
|
|
|
|
return mib;
|
|
}
|
|
|
|
static void
|
|
vlan_putref_linkmib(struct ifvlan_linkmib *mib, struct psref *psref)
|
|
{
|
|
if (mib == NULL)
|
|
return;
|
|
psref_release(psref, &mib->ifvm_psref, ifvm_psref_class);
|
|
}
|
|
|
|
static struct ifvlan_linkmib *
|
|
vlan_lookup_tag_psref(struct ifnet *ifp, uint16_t tag, struct psref *psref)
|
|
{
|
|
int idx;
|
|
int s;
|
|
struct ifvlan *sc;
|
|
|
|
idx = vlan_tag_hash(tag, ifv_hash.mask);
|
|
|
|
s = pserialize_read_enter();
|
|
PSLIST_READER_FOREACH(sc, &ifv_hash.lists[idx], struct ifvlan,
|
|
ifv_hash) {
|
|
struct ifvlan_linkmib *mib = sc->ifv_mib;
|
|
if (mib == NULL)
|
|
continue;
|
|
if (mib->ifvm_tag != tag)
|
|
continue;
|
|
if (mib->ifvm_p != ifp)
|
|
continue;
|
|
|
|
psref_acquire(psref, &mib->ifvm_psref, ifvm_psref_class);
|
|
pserialize_read_exit(s);
|
|
return mib;
|
|
}
|
|
pserialize_read_exit(s);
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
vlan_linkmib_update(struct ifvlan *ifv, struct ifvlan_linkmib *nmib)
|
|
{
|
|
struct ifvlan_linkmib *omib = ifv->ifv_mib;
|
|
|
|
KASSERT(mutex_owned(&ifv->ifv_lock));
|
|
|
|
membar_producer();
|
|
ifv->ifv_mib = nmib;
|
|
|
|
pserialize_perform(vlan_psz);
|
|
psref_target_destroy(&omib->ifvm_psref, ifvm_psref_class);
|
|
}
|
|
|
|
/*
|
|
* Called when a parent interface is detaching; destroy any VLAN
|
|
* configuration for the parent interface.
|
|
*/
|
|
void
|
|
vlan_ifdetach(struct ifnet *p)
|
|
{
|
|
struct ifvlan *ifv;
|
|
struct ifvlan_linkmib *mib, **nmibs;
|
|
struct psref psref;
|
|
int error;
|
|
int bound;
|
|
int i, cnt = 0;
|
|
|
|
bound = curlwp_bind();
|
|
|
|
mutex_enter(&ifv_list.lock);
|
|
LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL)
|
|
continue;
|
|
|
|
if (mib->ifvm_p == p)
|
|
cnt++;
|
|
|
|
vlan_putref_linkmib(mib, &psref);
|
|
}
|
|
mutex_exit(&ifv_list.lock);
|
|
|
|
if (cnt == 0) {
|
|
curlwp_bindx(bound);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The value of "cnt" does not increase while ifv_list.lock
|
|
* and ifv->ifv_lock are released here, because the parent
|
|
* interface is detaching.
|
|
*/
|
|
nmibs = kmem_alloc(sizeof(*nmibs) * cnt, KM_SLEEP);
|
|
for (i = 0; i < cnt; i++) {
|
|
nmibs[i] = kmem_alloc(sizeof(*nmibs[i]), KM_SLEEP);
|
|
}
|
|
|
|
mutex_enter(&ifv_list.lock);
|
|
|
|
i = 0;
|
|
LIST_FOREACH(ifv, &ifv_list.list, ifv_list) {
|
|
struct ifnet *ifp = &ifv->ifv_if;
|
|
|
|
/* IFNET_LOCK must be held before ifv_lock. */
|
|
IFNET_LOCK(ifp);
|
|
mutex_enter(&ifv->ifv_lock);
|
|
|
|
/* XXX ifv_mib = NULL? */
|
|
if (ifv->ifv_mib->ifvm_p == p) {
|
|
KASSERTMSG(i < cnt, "no memory for unconfig, parent=%s",
|
|
p->if_xname);
|
|
error = vlan_unconfig_locked(ifv, nmibs[i]);
|
|
if (!error) {
|
|
nmibs[i] = NULL;
|
|
i++;
|
|
}
|
|
|
|
}
|
|
|
|
mutex_exit(&ifv->ifv_lock);
|
|
IFNET_UNLOCK(ifp);
|
|
}
|
|
|
|
mutex_exit(&ifv_list.lock);
|
|
|
|
curlwp_bindx(bound);
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (nmibs[i])
|
|
kmem_free(nmibs[i], sizeof(*nmibs[i]));
|
|
}
|
|
|
|
kmem_free(nmibs, sizeof(*nmibs) * cnt);
|
|
|
|
return;
|
|
}
|
|
|
|
static int
|
|
vlan_set_promisc(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifvlan_linkmib *mib;
|
|
struct psref psref;
|
|
int error = 0;
|
|
int bound;
|
|
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
return EBUSY;
|
|
}
|
|
|
|
if ((ifp->if_flags & IFF_PROMISC) != 0) {
|
|
if ((ifv->ifv_flags & IFVF_PROMISC) == 0) {
|
|
error = vlan_safe_ifpromisc(mib->ifvm_p, 1);
|
|
if (error == 0)
|
|
ifv->ifv_flags |= IFVF_PROMISC;
|
|
}
|
|
} else {
|
|
if ((ifv->ifv_flags & IFVF_PROMISC) != 0) {
|
|
error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
|
|
if (error == 0)
|
|
ifv->ifv_flags &= ~IFVF_PROMISC;
|
|
}
|
|
}
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
vlan_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct lwp *l = curlwp;
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifaddr *ifa = (struct ifaddr *) data;
|
|
struct ifreq *ifr = (struct ifreq *) data;
|
|
struct ifnet *pr;
|
|
struct ifcapreq *ifcr;
|
|
struct vlanreq vlr;
|
|
struct ifvlan_linkmib *mib;
|
|
struct psref psref;
|
|
int error = 0;
|
|
int bound;
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMTU:
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (mib->ifvm_p == NULL) {
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
error = EINVAL;
|
|
} else if (
|
|
ifr->ifr_mtu > (mib->ifvm_p->if_mtu - mib->ifvm_mtufudge) ||
|
|
ifr->ifr_mtu < (mib->ifvm_mintu - mib->ifvm_mtufudge)) {
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
error = EINVAL;
|
|
} else {
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
|
|
error = ifioctl_common(ifp, cmd, data);
|
|
if (error == ENETRESET)
|
|
error = 0;
|
|
}
|
|
|
|
break;
|
|
|
|
case SIOCSETVLAN:
|
|
if ((error = kauth_authorize_network(l->l_cred,
|
|
KAUTH_NETWORK_INTERFACE,
|
|
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, (void *)cmd,
|
|
NULL)) != 0)
|
|
break;
|
|
if ((error = copyin(ifr->ifr_data, &vlr, sizeof(vlr))) != 0)
|
|
break;
|
|
|
|
if (vlr.vlr_parent[0] == '\0') {
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (mib->ifvm_p != NULL &&
|
|
(ifp->if_flags & IFF_PROMISC) != 0)
|
|
error = vlan_safe_ifpromisc(mib->ifvm_p, 0);
|
|
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
|
|
vlan_unconfig(ifp);
|
|
break;
|
|
}
|
|
if (vlr.vlr_tag != EVL_VLANOFTAG(vlr.vlr_tag)) {
|
|
error = EINVAL; /* check for valid tag */
|
|
break;
|
|
}
|
|
if ((pr = ifunit(vlr.vlr_parent)) == NULL) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
error = vlan_config(ifv, pr, vlr.vlr_tag);
|
|
if (error != 0) {
|
|
break;
|
|
}
|
|
|
|
/* Update promiscuous mode, if necessary. */
|
|
vlan_set_promisc(ifp);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
break;
|
|
|
|
case SIOCGETVLAN:
|
|
memset(&vlr, 0, sizeof(vlr));
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
if (mib->ifvm_p != NULL) {
|
|
snprintf(vlr.vlr_parent, sizeof(vlr.vlr_parent), "%s",
|
|
mib->ifvm_p->if_xname);
|
|
vlr.vlr_tag = mib->ifvm_tag;
|
|
}
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
error = copyout(&vlr, ifr->ifr_data, sizeof(vlr));
|
|
break;
|
|
|
|
case SIOCSIFFLAGS:
|
|
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
|
|
break;
|
|
/*
|
|
* For promiscuous mode, we enable promiscuous mode on
|
|
* the parent if we need promiscuous on the VLAN interface.
|
|
*/
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (mib->ifvm_p != NULL)
|
|
error = vlan_set_promisc(ifp);
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
break;
|
|
|
|
case SIOCADDMULTI:
|
|
mutex_enter(&ifv->ifv_lock);
|
|
mib = ifv->ifv_mib;
|
|
if (mib == NULL) {
|
|
error = EBUSY;
|
|
mutex_exit(&ifv->ifv_lock);
|
|
break;
|
|
}
|
|
|
|
error = (mib->ifvm_p != NULL) ?
|
|
(*mib->ifvm_msw->vmsw_addmulti)(ifv, ifr) : EINVAL;
|
|
mib = NULL;
|
|
mutex_exit(&ifv->ifv_lock);
|
|
break;
|
|
|
|
case SIOCDELMULTI:
|
|
mutex_enter(&ifv->ifv_lock);
|
|
mib = ifv->ifv_mib;
|
|
if (mib == NULL) {
|
|
error = EBUSY;
|
|
mutex_exit(&ifv->ifv_lock);
|
|
break;
|
|
}
|
|
error = (mib->ifvm_p != NULL) ?
|
|
(*mib->ifvm_msw->vmsw_delmulti)(ifv, ifr) : EINVAL;
|
|
mib = NULL;
|
|
mutex_exit(&ifv->ifv_lock);
|
|
break;
|
|
|
|
case SIOCSIFCAP:
|
|
ifcr = data;
|
|
/* make sure caps are enabled on parent */
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (mib->ifvm_p == NULL) {
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
if ((mib->ifvm_p->if_capenable & ifcr->ifcr_capenable) !=
|
|
ifcr->ifcr_capenable) {
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
|
|
if ((error = ifioctl_common(ifp, cmd, data)) == ENETRESET)
|
|
error = 0;
|
|
break;
|
|
case SIOCINITIFADDR:
|
|
bound = curlwp_bind();
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
curlwp_bindx(bound);
|
|
error = EBUSY;
|
|
break;
|
|
}
|
|
|
|
if (mib->ifvm_p == NULL) {
|
|
error = EINVAL;
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
break;
|
|
}
|
|
vlan_putref_linkmib(mib, &psref);
|
|
curlwp_bindx(bound);
|
|
|
|
ifp->if_flags |= IFF_UP;
|
|
#ifdef INET
|
|
if (ifa->ifa_addr->sa_family == AF_INET)
|
|
arp_ifinit(ifp, ifa);
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
error = ether_ioctl(ifp, cmd, data);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
vlan_ether_addmulti(struct ifvlan *ifv, struct ifreq *ifr)
|
|
{
|
|
const struct sockaddr *sa = ifreq_getaddr(SIOCADDMULTI, ifr);
|
|
struct vlan_mc_entry *mc;
|
|
uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
|
|
struct ifvlan_linkmib *mib;
|
|
int error;
|
|
|
|
KASSERT(mutex_owned(&ifv->ifv_lock));
|
|
|
|
if (sa->sa_len > sizeof(struct sockaddr_storage))
|
|
return EINVAL;
|
|
|
|
error = ether_addmulti(sa, &ifv->ifv_ec);
|
|
if (error != ENETRESET)
|
|
return error;
|
|
|
|
/*
|
|
* This is a new multicast address. We have to tell parent
|
|
* about it. Also, remember this multicast address so that
|
|
* we can delete it on unconfigure.
|
|
*/
|
|
mc = malloc(sizeof(struct vlan_mc_entry), M_DEVBUF, M_NOWAIT);
|
|
if (mc == NULL) {
|
|
error = ENOMEM;
|
|
goto alloc_failed;
|
|
}
|
|
|
|
/*
|
|
* Since ether_addmulti() returned ENETRESET, the following two
|
|
* statements shouldn't fail. Here ifv_ec is implicitly protected
|
|
* by the ifv_lock lock.
|
|
*/
|
|
error = ether_multiaddr(sa, addrlo, addrhi);
|
|
KASSERT(error == 0);
|
|
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, mc->mc_enm);
|
|
KASSERT(mc->mc_enm != NULL);
|
|
|
|
memcpy(&mc->mc_addr, sa, sa->sa_len);
|
|
LIST_INSERT_HEAD(&ifv->ifv_mc_listhead, mc, mc_entries);
|
|
|
|
mib = ifv->ifv_mib;
|
|
|
|
KERNEL_LOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
|
|
IFNET_LOCK(mib->ifvm_p);
|
|
error = if_mcast_op(mib->ifvm_p, SIOCADDMULTI, sa);
|
|
IFNET_UNLOCK(mib->ifvm_p);
|
|
KERNEL_UNLOCK_UNLESS_IFP_MPSAFE(mib->ifvm_p);
|
|
|
|
if (error != 0)
|
|
goto ioctl_failed;
|
|
return error;
|
|
|
|
ioctl_failed:
|
|
LIST_REMOVE(mc, mc_entries);
|
|
free(mc, M_DEVBUF);
|
|
|
|
alloc_failed:
|
|
(void)ether_delmulti(sa, &ifv->ifv_ec);
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
vlan_ether_delmulti(struct ifvlan *ifv, struct ifreq *ifr)
|
|
{
|
|
const struct sockaddr *sa = ifreq_getaddr(SIOCDELMULTI, ifr);
|
|
struct ether_multi *enm;
|
|
struct vlan_mc_entry *mc;
|
|
struct ifvlan_linkmib *mib;
|
|
uint8_t addrlo[ETHER_ADDR_LEN], addrhi[ETHER_ADDR_LEN];
|
|
int error;
|
|
|
|
KASSERT(mutex_owned(&ifv->ifv_lock));
|
|
|
|
/*
|
|
* Find a key to lookup vlan_mc_entry. We have to do this
|
|
* before calling ether_delmulti for obvious reasons.
|
|
*/
|
|
if ((error = ether_multiaddr(sa, addrlo, addrhi)) != 0)
|
|
return error;
|
|
ETHER_LOOKUP_MULTI(addrlo, addrhi, &ifv->ifv_ec, enm);
|
|
|
|
error = ether_delmulti(sa, &ifv->ifv_ec);
|
|
if (error != ENETRESET)
|
|
return error;
|
|
|
|
/* We no longer use this multicast address. Tell parent so. */
|
|
mib = ifv->ifv_mib;
|
|
IFNET_LOCK(mib->ifvm_p);
|
|
error = if_mcast_op(mib->ifvm_p, SIOCDELMULTI, sa);
|
|
IFNET_UNLOCK(mib->ifvm_p);
|
|
|
|
if (error == 0) {
|
|
/* And forget about this address. */
|
|
for (mc = LIST_FIRST(&ifv->ifv_mc_listhead); mc != NULL;
|
|
mc = LIST_NEXT(mc, mc_entries)) {
|
|
if (mc->mc_enm == enm) {
|
|
LIST_REMOVE(mc, mc_entries);
|
|
free(mc, M_DEVBUF);
|
|
break;
|
|
}
|
|
}
|
|
KASSERT(mc != NULL);
|
|
} else
|
|
(void)ether_addmulti(sa, &ifv->ifv_ec);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Delete any multicast address we have asked to add from parent
|
|
* interface. Called when the vlan is being unconfigured.
|
|
*/
|
|
static void
|
|
vlan_ether_purgemulti(struct ifvlan *ifv)
|
|
{
|
|
struct vlan_mc_entry *mc;
|
|
struct ifvlan_linkmib *mib;
|
|
|
|
KASSERT(mutex_owned(&ifv->ifv_lock));
|
|
mib = ifv->ifv_mib;
|
|
if (mib == NULL) {
|
|
return;
|
|
}
|
|
|
|
while ((mc = LIST_FIRST(&ifv->ifv_mc_listhead)) != NULL) {
|
|
IFNET_LOCK(mib->ifvm_p);
|
|
(void)if_mcast_op(mib->ifvm_p, SIOCDELMULTI,
|
|
(const struct sockaddr *)&mc->mc_addr);
|
|
IFNET_UNLOCK(mib->ifvm_p);
|
|
LIST_REMOVE(mc, mc_entries);
|
|
free(mc, M_DEVBUF);
|
|
}
|
|
}
|
|
|
|
static void
|
|
vlan_start(struct ifnet *ifp)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifnet *p;
|
|
struct ethercom *ec;
|
|
struct mbuf *m;
|
|
struct ifvlan_linkmib *mib;
|
|
struct psref psref;
|
|
int error;
|
|
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL)
|
|
return;
|
|
p = mib->ifvm_p;
|
|
ec = (void *)mib->ifvm_p;
|
|
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
|
|
for (;;) {
|
|
IFQ_DEQUEUE(&ifp->if_snd, m);
|
|
if (m == NULL)
|
|
break;
|
|
|
|
#ifdef ALTQ
|
|
/*
|
|
* KERNEL_LOCK is required for ALTQ even if NET_MPSAFE is
|
|
* defined.
|
|
*/
|
|
KERNEL_LOCK(1, NULL);
|
|
/*
|
|
* If ALTQ is enabled on the parent interface, do
|
|
* classification; the queueing discipline might
|
|
* not require classification, but might require
|
|
* the address family/header pointer in the pktattr.
|
|
*/
|
|
if (ALTQ_IS_ENABLED(&p->if_snd)) {
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
altq_etherclassify(&p->if_snd, m);
|
|
break;
|
|
default:
|
|
panic("%s: impossible (altq)", __func__);
|
|
}
|
|
}
|
|
KERNEL_UNLOCK_ONE(NULL);
|
|
#endif /* ALTQ */
|
|
|
|
bpf_mtap(ifp, m);
|
|
/*
|
|
* If the parent can insert the tag itself, just mark
|
|
* the tag in the mbuf header.
|
|
*/
|
|
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
|
|
vlan_set_tag(m, mib->ifvm_tag);
|
|
} else {
|
|
/*
|
|
* insert the tag ourselves
|
|
*/
|
|
M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
printf("%s: unable to prepend encap header",
|
|
p->if_xname);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(struct ether_vlan_header))
|
|
m = m_pullup(m,
|
|
sizeof(struct ether_vlan_header));
|
|
if (m == NULL) {
|
|
printf("%s: unable to pullup encap "
|
|
"header", p->if_xname);
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an
|
|
* Ethernet header with 802.1Q encapsulation.
|
|
*/
|
|
memmove(mtod(m, void *),
|
|
mtod(m, char *) + mib->ifvm_encaplen,
|
|
sizeof(struct ether_header));
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
evl->evl_proto = evl->evl_encap_proto;
|
|
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
evl->evl_tag = htons(mib->ifvm_tag);
|
|
|
|
/*
|
|
* To cater for VLAN-aware layer 2 ethernet
|
|
* switches which may need to strip the tag
|
|
* before forwarding the packet, make sure
|
|
* the packet+tag is at least 68 bytes long.
|
|
* This is necessary because our parent will
|
|
* only pad to 64 bytes (ETHER_MIN_LEN) and
|
|
* some switches will not pad by themselves
|
|
* after deleting a tag.
|
|
*/
|
|
const size_t min_data_len = ETHER_MIN_LEN -
|
|
ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
if (m->m_pkthdr.len < min_data_len) {
|
|
m_copyback(m, m->m_pkthdr.len,
|
|
min_data_len - m->m_pkthdr.len,
|
|
vlan_zero_pad_buff);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
panic("%s: impossible", __func__);
|
|
}
|
|
}
|
|
|
|
if ((p->if_flags & IFF_RUNNING) == 0) {
|
|
m_freem(m);
|
|
continue;
|
|
}
|
|
|
|
error = if_transmit_lock(p, m);
|
|
if (error) {
|
|
/* mbuf is already freed */
|
|
ifp->if_oerrors++;
|
|
continue;
|
|
}
|
|
ifp->if_opackets++;
|
|
}
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/* Remove reference to mib before release */
|
|
vlan_putref_linkmib(mib, &psref);
|
|
}
|
|
|
|
static int
|
|
vlan_transmit(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ifvlan *ifv = ifp->if_softc;
|
|
struct ifnet *p;
|
|
struct ethercom *ec;
|
|
struct ifvlan_linkmib *mib;
|
|
struct psref psref;
|
|
int error;
|
|
size_t pktlen = m->m_pkthdr.len;
|
|
bool mcast = (m->m_flags & M_MCAST) != 0;
|
|
|
|
mib = vlan_getref_linkmib(ifv, &psref);
|
|
if (mib == NULL) {
|
|
m_freem(m);
|
|
return ENETDOWN;
|
|
}
|
|
|
|
p = mib->ifvm_p;
|
|
ec = (void *)mib->ifvm_p;
|
|
|
|
bpf_mtap(ifp, m);
|
|
|
|
if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_OUT) != 0) {
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
error = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the parent can insert the tag itself, just mark
|
|
* the tag in the mbuf header.
|
|
*/
|
|
if (ec->ec_capabilities & ETHERCAP_VLAN_HWTAGGING) {
|
|
vlan_set_tag(m, mib->ifvm_tag);
|
|
} else {
|
|
/*
|
|
* insert the tag ourselves
|
|
*/
|
|
M_PREPEND(m, mib->ifvm_encaplen, M_DONTWAIT);
|
|
if (m == NULL) {
|
|
printf("%s: unable to prepend encap header",
|
|
p->if_xname);
|
|
ifp->if_oerrors++;
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
switch (p->if_type) {
|
|
case IFT_ETHER:
|
|
{
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (m->m_len < sizeof(struct ether_vlan_header))
|
|
m = m_pullup(m,
|
|
sizeof(struct ether_vlan_header));
|
|
if (m == NULL) {
|
|
printf("%s: unable to pullup encap "
|
|
"header", p->if_xname);
|
|
ifp->if_oerrors++;
|
|
error = ENOBUFS;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Transform the Ethernet header into an
|
|
* Ethernet header with 802.1Q encapsulation.
|
|
*/
|
|
memmove(mtod(m, void *),
|
|
mtod(m, char *) + mib->ifvm_encaplen,
|
|
sizeof(struct ether_header));
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
evl->evl_proto = evl->evl_encap_proto;
|
|
evl->evl_encap_proto = htons(ETHERTYPE_VLAN);
|
|
evl->evl_tag = htons(mib->ifvm_tag);
|
|
|
|
/*
|
|
* To cater for VLAN-aware layer 2 ethernet
|
|
* switches which may need to strip the tag
|
|
* before forwarding the packet, make sure
|
|
* the packet+tag is at least 68 bytes long.
|
|
* This is necessary because our parent will
|
|
* only pad to 64 bytes (ETHER_MIN_LEN) and
|
|
* some switches will not pad by themselves
|
|
* after deleting a tag.
|
|
*/
|
|
const size_t min_data_len = ETHER_MIN_LEN -
|
|
ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN;
|
|
if (m->m_pkthdr.len < min_data_len) {
|
|
m_copyback(m, m->m_pkthdr.len,
|
|
min_data_len - m->m_pkthdr.len,
|
|
vlan_zero_pad_buff);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
panic("%s: impossible", __func__);
|
|
}
|
|
}
|
|
|
|
if ((p->if_flags & IFF_RUNNING) == 0) {
|
|
m_freem(m);
|
|
error = ENETDOWN;
|
|
goto out;
|
|
}
|
|
|
|
error = if_transmit_lock(p, m);
|
|
if (error) {
|
|
/* mbuf is already freed */
|
|
ifp->if_oerrors++;
|
|
} else {
|
|
|
|
ifp->if_opackets++;
|
|
ifp->if_obytes += pktlen;
|
|
if (mcast)
|
|
ifp->if_omcasts++;
|
|
}
|
|
|
|
out:
|
|
/* Remove reference to mib before release */
|
|
vlan_putref_linkmib(mib, &psref);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Given an Ethernet frame, find a valid vlan interface corresponding to the
|
|
* given source interface and tag, then run the real packet through the
|
|
* parent's input routine.
|
|
*/
|
|
void
|
|
vlan_input(struct ifnet *ifp, struct mbuf *m)
|
|
{
|
|
struct ifvlan *ifv;
|
|
uint16_t vid;
|
|
struct ifvlan_linkmib *mib;
|
|
struct psref psref;
|
|
bool have_vtag;
|
|
|
|
have_vtag = vlan_has_tag(m);
|
|
if (have_vtag) {
|
|
vid = EVL_VLANOFTAG(vlan_get_tag(m));
|
|
m->m_flags &= ~M_VLANTAG;
|
|
} else {
|
|
struct ether_vlan_header *evl;
|
|
|
|
if (ifp->if_type != IFT_ETHER) {
|
|
panic("%s: impossible", __func__);
|
|
}
|
|
|
|
if (m->m_len < sizeof(struct ether_vlan_header) &&
|
|
(m = m_pullup(m,
|
|
sizeof(struct ether_vlan_header))) == NULL) {
|
|
printf("%s: no memory for VLAN header, "
|
|
"dropping packet.\n", ifp->if_xname);
|
|
return;
|
|
}
|
|
evl = mtod(m, struct ether_vlan_header *);
|
|
KASSERT(ntohs(evl->evl_encap_proto) == ETHERTYPE_VLAN);
|
|
|
|
vid = EVL_VLANOFTAG(ntohs(evl->evl_tag));
|
|
|
|
/*
|
|
* Restore the original ethertype. We'll remove
|
|
* the encapsulation after we've found the vlan
|
|
* interface corresponding to the tag.
|
|
*/
|
|
evl->evl_encap_proto = evl->evl_proto;
|
|
}
|
|
|
|
mib = vlan_lookup_tag_psref(ifp, vid, &psref);
|
|
if (mib == NULL) {
|
|
m_freem(m);
|
|
ifp->if_noproto++;
|
|
return;
|
|
}
|
|
KASSERT(mib->ifvm_encaplen == ETHER_VLAN_ENCAP_LEN);
|
|
|
|
ifv = mib->ifvm_ifvlan;
|
|
if ((ifv->ifv_if.if_flags & (IFF_UP|IFF_RUNNING)) !=
|
|
(IFF_UP|IFF_RUNNING)) {
|
|
m_freem(m);
|
|
ifp->if_noproto++;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Now, remove the encapsulation header. The original
|
|
* header has already been fixed up above.
|
|
*/
|
|
if (!have_vtag) {
|
|
memmove(mtod(m, char *) + mib->ifvm_encaplen,
|
|
mtod(m, void *), sizeof(struct ether_header));
|
|
m_adj(m, mib->ifvm_encaplen);
|
|
}
|
|
|
|
m_set_rcvif(m, &ifv->ifv_if);
|
|
ifv->ifv_if.if_ipackets++;
|
|
|
|
if (pfil_run_hooks(ifp->if_pfil, &m, ifp, PFIL_IN) != 0) {
|
|
if (m != NULL)
|
|
m_freem(m);
|
|
goto out;
|
|
}
|
|
|
|
m->m_flags &= ~M_PROMISC;
|
|
if_input(&ifv->ifv_if, m);
|
|
out:
|
|
vlan_putref_linkmib(mib, &psref);
|
|
}
|
|
|
|
/*
|
|
* Module infrastructure
|
|
*/
|
|
#include "if_module.h"
|
|
|
|
IF_MODULE(MODULE_CLASS_DRIVER, vlan, "")
|