NetBSD/sys/net/if_stf.c
dyoung 72f0a6dfb0 Eliminate address family-specific route caches (struct route, struct
route_in6, struct route_iso), replacing all caches with a struct
route.

The principle benefit of this change is that all of the protocol
families can benefit from route cache-invalidation, which is
necessary for correct routing.  Route-cache invalidation fixes an
ancient PR, kern/3508, at long last; it fixes various other PRs,
also.

Discussions with and ideas from Joerg Sonnenberger influenced this
work tremendously.  Of course, all design oversights and bugs are
mine.

DETAILS

1 I added to each address family a pool of sockaddrs.  I have
  introduced routines for allocating, copying, and duplicating,
  and freeing sockaddrs:

        struct sockaddr *sockaddr_alloc(sa_family_t af, int flags);
        struct sockaddr *sockaddr_copy(struct sockaddr *dst,
                                       const struct sockaddr *src);
        struct sockaddr *sockaddr_dup(const struct sockaddr *src, int flags);
        void sockaddr_free(struct sockaddr *sa);

  sockaddr_alloc() returns either a sockaddr from the pool belonging
  to the specified family, or NULL if the pool is exhausted.  The
  returned sockaddr has the right size for that family; sa_family
  and sa_len fields are initialized to the family and sockaddr
  length---e.g., sa_family = AF_INET and sa_len = sizeof(struct
  sockaddr_in).  sockaddr_free() puts the given sockaddr back into
  its family's pool.

  sockaddr_dup() and sockaddr_copy() work analogously to strdup()
  and strcpy(), respectively.  sockaddr_copy() KASSERTs that the
  family of the destination and source sockaddrs are alike.

  The 'flags' argumet for sockaddr_alloc() and sockaddr_dup() is
  passed directly to pool_get(9).

2 I added routines for initializing sockaddrs in each address
  family, sockaddr_in_init(), sockaddr_in6_init(), sockaddr_iso_init(),
  etc.  They are fairly self-explanatory.

3 structs route_in6 and route_iso are no more.  All protocol families
  use struct route.  I have changed the route cache, 'struct route',
  so that it does not contain storage space for a sockaddr.  Instead,
  struct route points to a sockaddr coming from the pool the sockaddr
  belongs to.  I added a new method to struct route, rtcache_setdst(),
  for setting the cache destination:

        int rtcache_setdst(struct route *, const struct sockaddr *);

  rtcache_setdst() returns 0 on success, or ENOMEM if no memory is
  available to create the sockaddr storage.

  It is now possible for rtcache_getdst() to return NULL if, say,
  rtcache_setdst() failed.  I check the return value for NULL
  everywhere in the kernel.

4 Each routing domain (struct domain) has a list of live route
  caches, dom_rtcache.  rtflushall(sa_family_t af) looks up the
  domain indicated by 'af', walks the domain's list of route caches
  and invalidates each one.
2007-05-02 20:40:22 +00:00

730 lines
18 KiB
C

/* $NetBSD: if_stf.c,v 1.60 2007/05/02 20:40:23 dyoung Exp $ */
/* $KAME: if_stf.c,v 1.62 2001/06/07 22:32:16 itojun Exp $ */
/*
* Copyright (C) 2000 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* 6to4 interface, based on RFC3056.
*
* 6to4 interface is NOT capable of link-layer (I mean, IPv4) multicasting.
* There is no address mapping defined from IPv6 multicast address to IPv4
* address. Therefore, we do not have IFF_MULTICAST on the interface.
*
* Due to the lack of address mapping for link-local addresses, we cannot
* throw packets toward link-local addresses (fe80::x). Also, we cannot throw
* packets to link-local multicast addresses (ff02::x).
*
* Here are interesting symptoms due to the lack of link-local address:
*
* Unicast routing exchange:
* - RIPng: Impossible. Uses link-local multicast packet toward ff02::9,
* and link-local addresses as nexthop.
* - OSPFv6: Impossible. OSPFv6 assumes that there's link-local address
* assigned to the link, and makes use of them. Also, HELLO packets use
* link-local multicast addresses (ff02::5 and ff02::6).
* - BGP4+: Maybe. You can only use global address as nexthop, and global
* address as TCP endpoint address.
*
* Multicast routing protocols:
* - PIM: Hello packet cannot be used to discover adjacent PIM routers.
* Adjacent PIM routers must be configured manually (is it really spec-wise
* correct thing to do?).
*
* ICMPv6:
* - Redirects cannot be used due to the lack of link-local address.
*
* stf interface does not have, and will not need, a link-local address.
* It seems to have no real benefit and does not help the above symptoms much.
* Even if we assign link-locals to interface, we cannot really
* use link-local unicast/multicast on top of 6to4 cloud (since there's no
* encapsulation defined for link-local address), and the above analysis does
* not change. RFC3056 does not mandate the assignment of link-local address
* either.
*
* 6to4 interface has security issues. Refer to
* http://playground.iijlab.net/i-d/draft-itojun-ipv6-transition-abuse-00.txt
* for details. The code tries to filter out some of malicious packets.
* Note that there is no way to be 100% secure.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_stf.c,v 1.60 2007/05/02 20:40:23 dyoung Exp $");
#include "opt_inet.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/proc.h>
#include <sys/protosw.h>
#include <sys/queue.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <machine/cpu.h>
#include <net/if.h>
#include <net/route.h>
#include <net/netisr.h>
#include <net/if_types.h>
#include <net/if_stf.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_var.h>
#include <netinet/in_var.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_gif.h>
#include <netinet6/in6_var.h>
#include <netinet/ip_ecn.h>
#include <netinet/ip_encap.h>
#include <machine/stdarg.h>
#include <net/net_osdep.h>
#include "bpfilter.h"
#include "stf.h"
#include "gif.h" /*XXX*/
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#if NGIF > 0
#include <net/if_gif.h>
#endif
#define IN6_IS_ADDR_6TO4(x) (ntohs((x)->s6_addr16[0]) == 0x2002)
#define GET_V4(x) ((const struct in_addr *)(&(x)->s6_addr16[1]))
struct stf_softc {
struct ifnet sc_if; /* common area */
struct route sc_ro;
const struct encaptab *encap_cookie;
LIST_ENTRY(stf_softc) sc_list;
};
static LIST_HEAD(, stf_softc) stf_softc_list;
static int stf_clone_create(struct if_clone *, int);
static int stf_clone_destroy(struct ifnet *);
struct if_clone stf_cloner =
IF_CLONE_INITIALIZER("stf", stf_clone_create, stf_clone_destroy);
#if NGIF > 0
extern int ip_gif_ttl; /*XXX*/
#else
static int ip_gif_ttl = 40; /*XXX*/
#endif
extern struct domain inetdomain;
static const struct protosw in_stf_protosw =
{ SOCK_RAW, &inetdomain, IPPROTO_IPV6, PR_ATOMIC|PR_ADDR,
in_stf_input, rip_output, 0, rip_ctloutput,
rip_usrreq,
0, 0, 0, 0
};
void stfattach(int);
static int stf_encapcheck(struct mbuf *, int, int, void *);
static struct in6_ifaddr *stf_getsrcifa6(struct ifnet *);
static int stf_output(struct ifnet *, struct mbuf *, const struct sockaddr *,
struct rtentry *);
static int isrfc1918addr(const struct in_addr *);
static int stf_checkaddr4(struct stf_softc *, const struct in_addr *,
struct ifnet *);
static int stf_checkaddr6(struct stf_softc *, const struct in6_addr *,
struct ifnet *);
static void stf_rtrequest(int, struct rtentry *, struct rt_addrinfo *);
static int stf_ioctl(struct ifnet *, u_long, void *);
/* ARGSUSED */
void
stfattach(int count)
{
LIST_INIT(&stf_softc_list);
if_clone_attach(&stf_cloner);
}
static int
stf_clone_create(struct if_clone *ifc, int unit)
{
struct stf_softc *sc;
if (LIST_FIRST(&stf_softc_list) != NULL) {
/* Only one stf interface is allowed. */
return (EEXIST);
}
sc = malloc(sizeof(struct stf_softc), M_DEVBUF, M_WAIT);
memset(sc, 0, sizeof(struct stf_softc));
snprintf(sc->sc_if.if_xname, sizeof(sc->sc_if.if_xname), "%s%d",
ifc->ifc_name, unit);
sc->encap_cookie = encap_attach_func(AF_INET, IPPROTO_IPV6,
stf_encapcheck, &in_stf_protosw, sc);
if (sc->encap_cookie == NULL) {
printf("%s: unable to attach encap\n", if_name(&sc->sc_if));
free(sc, M_DEVBUF);
return (EIO); /* XXX */
}
sc->sc_if.if_mtu = STF_MTU;
sc->sc_if.if_flags = 0;
sc->sc_if.if_ioctl = stf_ioctl;
sc->sc_if.if_output = stf_output;
sc->sc_if.if_type = IFT_STF;
sc->sc_if.if_dlt = DLT_NULL;
if_attach(&sc->sc_if);
if_alloc_sadl(&sc->sc_if);
#if NBPFILTER > 0
bpfattach(&sc->sc_if, DLT_NULL, sizeof(u_int));
#endif
LIST_INSERT_HEAD(&stf_softc_list, sc, sc_list);
return (0);
}
static int
stf_clone_destroy(struct ifnet *ifp)
{
struct stf_softc *sc = (void *) ifp;
LIST_REMOVE(sc, sc_list);
encap_detach(sc->encap_cookie);
#if NBPFILTER > 0
bpfdetach(ifp);
#endif
if_detach(ifp);
rtcache_free(&sc->sc_ro);
free(sc, M_DEVBUF);
return (0);
}
static int
stf_encapcheck(struct mbuf *m, int off, int proto, void *arg)
{
struct ip ip;
struct in6_ifaddr *ia6;
struct stf_softc *sc;
struct in_addr a, b;
sc = (struct stf_softc *)arg;
if (sc == NULL)
return 0;
if ((sc->sc_if.if_flags & IFF_UP) == 0)
return 0;
/* IFF_LINK0 means "no decapsulation" */
if ((sc->sc_if.if_flags & IFF_LINK0) != 0)
return 0;
if (proto != IPPROTO_IPV6)
return 0;
m_copydata(m, 0, sizeof(ip), (void *)&ip);
if (ip.ip_v != 4)
return 0;
ia6 = stf_getsrcifa6(&sc->sc_if);
if (ia6 == NULL)
return 0;
/*
* check if IPv4 dst matches the IPv4 address derived from the
* local 6to4 address.
* success on: dst = 10.1.1.1, ia6->ia_addr = 2002:0a01:0101:...
*/
if (bcmp(GET_V4(&ia6->ia_addr.sin6_addr), &ip.ip_dst,
sizeof(ip.ip_dst)) != 0)
return 0;
/*
* check if IPv4 src matches the IPv4 address derived from the
* local 6to4 address masked by prefixmask.
* success on: src = 10.1.1.1, ia6->ia_addr = 2002:0a00:.../24
* fail on: src = 10.1.1.1, ia6->ia_addr = 2002:0b00:.../24
*/
memset(&a, 0, sizeof(a));
a.s_addr = GET_V4(&ia6->ia_addr.sin6_addr)->s_addr;
a.s_addr &= GET_V4(&ia6->ia_prefixmask.sin6_addr)->s_addr;
b = ip.ip_src;
b.s_addr &= GET_V4(&ia6->ia_prefixmask.sin6_addr)->s_addr;
if (a.s_addr != b.s_addr)
return 0;
/* stf interface makes single side match only */
return 32;
}
static struct in6_ifaddr *
stf_getsrcifa6(struct ifnet *ifp)
{
struct ifaddr *ifa;
struct in_ifaddr *ia4;
struct sockaddr_in6 *sin6;
struct in_addr in;
IFADDR_FOREACH(ifa, ifp)
{
if (ifa->ifa_addr == NULL)
continue;
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (!IN6_IS_ADDR_6TO4(&sin6->sin6_addr))
continue;
bcopy(GET_V4(&sin6->sin6_addr), &in, sizeof(in));
INADDR_TO_IA(in, ia4);
if (ia4 == NULL)
continue;
return (struct in6_ifaddr *)ifa;
}
return NULL;
}
static int
stf_output(struct ifnet *ifp, struct mbuf *m, const struct sockaddr *dst,
struct rtentry *rt)
{
struct stf_softc *sc;
const struct sockaddr_in6 *dst6;
const struct in_addr *in4;
u_int8_t tos;
struct ip *ip;
struct ip6_hdr *ip6;
struct in6_ifaddr *ia6;
union {
struct sockaddr dst;
struct sockaddr_in dst4;
} u;
sc = (struct stf_softc*)ifp;
dst6 = (const struct sockaddr_in6 *)dst;
/* just in case */
if ((ifp->if_flags & IFF_UP) == 0) {
m_freem(m);
return ENETDOWN;
}
/*
* If we don't have an ip4 address that match my inner ip6 address,
* we shouldn't generate output. Without this check, we'll end up
* using wrong IPv4 source.
*/
ia6 = stf_getsrcifa6(ifp);
if (ia6 == NULL) {
m_freem(m);
ifp->if_oerrors++;
return ENETDOWN;
}
if (m->m_len < sizeof(*ip6)) {
m = m_pullup(m, sizeof(*ip6));
if (m == NULL) {
ifp->if_oerrors++;
return ENOBUFS;
}
}
ip6 = mtod(m, struct ip6_hdr *);
tos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
/*
* Pickup the right outer dst addr from the list of candidates.
* ip6_dst has priority as it may be able to give us shorter IPv4 hops.
*/
if (IN6_IS_ADDR_6TO4(&ip6->ip6_dst))
in4 = GET_V4(&ip6->ip6_dst);
else if (IN6_IS_ADDR_6TO4(&dst6->sin6_addr))
in4 = GET_V4(&dst6->sin6_addr);
else {
m_freem(m);
ifp->if_oerrors++;
return ENETUNREACH;
}
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap_af(ifp->if_bpf, AF_INET6, m);
#endif /*NBPFILTER > 0*/
M_PREPEND(m, sizeof(struct ip), M_DONTWAIT);
if (m && m->m_len < sizeof(struct ip))
m = m_pullup(m, sizeof(struct ip));
if (m == NULL) {
ifp->if_oerrors++;
return ENOBUFS;
}
ip = mtod(m, struct ip *);
memset(ip, 0, sizeof(*ip));
bcopy(GET_V4(&((struct sockaddr_in6 *)&ia6->ia_addr)->sin6_addr),
&ip->ip_src, sizeof(ip->ip_src));
bcopy(in4, &ip->ip_dst, sizeof(ip->ip_dst));
ip->ip_p = IPPROTO_IPV6;
ip->ip_ttl = ip_gif_ttl; /*XXX*/
ip->ip_len = htons(m->m_pkthdr.len);
if (ifp->if_flags & IFF_LINK1)
ip_ecn_ingress(ECN_ALLOWED, &ip->ip_tos, &tos);
else
ip_ecn_ingress(ECN_NOCARE, &ip->ip_tos, &tos);
sockaddr_in_init(&u.dst4, &ip->ip_dst, 0);
if (rtcache_lookup(&sc->sc_ro, &u.dst) == NULL) {
m_freem(m);
ifp->if_oerrors++;
return ENETUNREACH;
}
/* If the route constitutes infinite encapsulation, punt. */
if (sc->sc_ro.ro_rt->rt_ifp == ifp) {
rtcache_free(&sc->sc_ro);
m_freem(m);
ifp->if_oerrors++;
return ENETUNREACH;
}
ifp->if_opackets++;
return ip_output(m, NULL, &sc->sc_ro, 0, NULL, NULL);
}
static int
isrfc1918addr(const struct in_addr *in)
{
/*
* returns 1 if private address range:
* 10.0.0.0/8 172.16.0.0/12 192.168.0.0/16
*/
if ((ntohl(in->s_addr) & 0xff000000) >> 24 == 10 ||
(ntohl(in->s_addr) & 0xfff00000) >> 16 == 172 * 256 + 16 ||
(ntohl(in->s_addr) & 0xffff0000) >> 16 == 192 * 256 + 168)
return 1;
return 0;
}
static int
stf_checkaddr4(struct stf_softc *sc, const struct in_addr *in,
struct ifnet *inifp /*incoming interface*/)
{
struct in_ifaddr *ia4;
/*
* reject packets with the following address:
* 224.0.0.0/4 0.0.0.0/8 127.0.0.0/8 255.0.0.0/8
*/
if (IN_MULTICAST(in->s_addr))
return -1;
switch ((ntohl(in->s_addr) & 0xff000000) >> 24) {
case 0: case 127: case 255:
return -1;
}
/*
* reject packets with private address range.
* (requirement from RFC3056 section 2 1st paragraph)
*/
if (isrfc1918addr(in))
return -1;
/*
* reject packet with IPv4 link-local (169.254.0.0/16),
* as suggested in draft-savola-v6ops-6to4-security-00.txt
*/
if (((ntohl(in->s_addr) & 0xff000000) >> 24) == 169 &&
((ntohl(in->s_addr) & 0x00ff0000) >> 16) == 254)
return -1;
/*
* reject packets with broadcast
*/
TAILQ_FOREACH(ia4, &in_ifaddrhead, ia_list)
{
if ((ia4->ia_ifa.ifa_ifp->if_flags & IFF_BROADCAST) == 0)
continue;
if (in->s_addr == ia4->ia_broadaddr.sin_addr.s_addr)
return -1;
}
/*
* perform ingress filter
*/
if (sc && (sc->sc_if.if_flags & IFF_LINK2) == 0 && inifp) {
struct sockaddr_in sin;
struct rtentry *rt;
memset(&sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_len = sizeof(struct sockaddr_in);
sin.sin_addr = *in;
rt = rtalloc1((struct sockaddr *)&sin, 0);
if (!rt || rt->rt_ifp != inifp) {
#if 0
log(LOG_WARNING, "%s: packet from 0x%x dropped "
"due to ingress filter\n", if_name(&sc->sc_if),
(u_int32_t)ntohl(sin.sin_addr.s_addr));
#endif
if (rt)
rtfree(rt);
return -1;
}
rtfree(rt);
}
return 0;
}
static int
stf_checkaddr6(struct stf_softc *sc, const struct in6_addr *in6,
struct ifnet *inifp /*incoming interface*/)
{
/*
* check 6to4 addresses
*/
if (IN6_IS_ADDR_6TO4(in6))
return stf_checkaddr4(sc, GET_V4(in6), inifp);
/*
* reject anything that look suspicious. the test is implemented
* in ip6_input too, but we check here as well to
* (1) reject bad packets earlier, and
* (2) to be safe against future ip6_input change.
*/
if (IN6_IS_ADDR_V4COMPAT(in6) || IN6_IS_ADDR_V4MAPPED(in6))
return -1;
/*
* reject link-local and site-local unicast
* as suggested in draft-savola-v6ops-6to4-security-00.txt
*/
if (IN6_IS_ADDR_LINKLOCAL(in6) || IN6_IS_ADDR_SITELOCAL(in6))
return -1;
/*
* reject node-local and link-local multicast
* as suggested in draft-savola-v6ops-6to4-security-00.txt
*/
if (IN6_IS_ADDR_MC_NODELOCAL(in6) || IN6_IS_ADDR_MC_LINKLOCAL(in6))
return -1;
return 0;
}
void
in_stf_input(struct mbuf *m, ...)
{
int off, proto;
struct stf_softc *sc;
struct ip *ip;
struct ip6_hdr *ip6;
u_int8_t otos, itos;
int s, isr;
struct ifqueue *ifq = NULL;
struct ifnet *ifp;
va_list ap;
va_start(ap, m);
off = va_arg(ap, int);
proto = va_arg(ap, int);
va_end(ap);
if (proto != IPPROTO_IPV6) {
m_freem(m);
return;
}
ip = mtod(m, struct ip *);
sc = (struct stf_softc *)encap_getarg(m);
if (sc == NULL || (sc->sc_if.if_flags & IFF_UP) == 0) {
m_freem(m);
return;
}
ifp = &sc->sc_if;
/*
* perform sanity check against outer src/dst.
* for source, perform ingress filter as well.
*/
if (stf_checkaddr4(sc, &ip->ip_dst, NULL) < 0 ||
stf_checkaddr4(sc, &ip->ip_src, m->m_pkthdr.rcvif) < 0) {
m_freem(m);
return;
}
otos = ip->ip_tos;
m_adj(m, off);
if (m->m_len < sizeof(*ip6)) {
m = m_pullup(m, sizeof(*ip6));
if (!m)
return;
}
ip6 = mtod(m, struct ip6_hdr *);
/*
* perform sanity check against inner src/dst.
* for source, perform ingress filter as well.
*/
if (stf_checkaddr6(sc, &ip6->ip6_dst, NULL) < 0 ||
stf_checkaddr6(sc, &ip6->ip6_src, m->m_pkthdr.rcvif) < 0) {
m_freem(m);
return;
}
itos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
if ((ifp->if_flags & IFF_LINK1) != 0)
ip_ecn_egress(ECN_ALLOWED, &otos, &itos);
else
ip_ecn_egress(ECN_NOCARE, &otos, &itos);
ip6->ip6_flow &= ~htonl(0xff << 20);
ip6->ip6_flow |= htonl((u_int32_t)itos << 20);
m->m_pkthdr.rcvif = ifp;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap_af(ifp->if_bpf, AF_INET6, m);
#endif /*NBPFILTER > 0*/
/*
* Put the packet to the network layer input queue according to the
* specified address family.
* See net/if_gif.c for possible issues with packet processing
* reorder due to extra queueing.
*/
ifq = &ip6intrq;
isr = NETISR_IPV6;
s = splnet();
if (IF_QFULL(ifq)) {
IF_DROP(ifq); /* update statistics */
m_freem(m);
splx(s);
return;
}
IF_ENQUEUE(ifq, m);
schednetisr(isr);
ifp->if_ipackets++;
ifp->if_ibytes += m->m_pkthdr.len;
splx(s);
}
/* ARGSUSED */
static void
stf_rtrequest(int cmd, struct rtentry *rt,
struct rt_addrinfo *info)
{
if (rt != NULL) {
struct stf_softc *sc;
sc = LIST_FIRST(&stf_softc_list);
rt->rt_rmx.rmx_mtu = (sc != NULL) ? sc->sc_if.if_mtu : STF_MTU;
}
}
static int
stf_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct lwp *l = curlwp; /* XXX */
struct ifaddr *ifa;
struct ifreq *ifr;
struct sockaddr_in6 *sin6;
int error;
u_long mtu;
error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifa = (struct ifaddr *)data;
if (ifa == NULL || ifa->ifa_addr->sa_family != AF_INET6) {
error = EAFNOSUPPORT;
break;
}
sin6 = (struct sockaddr_in6 *)ifa->ifa_addr;
if (IN6_IS_ADDR_6TO4(&sin6->sin6_addr) &&
!isrfc1918addr(GET_V4(&sin6->sin6_addr))) {
ifa->ifa_rtrequest = stf_rtrequest;
ifp->if_flags |= IFF_UP;
} else
error = EINVAL;
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
ifr = (struct ifreq *)data;
if (ifr != NULL && ifr->ifr_addr.sa_family == AF_INET6)
;
else
error = EAFNOSUPPORT;
break;
case SIOCSIFMTU:
if ((error = kauth_authorize_generic(l->l_cred,
KAUTH_GENERIC_ISSUSER, NULL)) != 0)
break;
ifr = (struct ifreq *)data;
mtu = ifr->ifr_mtu;
if (mtu < STF_MTU_MIN || mtu > STF_MTU_MAX)
return EINVAL;
ifp->if_mtu = mtu;
break;
default:
error = EINVAL;
break;
}
return error;
}