NetBSD/sys/dev/qbus/if_de.c
2000-06-05 00:09:17 +00:00

873 lines
22 KiB
C

/* $NetBSD: if_de.c,v 1.4 2000/06/05 00:09:18 matt Exp $ */
/*
* Copyright (c) 1982, 1986, 1989 Regents of the University of California.
* Copyright (c) 2000 Ludd, University of Lule}, Sweden.
* All rights reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)if_de.c 7.12 (Berkeley) 12/16/90
*/
/*
* DEC DEUNA interface
*
* Lou Salkind
* New York University
*
* Rewritten by Ragge 30 April 2000 to match new world.
*
* TODO:
* timeout routine (get statistics)
*/
#include "opt_inet.h"
#include "opt_iso.h"
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/buf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_dl.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/bus.h>
#include <dev/qbus/ubavar.h>
#include <dev/qbus/if_dereg.h>
#include "ioconf.h"
/*
* Be careful with transmit/receive buffers, each entry steals 4 map
* registers, and there is only 496 on one unibus...
*/
#define NRCV 10 /* number of receive buffers (must be > 1) */
#define NXMT 10 /* number of transmit buffers */
/*
* Structure containing the elements that must be in DMA-safe memory.
*/
struct de_cdata {
/* the following structures are always mapped in */
struct de_pcbb dc_pcbb; /* port control block */
struct de_ring dc_xrent[NXMT]; /* transmit ring entrys */
struct de_ring dc_rrent[NRCV]; /* receive ring entrys */
struct de_udbbuf dc_udbbuf; /* UNIBUS data buffer */
char dc_xbuf[NXMT][ETHER_MAX_LEN];
/* end mapped area */
};
/*
* Ethernet software status per interface.
*
* Each interface is referenced by a network interface structure,
* ds_if, which the routing code uses to locate the interface.
* This structure contains the output queue for the interface, its address, ...
* We also have, for each interface, a UBA interface structure, which
* contains information about the UNIBUS resources held by the interface:
* map registers, buffered data paths, etc. Information is cached in this
* structure for use by the if_uba.c routines in running the interface
* efficiently.
*/
struct de_softc {
struct device sc_dev; /* Configuration common part */
struct evcnt sc_intrcnt; /* Interrupt counting */
struct ethercom sc_ec; /* Ethernet common part */
#define sc_if sc_ec.ec_if /* network-visible interface */
bus_space_tag_t sc_iot;
bus_addr_t sc_ioh;
bus_dma_tag_t sc_dmat;
bus_dmamap_t sc_cmap;
struct de_cdata *sc_dedata; /* Control structure */
struct de_cdata *sc_pdedata; /* Bus-mapped control structure */
#ifdef notdef
bus_dmamap_t sc_xmtmap[NXMT]; /* unibus xmit maps */
struct mbuf *sc_txmbuf[NXMT];
#endif
bus_dmamap_t sc_rcvmap[NRCV]; /* unibus receive maps */
struct mbuf *sc_rxmbuf[NRCV];
int sc_nexttx; /* next tx descriptor to put data on */
int sc_nextrx; /* next rx descriptor for recv */
int sc_inq; /* # if xmit packets in queue */
int sc_lastack; /* Last handled rx descriptor */
void *sc_sh; /* shutdownhook cookie */
};
static int dematch(struct device *, struct cfdata *, void *);
static void deattach(struct device *, struct device *, void *);
static void dewait(struct de_softc *, char *);
static void deinit(struct de_softc *);
static int deioctl(struct ifnet *, u_long, caddr_t);
static void dereset(struct device *);
static void destart(struct ifnet *);
static void derecv(struct de_softc *);
static void dexmit(struct de_softc *);
static void deintr(void *);
static int de_add_rxbuf(struct de_softc *, int);
static void desetup(struct de_softc *sc);
static void deshutdown(void *);
struct cfattach de_ca = {
sizeof(struct de_softc), dematch, deattach
};
#define DE_WCSR(csr, val) \
bus_space_write_2(sc->sc_iot, sc->sc_ioh, csr, val)
#define DE_WLOW(val) \
bus_space_write_1(sc->sc_iot, sc->sc_ioh, DE_PCSR0, val)
#define DE_WHIGH(val) \
bus_space_write_1(sc->sc_iot, sc->sc_ioh, DE_PCSR0 + 1, val)
#define DE_RCSR(csr) \
bus_space_read_2(sc->sc_iot, sc->sc_ioh, csr)
#define LOWORD(x) ((int)(x) & 0xffff)
#define HIWORD(x) (((int)(x) >> 16) & 0x3)
/*
* Interface exists: make available by filling in network interface
* record. System will initialize the interface when it is ready
* to accept packets. We get the ethernet address here.
*/
void
deattach(struct device *parent, struct device *self, void *aux)
{
struct uba_attach_args *ua = aux;
struct de_softc *sc = (struct de_softc *)self;
struct ifnet *ifp = &sc->sc_if;
u_int8_t myaddr[ETHER_ADDR_LEN];
int csr1, rseg, error, i;
bus_dma_segment_t seg;
char *c;
sc->sc_iot = ua->ua_iot;
sc->sc_ioh = ua->ua_ioh;
sc->sc_dmat = ua->ua_dmat;
/*
* What kind of a board is this?
* The error bits 4-6 in pcsr1 are a device id as long as
* the high byte is zero.
*/
csr1 = DE_RCSR(DE_PCSR1);
if (csr1 & 0xff60)
c = "broken";
else if (csr1 & 0x10)
c = "delua";
else
c = "deuna";
/*
* Reset the board and temporarily map
* the pcbb buffer onto the Unibus.
*/
DE_WCSR(DE_PCSR0, 0); /* reset INTE */
DELAY(100);
DE_WCSR(DE_PCSR0, PCSR0_RSET);
dewait(sc, "reset");
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct de_cdata), NBPG, 0, &seg, 1, &rseg,
BUS_DMA_NOWAIT)) != 0) {
printf(": unable to allocate control data, error = %d\n",
error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct de_cdata), (caddr_t *)&sc->sc_dedata,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
printf(": unable to map control data, error = %d\n", error);
goto fail_1;
}
if ((error = bus_dmamap_create(sc->sc_dmat, sizeof(struct de_cdata),
1, sizeof(struct de_cdata), 0, BUS_DMA_NOWAIT,
&sc->sc_cmap)) != 0) {
printf(": unable to create control data DMA map, error = %d\n",
error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_cmap,
sc->sc_dedata, sizeof(struct de_cdata), NULL,
BUS_DMA_NOWAIT)) != 0) {
printf(": unable to load control data DMA map, error = %d\n",
error);
goto fail_3;
}
bzero(sc->sc_dedata, sizeof(struct de_cdata));
sc->sc_pdedata = (struct de_cdata *)sc->sc_cmap->dm_segs[0].ds_addr;
#ifdef notdef
/*
* Create the transmit descriptor DMA maps.
*
* XXX - should allocate transmit map pages when needed, not here.
*/
for (i = 0; i < NXMT; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
&sc->sc_xmtmap[i]))) {
printf(": unable to create tx DMA map %d, error = %d\n",
i, error);
goto fail_4;
}
}
#endif
/*
* Create receive buffer DMA maps.
*/
for (i = 0; i < NRCV; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW,
&sc->sc_rcvmap[i]))) {
printf(": unable to create rx DMA map %d, error = %d\n",
i, error);
goto fail_5;
}
}
/*
* Pre-allocate the receive buffers.
*/
for (i = 0; i < NRCV; i++) {
if ((error = de_add_rxbuf(sc, i)) != 0) {
printf(": unable to allocate or map rx buffer %d\n,"
" error = %d\n", i, error);
goto fail_6;
}
}
/*
* Tell the DEUNA about our PCB
*/
DE_WCSR(DE_PCSR2, LOWORD(sc->sc_pdedata));
DE_WCSR(DE_PCSR3, HIWORD(sc->sc_pdedata));
DE_WLOW(CMD_GETPCBB);
dewait(sc, "pcbb");
sc->sc_dedata->dc_pcbb.pcbb0 = FC_RDPHYAD;
DE_WLOW(CMD_GETCMD);
dewait(sc, "read addr ");
bcopy((caddr_t)&sc->sc_dedata->dc_pcbb.pcbb2, myaddr, sizeof (myaddr));
printf("\n%s: %s, hardware address %s\n", sc->sc_dev.dv_xname, c,
ether_sprintf(myaddr));
uba_intr_establish(ua->ua_icookie, ua->ua_cvec, deintr,
sc, &sc->sc_intrcnt);
uba_reset_establish(dereset, &sc->sc_dev);
evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, ua->ua_evcnt,
sc->sc_dev.dv_xname, "intr");
strcpy(ifp->if_xname, sc->sc_dev.dv_xname);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_SIMPLEX;
ifp->if_ioctl = deioctl;
ifp->if_start = destart;
if_attach(ifp);
ether_ifattach(ifp, myaddr);
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_sh = shutdownhook_establish(deshutdown, sc);
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall through.
*/
fail_6:
for (i = 0; i < NRCV; i++) {
if (sc->sc_rxmbuf[i] != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);
m_freem(sc->sc_rxmbuf[i]);
}
}
fail_5:
for (i = 0; i < NRCV; i++) {
if (sc->sc_rcvmap[i] != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rcvmap[i]);
}
#ifdef notdef
fail_4:
for (i = 0; i < NXMT; i++) {
if (sc->sc_xmtmap[i] != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_xmtmap[i]);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_cmap);
#endif
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_cmap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->sc_dedata,
sizeof(struct de_cdata));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
/*
* Reset of interface after UNIBUS reset.
*/
void
dereset(struct device *dev)
{
struct de_softc *sc = (void *)dev;
sc->sc_if.if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
DE_WCSR(DE_PCSR0, PCSR0_RSET);
dewait(sc, "reset");
deinit(sc);
}
/*
* Initialization of interface; clear recorded pending
* operations, and reinitialize UNIBUS usage.
*/
void
deinit(struct de_softc *sc)
{
struct de_cdata *dc, *pdc;
int s, i;
if (sc->sc_if.if_flags & IFF_RUNNING)
return;
/*
* Tell the DEUNA about our PCB
*/
DE_WCSR(DE_PCSR2, LOWORD(sc->sc_pdedata));
DE_WCSR(DE_PCSR3, HIWORD(sc->sc_pdedata));
DE_WLOW(0); /* reset INTE */
DELAY(500);
DE_WLOW(CMD_GETPCBB);
dewait(sc, "pcbb");
dc = sc->sc_dedata;
pdc = sc->sc_pdedata;
/* set the transmit and receive ring header addresses */
dc->dc_pcbb.pcbb0 = FC_WTRING;
dc->dc_pcbb.pcbb2 = LOWORD(&pdc->dc_udbbuf);
dc->dc_pcbb.pcbb4 = HIWORD(&pdc->dc_udbbuf);
dc->dc_udbbuf.b_tdrbl = LOWORD(&pdc->dc_xrent[0]);
dc->dc_udbbuf.b_tdrbh = HIWORD(&pdc->dc_xrent[0]);
dc->dc_udbbuf.b_telen = sizeof (struct de_ring) / sizeof(u_int16_t);
dc->dc_udbbuf.b_trlen = NXMT;
dc->dc_udbbuf.b_rdrbl = LOWORD(&pdc->dc_rrent[0]);
dc->dc_udbbuf.b_rdrbh = HIWORD(&pdc->dc_rrent[0]);
dc->dc_udbbuf.b_relen = sizeof (struct de_ring) / sizeof(u_int16_t);
dc->dc_udbbuf.b_rrlen = NRCV;
DE_WLOW(CMD_GETCMD);
dewait(sc, "wtring");
desetup(sc);
/* Link the transmit buffers to the descriptors */
for (i = 0; i < NXMT; i++) {
dc->dc_xrent[i].r_flags = 0;
dc->dc_xrent[i].r_segbl = LOWORD(&pdc->dc_xbuf[i][0]);
dc->dc_xrent[i].r_segbh = HIWORD(&pdc->dc_xbuf[i][0]);
}
for (i = 0; i < NRCV; i++)
dc->dc_rrent[i].r_flags = RFLG_OWN;
sc->sc_nexttx = sc->sc_inq = sc->sc_lastack = sc->sc_nextrx = 0;
/* start up the board (rah rah) */
s = splnet();
sc->sc_if.if_flags |= IFF_RUNNING;
DE_WLOW(PCSR0_INTE); /* Change to interrupts */
DELAY(500);
DE_WLOW(CMD_START|PCSR0_INTE);
dewait(sc, "start");
DE_WLOW(CMD_PDMD|PCSR0_INTE);
dewait(sc, "initpoll");
splx(s);
}
/*
* Setup output on interface.
* Get another datagram to send off of the interface queue,
* and map it to the interface before starting the output.
* Must be called from ipl >= our interrupt level.
*/
void
destart(struct ifnet *ifp)
{
struct de_softc *sc = ifp->if_softc;
struct de_cdata *dc;
struct mbuf *m;
int idx, s, running;
/*
* the following test is necessary, since
* the code is not reentrant and we have
* multiple transmission buffers.
*/
if (ifp->if_flags & IFF_OACTIVE) /* Too much to do already */
return;
if (ifp->if_snd.ifq_head == 0) /* Nothing to do at all */
return;
s = splimp();
dc = sc->sc_dedata;
running = (sc->sc_inq != 0);
while (sc->sc_inq < (NXMT - 1)) {
idx = sc->sc_nexttx;
IF_DEQUEUE(&ifp->if_snd, m);
if (m == 0)
goto out;
#if NBPFILTER > 0
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
m_copydata(m, 0, m->m_pkthdr.len, &dc->dc_xbuf[idx][0]);
dc->dc_xrent[idx].r_slen = m->m_pkthdr.len;
dc->dc_xrent[idx].r_tdrerr = 0;
dc->dc_xrent[idx].r_flags = XFLG_STP|XFLG_ENP|XFLG_OWN;
m_freem(m);
sc->sc_inq++;
if (++sc->sc_nexttx == NXMT)
sc->sc_nexttx = 0;
ifp->if_timer = 5; /* If transmit logic dies */
}
if (sc->sc_inq == (NXMT - 1))
ifp->if_flags |= IFF_OACTIVE;
out: if (running == 0) {
DE_WLOW(PCSR0_INTE|CMD_PDMD);
dewait(sc, "poll");
}
splx(s);
}
/*
* Command done interrupt.
*/
void
deintr(void *arg)
{
struct de_softc *sc = arg;
short csr0, csr1;
/* save flags right away - clear out interrupt bits */
csr0 = DE_RCSR(DE_PCSR0);
csr1 = DE_RCSR(DE_PCSR1);
DE_WHIGH(csr0 >> 8);
if (csr0 & PCSR0_RXI)
derecv(sc);
if (csr0 & PCSR0_TXI)
dexmit(sc);
/* Should never end up here */
if (csr0 & PCSR0_PCEI) {
printf("%s: Port command error interrupt\n",
sc->sc_dev.dv_xname);
}
if (csr0 & PCSR0_SERI) {
printf("%s: Status error interrupt\n", sc->sc_dev.dv_xname);
}
if (csr0 & PCSR0_RCBI) {
printf("%s: Receive buffer unavail interrupt\n",
sc->sc_dev.dv_xname);
DE_WLOW(PCSR0_INTE|CMD_PDMD);
dewait(sc, "repoll");
}
destart(&sc->sc_if);
}
void
dexmit(struct de_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct de_ring *rp;
/*
* Poll transmit ring and check status.
* Then free buffer space and check for
* more transmit requests.
*/
rp = &sc->sc_dedata->dc_xrent[sc->sc_lastack];
while ((rp->r_flags & XFLG_OWN) == 0) {
int idx = sc->sc_lastack;
if (idx == sc->sc_nexttx)
break;
if (rp->r_flags & XFLG_ENP)
ifp->if_opackets++;
if (rp->r_flags & (XFLG_ERRS|XFLG_MTCH|XFLG_ONE|XFLG_MORE)) {
if (rp->r_flags & XFLG_ERRS) {
ifp->if_oerrors++;
} else if (rp->r_flags & XFLG_ONE) {
ifp->if_collisions++;
} else if (rp->r_flags & XFLG_MORE) {
ifp->if_collisions += 3;
}
/* else if (rp->r_flags & XFLG_MTCH)
* Matches ourself, but why care?
* Let upper layer deal with this.
*/
}
if (++sc->sc_lastack == NXMT)
sc->sc_lastack = 0;
sc->sc_inq--;
rp = &sc->sc_dedata->dc_xrent[sc->sc_lastack];
}
ifp->if_flags &= ~IFF_OACTIVE;
if (sc->sc_inq == 0)
ifp->if_timer = 0;
}
/*
* Ethernet interface receiver interface.
* If input error just drop packet.
* Otherwise purge input buffered data path and examine
* packet to determine type. If can't determine length
* from type, then have to drop packet. Othewise decapsulate
* packet based on type and pass to type specific higher-level
* input routine.
*/
void
derecv(struct de_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct de_ring *rp;
struct mbuf *m;
int len;
rp = &sc->sc_dedata->dc_rrent[sc->sc_nextrx];
while ((rp->r_flags & RFLG_OWN) == 0) {
ifp->if_ipackets++;
/* check for errors */
if ((rp->r_flags & (RFLG_ERRS|RFLG_FRAM|RFLG_OFLO|RFLG_CRC)) ||
(rp->r_flags&(RFLG_STP|RFLG_ENP)) != (RFLG_STP|RFLG_ENP) ||
(rp->r_lenerr & (RERR_BUFL|RERR_UBTO))) {
ifp->if_ierrors++;
goto next;
}
m = sc->sc_rxmbuf[sc->sc_nextrx];
len = (rp->r_lenerr&RERR_MLEN) - ETHER_CRC_LEN;
de_add_rxbuf(sc, sc->sc_nextrx);
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
if (ifp->if_bpf) {
struct ether_header *eh;
eh = mtod(m, struct ether_header *);
bpf_mtap(ifp->if_bpf, m);
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
bcmp(LLADDR(ifp->if_sadl), eh->ether_dhost,
ETHER_ADDR_LEN) != 0 &&
(ETHER_IS_MULTICAST(eh->ether_dhost) == 0)) {
m_freem(m);
goto next;
}
}
#endif
(*ifp->if_input)(ifp, m);
/* hang the receive buffer again */
next: rp->r_lenerr = 0;
rp->r_flags = RFLG_OWN;
/* check next receive buffer */
if (++sc->sc_nextrx == NRCV)
sc->sc_nextrx = 0;
rp = &sc->sc_dedata->dc_rrent[sc->sc_nextrx];
}
}
/*
* Add a receive buffer to the indicated descriptor.
*/
int
de_add_rxbuf(sc, i)
struct de_softc *sc;
int i;
{
struct mbuf *m;
struct de_ring *rp;
vaddr_t addr;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (sc->sc_rxmbuf[i] != NULL)
bus_dmamap_unload(sc->sc_dmat, sc->sc_rcvmap[i]);
error = bus_dmamap_load(sc->sc_dmat, sc->sc_rcvmap[i],
m->m_ext.ext_buf, m->m_ext.ext_size, NULL, BUS_DMA_NOWAIT);
if (error)
panic("%s: can't load rx DMA map %d, error = %d\n",
sc->sc_dev.dv_xname, i, error);
sc->sc_rxmbuf[i] = m;
bus_dmamap_sync(sc->sc_dmat, sc->sc_rcvmap[i], 0,
sc->sc_rcvmap[i]->dm_mapsize, BUS_DMASYNC_PREREAD);
/*
* We know that the mbuf cluster is page aligned. Also, be sure
* that the IP header will be longword aligned.
*/
m->m_data += 2;
addr = sc->sc_rcvmap[i]->dm_segs[0].ds_addr + 2;
rp = &sc->sc_dedata->dc_rrent[i];
rp->r_lenerr = 0;
rp->r_segbl = LOWORD(addr);
rp->r_segbh = HIWORD(addr);
rp->r_slen = m->m_ext.ext_size - 2;
rp->r_flags = RFLG_OWN;
return (0);
}
/*
* Process an ioctl request.
*/
int
deioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
struct de_softc *sc = ifp->if_softc;
int s = splnet(), error = 0;
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
deinit(sc);
arp_ifinit(ifp, ifa);
break;
#endif
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running,
* stop it.
*/
ifp->if_flags &= ~(IFF_RUNNING|IFF_OACTIVE);
DE_WCSR(DE_PCSR0, PCSR0_RSET);
dewait(sc, "down");
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface it marked up and it is stopped, then
* start it.
*/
deinit(sc);
} else if ((ifp->if_flags & IFF_UP) != 0) {
/*
* Send a new setup packet to match any new changes.
* (Like IFF_PROMISC etc)
*/
desetup(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/*
* Update our multicast list.
*/
error = (cmd == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_ec):
ether_delmulti(ifr, &sc->sc_ec);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
desetup(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
/*
* Await completion of the named function
* and check for errors.
*/
void
dewait(struct de_softc *sc, char *fn)
{
int csr0, s;
s = splimp();
while ((DE_RCSR(DE_PCSR0) & PCSR0_INTR) == 0)
;
csr0 = DE_RCSR(DE_PCSR0);
DE_WHIGH(csr0 >> 8);
if (csr0 & PCSR0_PCEI) {
char bits[64];
printf("%s: %s failed, csr0=%s ", sc->sc_dev.dv_xname, fn,
bitmask_snprintf(csr0, PCSR0_BITS, bits, sizeof(bits)));
printf("csr1=%s\n", bitmask_snprintf(DE_RCSR(DE_PCSR1),
PCSR1_BITS, bits, sizeof(bits)));
}
splx(s);
}
/*
* Changes multicast filter list/promiscous modes etc...
*/
void
desetup(struct de_softc *sc)
{
short mode, intr;
/*
* XXX - so far use ALLMULTI to receive multicast packets.
*/
sc->sc_if.if_flags &= ~IFF_ALLMULTI;
if (sc->sc_ec.ec_multiaddrs.lh_first)
sc->sc_if.if_flags |= IFF_ALLMULTI;
mode = MOD_TPAD|MOD_HDX|MOD_DRDC;
if (sc->sc_if.if_flags & IFF_PROMISC)
mode |= MOD_PROM;
else if (sc->sc_if.if_flags & IFF_ALLMULTI)
mode |= MOD_ENAL;
sc->sc_dedata->dc_pcbb.pcbb0 = FC_WTMODE;
sc->sc_dedata->dc_pcbb.pcbb2 = mode;
intr = DE_RCSR(DE_PCSR0) & PCSR0_INTE;
DE_WLOW(CMD_GETCMD | intr);
dewait(sc, "wtmode");
}
int
dematch(struct device *parent, struct cfdata *cf, void *aux)
{
struct uba_attach_args *ua = aux;
struct de_softc ssc;
struct de_softc *sc = &ssc;
int i;
sc->sc_iot = ua->ua_iot;
sc->sc_ioh = ua->ua_ioh;
/*
* Make sure self-test is finished before we screw with the board.
* Self-test on a DELUA can take 15 seconds (argh).
*/
for (i = 0;
(i < 160) &&
(DE_RCSR(DE_PCSR0) & PCSR0_FATI) == 0 &&
(DE_RCSR(DE_PCSR1) & PCSR1_STMASK) == STAT_RESET;
++i)
DELAY(50000);
if (((DE_RCSR(DE_PCSR0) & PCSR0_FATI) != 0) ||
(((DE_RCSR(DE_PCSR1) & PCSR1_STMASK) != STAT_READY) &&
((DE_RCSR(DE_PCSR1) & PCSR1_STMASK) != STAT_RUN)))
return(0);
DE_WCSR(DE_PCSR0, 0);
DELAY(5000);
DE_WCSR(DE_PCSR0, PCSR0_RSET);
while ((DE_RCSR(DE_PCSR0) & PCSR0_INTR) == 0)
;
/* make board interrupt by executing a GETPCBB command */
DE_WCSR(DE_PCSR0, PCSR0_INTE);
DE_WCSR(DE_PCSR2, 0);
DE_WCSR(DE_PCSR3, 0);
DE_WCSR(DE_PCSR0, PCSR0_INTE|CMD_GETPCBB);
DELAY(50000);
return 1;
}
void
deshutdown(void *arg)
{
struct de_softc *sc = arg;
DE_WCSR(DE_PCSR0, PCSR0_RSET);
dewait(sc, "shutdown");
}