31a7ec7dc7
this makes my desktop usable when running "make -j4".
542 lines
15 KiB
C
542 lines
15 KiB
C
/* $NetBSD: sched_4bsd.c,v 1.25 2009/05/31 04:13:33 yamt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran, and
|
|
* Daniel Sieger.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1982, 1986, 1990, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sched_4bsd.c,v 1.25 2009/05/31 04:13:33 yamt Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "opt_lockdebug.h"
|
|
#include "opt_perfctrs.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/sched.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/lockdebug.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
static void updatepri(struct lwp *);
|
|
static void resetpriority(struct lwp *);
|
|
|
|
extern unsigned int sched_pstats_ticks; /* defined in kern_synch.c */
|
|
|
|
/* Number of hardclock ticks per sched_tick() */
|
|
static int rrticks;
|
|
|
|
/*
|
|
* Force switch among equal priority processes every 100ms.
|
|
* Called from hardclock every hz/10 == rrticks hardclock ticks.
|
|
*
|
|
* There's no need to lock anywhere in this routine, as it's
|
|
* CPU-local and runs at IPL_SCHED (called from clock interrupt).
|
|
*/
|
|
/* ARGSUSED */
|
|
void
|
|
sched_tick(struct cpu_info *ci)
|
|
{
|
|
struct schedstate_percpu *spc = &ci->ci_schedstate;
|
|
lwp_t *l;
|
|
|
|
spc->spc_ticks = rrticks;
|
|
|
|
if (CURCPU_IDLE_P()) {
|
|
cpu_need_resched(ci, 0);
|
|
return;
|
|
}
|
|
l = ci->ci_data.cpu_onproc;
|
|
if (l == NULL) {
|
|
return;
|
|
}
|
|
switch (l->l_class) {
|
|
case SCHED_FIFO:
|
|
/* No timeslicing for FIFO jobs. */
|
|
break;
|
|
case SCHED_RR:
|
|
/* Force it into mi_switch() to look for other jobs to run. */
|
|
cpu_need_resched(ci, RESCHED_KPREEMPT);
|
|
break;
|
|
default:
|
|
if (spc->spc_flags & SPCF_SHOULDYIELD) {
|
|
/*
|
|
* Process is stuck in kernel somewhere, probably
|
|
* due to buggy or inefficient code. Force a
|
|
* kernel preemption.
|
|
*/
|
|
cpu_need_resched(ci, RESCHED_KPREEMPT);
|
|
} else if (spc->spc_flags & SPCF_SEENRR) {
|
|
/*
|
|
* The process has already been through a roundrobin
|
|
* without switching and may be hogging the CPU.
|
|
* Indicate that the process should yield.
|
|
*/
|
|
spc->spc_flags |= SPCF_SHOULDYIELD;
|
|
cpu_need_resched(ci, 0);
|
|
} else {
|
|
spc->spc_flags |= SPCF_SEENRR;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Why PRIO_MAX - 2? From setpriority(2):
|
|
*
|
|
* prio is a value in the range -20 to 20. The default priority is
|
|
* 0; lower priorities cause more favorable scheduling. A value of
|
|
* 19 or 20 will schedule a process only when nothing at priority <=
|
|
* 0 is runnable.
|
|
*
|
|
* This gives estcpu influence over 18 priority levels, and leaves nice
|
|
* with 40 levels. One way to think about it is that nice has 20 levels
|
|
* either side of estcpu's 18.
|
|
*/
|
|
#define ESTCPU_SHIFT 11
|
|
#define ESTCPU_MAX ((PRIO_MAX - 2) << ESTCPU_SHIFT)
|
|
#define ESTCPU_ACCUM (1 << (ESTCPU_SHIFT - 1))
|
|
#define ESTCPULIM(e) min((e), ESTCPU_MAX)
|
|
|
|
/*
|
|
* Constants for digital decay and forget:
|
|
* 90% of (l_estcpu) usage in 5 * loadav time
|
|
* 95% of (l_pctcpu) usage in 60 seconds (load insensitive)
|
|
* Note that, as ps(1) mentions, this can let percentages
|
|
* total over 100% (I've seen 137.9% for 3 processes).
|
|
*
|
|
* Note that hardclock updates l_estcpu and l_cpticks independently.
|
|
*
|
|
* We wish to decay away 90% of l_estcpu in (5 * loadavg) seconds.
|
|
* That is, the system wants to compute a value of decay such
|
|
* that the following for loop:
|
|
* for (i = 0; i < (5 * loadavg); i++)
|
|
* l_estcpu *= decay;
|
|
* will compute
|
|
* l_estcpu *= 0.1;
|
|
* for all values of loadavg:
|
|
*
|
|
* Mathematically this loop can be expressed by saying:
|
|
* decay ** (5 * loadavg) ~= .1
|
|
*
|
|
* The system computes decay as:
|
|
* decay = (2 * loadavg) / (2 * loadavg + 1)
|
|
*
|
|
* We wish to prove that the system's computation of decay
|
|
* will always fulfill the equation:
|
|
* decay ** (5 * loadavg) ~= .1
|
|
*
|
|
* If we compute b as:
|
|
* b = 2 * loadavg
|
|
* then
|
|
* decay = b / (b + 1)
|
|
*
|
|
* We now need to prove two things:
|
|
* 1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
|
|
* 2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
|
|
*
|
|
* Facts:
|
|
* For x close to zero, exp(x) =~ 1 + x, since
|
|
* exp(x) = 0! + x**1/1! + x**2/2! + ... .
|
|
* therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
|
|
* For x close to zero, ln(1+x) =~ x, since
|
|
* ln(1+x) = x - x**2/2 + x**3/3 - ... -1 < x < 1
|
|
* therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
|
|
* ln(.1) =~ -2.30
|
|
*
|
|
* Proof of (1):
|
|
* Solve (factor)**(power) =~ .1 given power (5*loadav):
|
|
* solving for factor,
|
|
* ln(factor) =~ (-2.30/5*loadav), or
|
|
* factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
|
|
* exp(-1/b) =~ (b-1)/b =~ b/(b+1). QED
|
|
*
|
|
* Proof of (2):
|
|
* Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
|
|
* solving for power,
|
|
* power*ln(b/(b+1)) =~ -2.30, or
|
|
* power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav. QED
|
|
*
|
|
* Actual power values for the implemented algorithm are as follows:
|
|
* loadav: 1 2 3 4
|
|
* power: 5.68 10.32 14.94 19.55
|
|
*/
|
|
|
|
/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
|
|
#define loadfactor(loadav) (2 * (loadav))
|
|
|
|
static fixpt_t
|
|
decay_cpu(fixpt_t loadfac, fixpt_t estcpu)
|
|
{
|
|
|
|
if (estcpu == 0) {
|
|
return 0;
|
|
}
|
|
|
|
#if !defined(_LP64)
|
|
/* avoid 64bit arithmetics. */
|
|
#define FIXPT_MAX ((fixpt_t)((UINTMAX_C(1) << sizeof(fixpt_t) * CHAR_BIT) - 1))
|
|
if (__predict_true(loadfac <= FIXPT_MAX / ESTCPU_MAX)) {
|
|
return estcpu * loadfac / (loadfac + FSCALE);
|
|
}
|
|
#endif /* !defined(_LP64) */
|
|
|
|
return (uint64_t)estcpu * loadfac / (loadfac + FSCALE);
|
|
}
|
|
|
|
/*
|
|
* For all load averages >= 1 and max l_estcpu of (255 << ESTCPU_SHIFT),
|
|
* sleeping for at least seven times the loadfactor will decay l_estcpu to
|
|
* less than (1 << ESTCPU_SHIFT).
|
|
*
|
|
* note that our ESTCPU_MAX is actually much smaller than (255 << ESTCPU_SHIFT).
|
|
*/
|
|
static fixpt_t
|
|
decay_cpu_batch(fixpt_t loadfac, fixpt_t estcpu, unsigned int n)
|
|
{
|
|
|
|
if ((n << FSHIFT) >= 7 * loadfac) {
|
|
return 0;
|
|
}
|
|
|
|
while (estcpu != 0 && n > 1) {
|
|
estcpu = decay_cpu(loadfac, estcpu);
|
|
n--;
|
|
}
|
|
|
|
return estcpu;
|
|
}
|
|
|
|
/*
|
|
* sched_pstats_hook:
|
|
*
|
|
* Periodically called from sched_pstats(); used to recalculate priorities.
|
|
*/
|
|
void
|
|
sched_pstats_hook(struct lwp *l, int batch)
|
|
{
|
|
fixpt_t loadfac;
|
|
|
|
/*
|
|
* If the LWP has slept an entire second, stop recalculating
|
|
* its priority until it wakes up.
|
|
*/
|
|
KASSERT(lwp_locked(l, NULL));
|
|
if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
|
|
l->l_stat == LSSUSPENDED) {
|
|
if (l->l_slptime > 1) {
|
|
return;
|
|
}
|
|
}
|
|
loadfac = 2 * (averunnable.ldavg[0]);
|
|
l->l_estcpu = decay_cpu(loadfac, l->l_estcpu);
|
|
resetpriority(l);
|
|
}
|
|
|
|
/*
|
|
* Recalculate the priority of a process after it has slept for a while.
|
|
*/
|
|
static void
|
|
updatepri(struct lwp *l)
|
|
{
|
|
fixpt_t loadfac;
|
|
|
|
KASSERT(lwp_locked(l, NULL));
|
|
KASSERT(l->l_slptime > 1);
|
|
|
|
loadfac = loadfactor(averunnable.ldavg[0]);
|
|
|
|
l->l_slptime--; /* the first time was done in sched_pstats */
|
|
l->l_estcpu = decay_cpu_batch(loadfac, l->l_estcpu, l->l_slptime);
|
|
resetpriority(l);
|
|
}
|
|
|
|
void
|
|
sched_rqinit(void)
|
|
{
|
|
|
|
}
|
|
|
|
void
|
|
sched_setrunnable(struct lwp *l)
|
|
{
|
|
|
|
if (l->l_slptime > 1)
|
|
updatepri(l);
|
|
}
|
|
|
|
void
|
|
sched_nice(struct proc *p, int n)
|
|
{
|
|
struct lwp *l;
|
|
|
|
KASSERT(mutex_owned(p->p_lock));
|
|
|
|
p->p_nice = n;
|
|
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
|
|
lwp_lock(l);
|
|
resetpriority(l);
|
|
lwp_unlock(l);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Recompute the priority of an LWP. Arrange to reschedule if
|
|
* the resulting priority is better than that of the current LWP.
|
|
*/
|
|
static void
|
|
resetpriority(struct lwp *l)
|
|
{
|
|
pri_t pri;
|
|
struct proc *p = l->l_proc;
|
|
|
|
KASSERT(lwp_locked(l, NULL));
|
|
|
|
if (l->l_class != SCHED_OTHER)
|
|
return;
|
|
|
|
/* See comments above ESTCPU_SHIFT definition. */
|
|
pri = (PRI_KERNEL - 1) - (l->l_estcpu >> ESTCPU_SHIFT) - p->p_nice;
|
|
pri = imax(pri, 0);
|
|
if (pri != l->l_priority)
|
|
lwp_changepri(l, pri);
|
|
}
|
|
|
|
/*
|
|
* We adjust the priority of the current process. The priority of a process
|
|
* gets worse as it accumulates CPU time. The CPU usage estimator (l_estcpu)
|
|
* is increased here. The formula for computing priorities (in kern_synch.c)
|
|
* will compute a different value each time l_estcpu increases. This can
|
|
* cause a switch, but unless the priority crosses a PPQ boundary the actual
|
|
* queue will not change. The CPU usage estimator ramps up quite quickly
|
|
* when the process is running (linearly), and decays away exponentially, at
|
|
* a rate which is proportionally slower when the system is busy. The basic
|
|
* principle is that the system will 90% forget that the process used a lot
|
|
* of CPU time in 5 * loadav seconds. This causes the system to favor
|
|
* processes which haven't run much recently, and to round-robin among other
|
|
* processes.
|
|
*/
|
|
|
|
void
|
|
sched_schedclock(struct lwp *l)
|
|
{
|
|
|
|
if (l->l_class != SCHED_OTHER)
|
|
return;
|
|
|
|
KASSERT(!CURCPU_IDLE_P());
|
|
l->l_estcpu = ESTCPULIM(l->l_estcpu + ESTCPU_ACCUM);
|
|
lwp_lock(l);
|
|
resetpriority(l);
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
/*
|
|
* sched_proc_fork:
|
|
*
|
|
* Inherit the parent's scheduler history.
|
|
*/
|
|
void
|
|
sched_proc_fork(struct proc *parent, struct proc *child)
|
|
{
|
|
lwp_t *pl;
|
|
|
|
KASSERT(mutex_owned(parent->p_lock));
|
|
|
|
pl = LIST_FIRST(&parent->p_lwps);
|
|
child->p_estcpu_inherited = pl->l_estcpu;
|
|
child->p_forktime = sched_pstats_ticks;
|
|
}
|
|
|
|
/*
|
|
* sched_proc_exit:
|
|
*
|
|
* Chargeback parents for the sins of their children.
|
|
*/
|
|
void
|
|
sched_proc_exit(struct proc *parent, struct proc *child)
|
|
{
|
|
fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
|
|
fixpt_t estcpu;
|
|
lwp_t *pl, *cl;
|
|
|
|
/* XXX Only if parent != init?? */
|
|
|
|
mutex_enter(parent->p_lock);
|
|
pl = LIST_FIRST(&parent->p_lwps);
|
|
cl = LIST_FIRST(&child->p_lwps);
|
|
estcpu = decay_cpu_batch(loadfac, child->p_estcpu_inherited,
|
|
sched_pstats_ticks - child->p_forktime);
|
|
if (cl->l_estcpu > estcpu) {
|
|
lwp_lock(pl);
|
|
pl->l_estcpu = ESTCPULIM(pl->l_estcpu + cl->l_estcpu - estcpu);
|
|
lwp_unlock(pl);
|
|
}
|
|
mutex_exit(parent->p_lock);
|
|
}
|
|
|
|
void
|
|
sched_wakeup(struct lwp *l)
|
|
{
|
|
|
|
}
|
|
|
|
void
|
|
sched_slept(struct lwp *l)
|
|
{
|
|
|
|
}
|
|
|
|
void
|
|
sched_lwp_fork(struct lwp *l1, struct lwp *l2)
|
|
{
|
|
|
|
l2->l_estcpu = l1->l_estcpu;
|
|
}
|
|
|
|
void
|
|
sched_lwp_collect(struct lwp *t)
|
|
{
|
|
lwp_t *l;
|
|
|
|
/* Absorb estcpu value of collected LWP. */
|
|
l = curlwp;
|
|
lwp_lock(l);
|
|
l->l_estcpu += t->l_estcpu;
|
|
lwp_unlock(l);
|
|
}
|
|
|
|
void
|
|
sched_oncpu(lwp_t *l)
|
|
{
|
|
|
|
}
|
|
|
|
void
|
|
sched_newts(lwp_t *l)
|
|
{
|
|
|
|
}
|
|
|
|
/*
|
|
* Sysctl nodes and initialization.
|
|
*/
|
|
|
|
static int
|
|
sysctl_sched_rtts(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node;
|
|
int rttsms = hztoms(rrticks);
|
|
|
|
node = *rnode;
|
|
node.sysctl_data = &rttsms;
|
|
return sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
}
|
|
|
|
SYSCTL_SETUP(sysctl_sched_4bsd_setup, "sysctl sched setup")
|
|
{
|
|
const struct sysctlnode *node = NULL;
|
|
|
|
sysctl_createv(clog, 0, NULL, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "kern", NULL,
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_EOL);
|
|
sysctl_createv(clog, 0, NULL, &node,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_NODE, "sched",
|
|
SYSCTL_DESCR("Scheduler options"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
|
|
if (node == NULL)
|
|
return;
|
|
|
|
rrticks = hz / 10;
|
|
|
|
sysctl_createv(NULL, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_STRING, "name", NULL,
|
|
NULL, 0, __UNCONST("4.4BSD"), 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(NULL, 0, &node, NULL,
|
|
CTLFLAG_PERMANENT,
|
|
CTLTYPE_INT, "rtts",
|
|
SYSCTL_DESCR("Round-robin time quantum (in miliseconds)"),
|
|
sysctl_sched_rtts, 0, NULL, 0,
|
|
CTL_CREATE, CTL_EOL);
|
|
}
|