efee5258bc
The MPFR library is a C library for multiple-precision floating-point computations with exact rounding (also called correct rounding). It is based on the GMP multiple-precision library and should replace the MPF class in further releases of GMP. GCC >= 4.2 requires MPFR.
216 lines
5.7 KiB
C
216 lines
5.7 KiB
C
/* mpfr_get_ld, mpfr_get_ld_2exp -- convert a multiple precision floating-point
|
|
number to a machine long double
|
|
|
|
Copyright 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
|
Contributed by the Arenaire and Cacao projects, INRIA.
|
|
|
|
This file is part of the GNU MPFR Library.
|
|
|
|
The GNU MPFR Library is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU Lesser General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or (at your
|
|
option) any later version.
|
|
|
|
The GNU MPFR Library is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License for more details.
|
|
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
|
|
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
|
|
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
|
|
|
|
#include <float.h>
|
|
|
|
#include "mpfr-impl.h"
|
|
|
|
#ifndef HAVE_LDOUBLE_IEEE_EXT_LITTLE
|
|
|
|
long double
|
|
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
|
|
return (long double) mpfr_get_d (x, rnd_mode);
|
|
else /* now x is a normal non-zero number */
|
|
{
|
|
long double r; /* result */
|
|
long double m;
|
|
double s; /* part of result */
|
|
mpfr_exp_t sh; /* exponent shift, so that x/2^sh is in the double range */
|
|
mpfr_t y, z;
|
|
int sign;
|
|
|
|
/* first round x to the target long double precision, so that
|
|
all subsequent operations are exact (this avoids double rounding
|
|
problems) */
|
|
mpfr_init2 (y, MPFR_LDBL_MANT_DIG);
|
|
mpfr_init2 (z, IEEE_DBL_MANT_DIG);
|
|
|
|
mpfr_set (y, x, rnd_mode);
|
|
sh = MPFR_GET_EXP (y);
|
|
sign = MPFR_SIGN (y);
|
|
MPFR_SET_EXP (y, 0);
|
|
MPFR_SET_POS (y);
|
|
|
|
r = 0.0;
|
|
do {
|
|
s = mpfr_get_d (y, MPFR_RNDN); /* high part of y */
|
|
r += (long double) s;
|
|
mpfr_set_d (z, s, MPFR_RNDN); /* exact */
|
|
mpfr_sub (y, y, z, MPFR_RNDN); /* exact */
|
|
} while (!MPFR_IS_ZERO (y));
|
|
|
|
mpfr_clear (z);
|
|
mpfr_clear (y);
|
|
|
|
/* we now have to multiply back by 2^sh */
|
|
MPFR_ASSERTD (r > 0);
|
|
if (sh != 0)
|
|
{
|
|
/* An overflow may occurs (example: 0.5*2^1024) */
|
|
while (r < 1.0)
|
|
{
|
|
r += r;
|
|
sh--;
|
|
}
|
|
|
|
if (sh > 0)
|
|
m = 2.0;
|
|
else
|
|
{
|
|
m = 0.5;
|
|
sh = -sh;
|
|
}
|
|
|
|
for (;;)
|
|
{
|
|
if (sh % 2)
|
|
r = r * m;
|
|
sh >>= 1;
|
|
if (sh == 0)
|
|
break;
|
|
m = m * m;
|
|
}
|
|
}
|
|
if (sign < 0)
|
|
r = -r;
|
|
return r;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
long double
|
|
mpfr_get_ld (mpfr_srcptr x, mpfr_rnd_t rnd_mode)
|
|
{
|
|
mpfr_long_double_t ld;
|
|
mpfr_t tmp;
|
|
int inex;
|
|
MPFR_SAVE_EXPO_DECL (expo);
|
|
|
|
MPFR_SAVE_EXPO_MARK (expo);
|
|
|
|
mpfr_init2 (tmp, MPFR_LDBL_MANT_DIG);
|
|
inex = mpfr_set (tmp, x, rnd_mode);
|
|
|
|
mpfr_set_emin (-16382-63);
|
|
mpfr_set_emax (16384);
|
|
mpfr_subnormalize (tmp, mpfr_check_range (tmp, inex, rnd_mode), rnd_mode);
|
|
mpfr_prec_round (tmp, 64, MPFR_RNDZ); /* exact */
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (tmp)))
|
|
ld.ld = (long double) mpfr_get_d (tmp, rnd_mode);
|
|
else
|
|
{
|
|
mp_limb_t *tmpmant;
|
|
mpfr_exp_t e, denorm;
|
|
|
|
tmpmant = MPFR_MANT (tmp);
|
|
e = MPFR_GET_EXP (tmp);
|
|
/* the smallest normal number is 2^(-16382), which is 0.5*2^(-16381)
|
|
in MPFR, thus any exponent <= -16382 corresponds to a subnormal
|
|
number */
|
|
denorm = MPFR_UNLIKELY (e <= -16382) ? - e - 16382 + 1 : 0;
|
|
#if GMP_NUMB_BITS >= 64
|
|
ld.s.manl = (tmpmant[0] >> denorm);
|
|
ld.s.manh = (tmpmant[0] >> denorm) >> 32;
|
|
#elif GMP_NUMB_BITS == 32
|
|
if (MPFR_LIKELY (denorm == 0))
|
|
{
|
|
ld.s.manl = tmpmant[0];
|
|
ld.s.manh = tmpmant[1];
|
|
}
|
|
else if (denorm < 32)
|
|
{
|
|
ld.s.manl = (tmpmant[0] >> denorm) | (tmpmant[1] << (32 - denorm));
|
|
ld.s.manh = tmpmant[1] >> denorm;
|
|
}
|
|
else /* 32 <= denorm <= 64 */
|
|
{
|
|
ld.s.manl = tmpmant[1] >> (denorm - 32);
|
|
ld.s.manh = 0;
|
|
}
|
|
#else
|
|
# error "GMP_NUMB_BITS must be 32 or >= 64"
|
|
/* Other values have never been supported anyway. */
|
|
#endif
|
|
if (MPFR_LIKELY (denorm == 0))
|
|
{
|
|
ld.s.exph = (e + 0x3FFE) >> 8;
|
|
ld.s.expl = (e + 0x3FFE);
|
|
}
|
|
else
|
|
ld.s.exph = ld.s.expl = 0;
|
|
ld.s.sign = MPFR_IS_NEG (x);
|
|
}
|
|
|
|
mpfr_clear (tmp);
|
|
MPFR_SAVE_EXPO_FREE (expo);
|
|
return ld.ld;
|
|
}
|
|
|
|
#endif
|
|
|
|
/* contributed by Damien Stehle */
|
|
long double
|
|
mpfr_get_ld_2exp (long *expptr, mpfr_srcptr src, mpfr_rnd_t rnd_mode)
|
|
{
|
|
long double ret;
|
|
mpfr_exp_t exp;
|
|
mpfr_t tmp;
|
|
|
|
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (src)))
|
|
return (long double) mpfr_get_d_2exp (expptr, src, rnd_mode);
|
|
|
|
tmp[0] = *src; /* Hack copy mpfr_t */
|
|
MPFR_SET_EXP (tmp, 0);
|
|
ret = mpfr_get_ld (tmp, rnd_mode);
|
|
|
|
if (MPFR_IS_PURE_FP(src))
|
|
{
|
|
exp = MPFR_GET_EXP (src);
|
|
|
|
/* rounding can give 1.0, adjust back to 0.5 <= abs(ret) < 1.0 */
|
|
if (ret == 1.0)
|
|
{
|
|
ret = 0.5;
|
|
exp ++;
|
|
}
|
|
else if (ret == -1.0)
|
|
{
|
|
ret = -0.5;
|
|
exp ++;
|
|
}
|
|
|
|
MPFR_ASSERTN ((ret >= 0.5 && ret < 1.0)
|
|
|| (ret <= -0.5 && ret > -1.0));
|
|
MPFR_ASSERTN (exp >= LONG_MIN && exp <= LONG_MAX);
|
|
}
|
|
else
|
|
exp = 0;
|
|
|
|
*expptr = exp;
|
|
return ret;
|
|
}
|