NetBSD/sys/arch/newsmips/dev/scsi_1185.c
agc aad01611e7 Move UCB-licensed code from 4-clause to 3-clause licence.
Patches provided by Joel Baker in PR 22364, verified by myself.
2003-08-07 16:26:28 +00:00

1811 lines
36 KiB
C

/* $NetBSD: scsi_1185.c,v 1.13 2003/08/07 16:28:52 agc Exp $ */
/*
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Sony Corp. and Kazumasa Utashiro of Software Research Associates, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: $Hdr: scsi_1185.c,v 4.300 91/06/09 06:22:20 root Rel41 $ SONY
*
* @(#)scsi_1185.c 8.1 (Berkeley) 6/11/93
*/
/*
* Copyright (c) 1989- by SONY Corporation.
*
* scsi_1185.c
*
* CXD1185Q
* SCSI bus low level common routines
* for one cpu machine
*
* MODIFY HISTORY:
*
* DMAC_WAIT --- DMAC_0266 wo tukau-baai, DMAC mata-wa SCSI-chip ni
* tuzukete access suru-baai,
* kanarazu wait wo ireru-beshi !
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: scsi_1185.c,v 1.13 2003/08/07 16:28:52 agc Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <machine/cpu.h>
#include <machine/intr.h>
#include <machine/machConst.h>
#include <mips/cache.h>
#include <newsmips/dev/screg_1185.h>
#include <newsmips/dev/scsireg.h>
#if defined(news3400)
# include <newsmips/dev/dmac_0448.h>
# ifndef NDMACMAP
# define NDMACMAP 144
# endif
#endif
#define VOLATILE volatile
#define ABORT_SYNCTR_MES_FROM_TARGET
#define SCSI_1185AQ
#define RESET_RECOVER
#define DMAC_MAP_INIT /* for nws-3700 parity error */
#define APAD_ALWAYS_ON
#define CHECK_LOOP_CNT 60
#define RSL_LOOP_CNT 60
#ifndef DMAC_MAP_INIT
# define MAP_OVER_ACCESS /* for nws-3700 parity error */
#endif
#undef CHECK_MRQ
#ifdef NOT_SUPPORT_SYNCTR
# define MAX_OFFSET_BYTES 0
#else
# define MAX_OFFSET_BYTES MAX_OFFSET
#endif
#define act_point spoint
#define act_trcnt stcnt
#define act_tag stag
#define act_offset soffset
#define splscsi splsc
#if defined(__mips__) && defined(CPU_SINGLE)
#define nops(x) { int i; for (i = 0; i < (x); i++) ; }
#define DMAC_WAIT0 ;
#else
#define DMAC_WAIT0 DMAC_WAIT
#endif
#ifdef DMAC_MAP_INIT
static int dmac_map_init = 0;
#endif
/*
* command flag status
*/
#define CF_SET 1
#define CF_SEND 2
#define CF_ENOUGH 3
#define CF_EXEC 4
#define SEL_TIMEOUT_VALUE 0x7a
extern struct cfdriver sc_cd;
void sc_send __P((struct sc_scb *, int, int));
int scintr __P((void));
void scsi_hardreset __P((void));
void scsi_chipreset __P((struct sc_softc *));
void scsi_softreset __P((struct sc_softc *));
int sc_busy __P((struct sc_softc *, int));
static int WAIT_STATR_BITCLR __P((int));
static int WAIT_STATR_BITSET __P((int));
static void SET_CMD __P((struct sc_softc *, int));
static void SET_CNT __P((int));
static int GET_CNT __P((void));
static void GET_INTR __P((VOLATILE int *, VOLATILE int *));
static void sc_start __P((struct sc_softc *));
static void sc_resel __P((struct sc_softc *));
static void sc_discon __P((struct sc_softc *));
static void sc_pmatch __P((struct sc_softc *));
static void flush_fifo __P((struct sc_softc *));
static void sc_cout __P((struct sc_softc *, struct sc_chan_stat *));
static void sc_min __P((struct sc_softc *, struct sc_chan_stat *));
static void sc_mout __P((struct sc_softc *, struct sc_chan_stat *));
static void sc_sin __P((struct sc_softc *, VOLATILE struct sc_chan_stat *));
static void sc_dio __P((struct sc_softc *, VOLATILE struct sc_chan_stat *));
static void sc_dio_pad __P((struct sc_softc *, VOLATILE struct sc_chan_stat *));
static void print_scsi_stat __P((struct sc_softc *));
static void append_wb __P((struct sc_softc *, struct sc_chan_stat *));
static struct sc_chan_stat *get_wb_chan __P((struct sc_softc *));
static int release_wb __P((struct sc_softc *));
static void adjust_transfer __P((struct sc_softc *, struct sc_chan_stat *));
static void clean_k2dcache __P((struct sc_scb *));
extern void sc_done __P((struct sc_scb *));
extern paddr_t kvtophys __P((vaddr_t));
#if defined(__mips__) && defined(CPU_SINGLE)
#define dma_reset(x) { \
int s = splscsi(); \
dmac_gsel = (x); dmac_cctl = DM_RST; dmac_cctl = 0; \
splx(s); \
}
#endif
int
WAIT_STATR_BITCLR(bitmask)
register int bitmask;
{
register int iloop;
register VOLATILE int dummy;
iloop = 0;
do {
dummy = sc_statr;
DMAC_WAIT0;
if (iloop++ > CHECK_LOOP_CNT)
return (-1);
} while (dummy & bitmask);
return (0);
}
int
WAIT_STATR_BITSET(bitmask)
register int bitmask;
{
register int iloop;
register VOLATILE int dummy;
iloop = 0;
do {
dummy = sc_statr;
DMAC_WAIT0;
if (iloop++ > CHECK_LOOP_CNT)
return (-1);
} while ((dummy & bitmask) == 0);
return (0);
}
void
SET_CMD(sc, CMD)
struct sc_softc *sc;
register int CMD;
{
(void) WAIT_STATR_BITCLR(R0_CIP);
sc->lastcmd = (CMD);
sc_comr = (CMD);
DMAC_WAIT0;
}
void
SET_CNT(COUNT)
register int COUNT;
{
sc_tclow = (COUNT) & 0xff;
DMAC_WAIT0;
sc_tcmid = ((COUNT) >> 8) & 0xff;
DMAC_WAIT0;
sc_tchi = ((COUNT) >> 16) & 0xff;
DMAC_WAIT0;
}
int
GET_CNT()
{
register VOLATILE int COUNT;
COUNT = sc_tclow;
DMAC_WAIT0;
COUNT += (sc_tcmid << 8) & 0xff00;
DMAC_WAIT0;
COUNT += (sc_tchi << 16) & 0xff0000;
DMAC_WAIT0;
return (COUNT);
}
void
GET_INTR(DATA1, DATA2)
register VOLATILE int *DATA1;
register VOLATILE int *DATA2;
{
(void) WAIT_STATR_BITCLR(R0_CIP);
while (sc_statr & R0_MIRQ) {
DMAC_WAIT0;
*DATA1 |= sc_intrq1;
DMAC_WAIT0;
*DATA2 |= sc_intrq2;
DMAC_WAIT0;
}
}
void
sc_send(scb, chan, ie)
struct sc_scb *scb;
int chan, ie;
{
struct sc_softc *sc = scb->scb_softc;
struct sc_chan_stat *cs;
struct scsipi_xfer *xs;
int i;
u_char *p;
cs = &sc->chan_stat[chan];
xs = scb->xs;
p = (u_char *)xs->cmd;
if (cs->scb != NULL) {
printf("SCSI%d: sc_send() NOT NULL cs->sc\n", chan);
printf("ie=0x%x scb=0x%p cs->sc=0x%p\n", ie, scb, cs->scb);
printf("cdb=");
for (i = 0; i < 6; i++)
printf(" 0x%x", *p++);
printf("\n");
panic("SCSI soft error");
/*NOTREACHED*/
}
if (p[0] == SCOP_RESET && p[1] == SCOP_RESET) {
/*
* SCSI bus reset command procedure
* (vender unique by Sony Corp.)
*/
#ifdef SCSI_1185AQ
if (sc_idenr & 0x08)
sc->scsi_1185AQ = 1;
else
sc->scsi_1185AQ = 0;
#endif
cs->scb = scb;
scsi_hardreset();
scb->istatus = INST_EP;
cs->scb = NULL;
sc_done(scb);
return;
}
if (scb->sc_map && (scb->sc_map->mp_pages > 0)) {
/*
* use map table
*/
scb->sc_coffset = scb->sc_map->mp_offset & PGOFSET;
if (scb->sc_map->mp_pages > NSCMAP) {
printf("SCSI%d: map table overflow\n", chan);
scb->istatus = INST_EP|INST_LB|INST_PRE;
return;
}
} else {
/*
* no use map table
*/
scb->sc_coffset = (u_int)scb->sc_cpoint & PGOFSET;
}
scb->sc_ctag = 0;
cs->scb = scb;
cs->comflg = OFF;
cs->intr_flg = ie;
cs->chan_num = chan;
sc->perr_flag[chan] = 0;
sc->mout_flag[chan] = 0;
sc->min_cnt[chan] = 0;
sc->sel_stat[chan] = SEL_WAIT;
append_wb(sc, cs);
sc_start(sc);
}
/*
* SCSI start up routine
*/
void
sc_start(sc)
struct sc_softc *sc;
{
struct sc_chan_stat *cs;
int chan, dummy;
int s;
s = splscsi();
cs = get_wb_chan(sc);
if ((cs == NULL) || (sc->ipc >= 0))
goto sc_start_exit;
chan = cs->chan_num;
if (sc->sel_stat[chan] != SEL_WAIT) {
/*
* already started
*/
goto sc_start_exit;
}
sc->sel_stat[chan] = SEL_START;
dummy = sc_cmonr;
DMAC_WAIT0;
if (dummy & (R4_MBSY|R4_MSEL)) {
sc->sel_stat[chan] = SEL_WAIT;
goto sc_start_exit;
}
/*
* send SELECT with ATN command
*/
sc->dma_stat = OFF;
sc->pad_start = 0;
dummy = sc_statr;
DMAC_WAIT0;
if (dummy & R0_CIP) {
sc->sel_stat[chan] = SEL_WAIT;
goto sc_start_exit;
}
sc_idenr = (chan << SC_TG_SHIFT) | SC_OWNID;
DMAC_WAIT0;
#ifdef SCSI_1185AQ
if (sc->scsi_1185AQ)
sc_intok1 = Ra_STO|Ra_ARBF;
else
sc_intok1 = Ra_STO|Ra_RSL|Ra_ARBF;
#else
sc_intok1 = Ra_STO|Ra_RSL|Ra_ARBF;
#endif
DMAC_WAIT0;
/*
* BUGFIX for signal reflection on BSY
* !Rb_DCNT
*/
sc_intok2 = Rb_FNC|Rb_SRST|Rb_PHC|Rb_SPE;
DMAC_WAIT0;
dummy = sc_cmonr;
DMAC_WAIT0;
if (dummy & (R4_MBSY|R4_MSEL)) {
sc->sel_stat[chan] = SEL_WAIT;
goto sc_start_exit;
}
SET_CMD(sc, SCMD_SEL_ATN);
sc_start_exit:
splx(s);
}
/*
* SCSI interrupt service routine
*/
int
scintr()
{
register int iloop;
register VOLATILE int chan;
register VOLATILE int dummy;
struct sc_softc *sc;
struct sc_chan_stat *cs;
int s_int1, s_int2;
sc = sc_cd.cd_devs[0]; /* XXX */
scintr_loop:
#if defined(CHECK_MRQ) && defined(news3400)
while (dmac_gstat & CH_MRQ(CH_SCSI))
DMAC_WAIT;
#endif
for (iloop = 0; iloop < 100; iloop++) {
dummy = sc_statr;
DMAC_WAIT;
if ((dummy & R0_CIP) == 0)
break;
}
/*
* get SCSI interrupt request
*/
while (sc_statr & R0_MIRQ) {
DMAC_WAIT0;
s_int1 = sc_intrq1;
DMAC_WAIT0;
s_int2 = sc_intrq2;
DMAC_WAIT0;
sc->int_stat1 |= s_int1;
sc->int_stat2 |= s_int2;
}
if (sc->int_stat2 & R3_SRST) {
/*
* RST signal is drived
*/
sc->int_stat2 &= ~R3_SRST;
scsi_softreset(sc);
goto scintr_exit;
}
if ((sc->ipc < 0) && (sc->wrc <= 0) && (sc->wbc <= 0)) {
sc->int_stat1 = 0;
sc->int_stat2 = 0;
goto scintr_exit;
}
cs = get_wb_chan(sc);
if (cs) chan = cs->chan_num;
if (cs && (sc->sel_stat[chan] == SEL_START) &&
(sc->lastcmd == SCMD_SEL_ATN)) {
/*
* Check the result of SELECTION command
*/
if (sc->int_stat1 & R2_RSL) {
/*
* RESELECTION occur
*/
if (sc->wrc > 0) {
sc->sel_stat[chan] = SEL_RSLD;
} else {
/*
* Ghost RESELECTION ???
*/
sc->int_stat1 &= ~R2_RSL;
}
}
if (sc->int_stat1 & R2_ARBF) {
/*
* ARBITRATION fault
*/
sc->int_stat1 &= ~R2_ARBF;
sc->sel_stat[chan] = SEL_ARBF;
}
if (sc->int_stat1 & R2_STO) {
/*
* SELECTION timeout
*/
sc->int_stat1 &= ~R2_STO;
if ((sc->int_stat2&(R3_PHC|R3_RMSG)) != (R3_PHC|R3_RMSG)) {
sc->ipc = chan;
sc->ip = &sc->chan_stat[chan];
sc->sel_stat[chan] = SEL_TIMEOUT;
sc->chan_stat[chan].scb->istatus
= INST_EP|INST_TO;
release_wb(sc);
}
}
/*
* SELECTION command done
*/
switch (sc->sel_stat[chan]) {
case SEL_START:
if ((sc->int_stat2 & R3_FNC) == 0)
break;
/*
* SELECTION success
*/
sc_intok2 = Rb_FNC|Rb_DCNT|Rb_SRST|Rb_PHC|Rb_SPE;
sc->ipc = chan;
sc->ip = &sc->chan_stat[chan];
sc->ip->scb->istatus |= INST_IP;
sc->dma_stat = OFF;
sc->pad_start = 0;
sc->sel_stat[chan] = SEL_SUCCESS;
release_wb(sc);
#ifndef NOT_SUPPORT_SYNCTR
sc_syncr = sc->sync_tr[chan];
DMAC_WAIT0;
#endif
DMAC_WAIT0;
break;
case SEL_TIMEOUT:
/*
* SELECTION time out
*/
sc_discon(sc);
goto scintr_exit;
/* case SEL_RSLD: */
/* case SEL_ARBF: */
default:
/*
* SELECTION failed
*/
sc->sel_stat[chan] = SEL_WAIT;
break;
}
if ((sc->int_stat1 & R2_RSL) == 0)
sc->int_stat2 &= ~R3_FNC;
}
if (sc->ip != NULL) {
/*
* check In Process channel's request
*/
if (sc->dma_stat != OFF) {
/*
* adjust pointer & counter
*/
adjust_transfer(sc, sc->ip);
}
if (sc->int_stat2 & R3_SPE) {
register int VOLATILE statr;
register int VOLATILE cmonr;
statr = sc_statr;
DMAC_WAIT0;
cmonr = sc_cmonr;
sc->int_stat2 &= ~R3_SPE;
sc->perr_flag[sc->ip->chan_num] = 1;
}
}
if (sc->int_stat2 & R3_DCNT) {
/*
* Bus Free
*/
sc_discon(sc);
sc->int_stat2 &= ~R3_DCNT;
}
if ((sc->ipc >= 0) && (sc->sel_stat[sc->ipc] == SEL_RSL_WAIT)) {
sc->sel_stat[sc->ipc] = SEL_RSLD;
sc->ipc = -1;
sc->int_stat1 |= R2_RSL;
}
if (sc->int_stat1 & R2_RSL) {
/*
* Reselection
*/
sc_resel(sc);
sc->int_stat1 &= ~R2_RSL;
if (sc->sel_stat[sc->ipc] == SEL_RSL_WAIT)
goto scintr_exit;
}
if ((sc->ipc >= 0) && (sc->ipc != SC_OWNID) &&
(sc->sel_stat[sc->ipc] == SEL_SUCCESS)) {
if (sc->int_stat2 & R3_PHC) {
/*
* Phase change
*/
sc->int_stat2 &= ~(R3_PHC|R3_RMSG);
sc_pmatch(sc);
} else if (sc->int_stat2 & R3_RMSG) {
/*
* message Phase
*/
if (sc->min_flag > 0) {
sc->int_stat2 &= ~(R3_PHC|R3_RMSG);
sc_pmatch(sc);
}
}
else if (sc->dma_stat != OFF) {
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & (R4_MMSG|R4_MCD|R4_MREQ)) == R4_MREQ) {
/*
* still DATA transfer phase
*/
sc_dio_pad(sc, sc->ip);
}
}
else if (sc->ip->comflg == CF_SEND) {
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & SC_PMASK) == COM_OUT) {
/*
* command out phase
*/
sc_cout(sc, sc->ip);
}
}
} else {
if (sc->int_stat2 & (R3_PHC|R3_RMSG))
goto scintr_exit;
}
if ((sc->int_stat1 & (R2_STO|R2_RSL|R2_ARBF))
|| (sc->int_stat2 & (R3_DCNT|R3_SRST|R3_PHC|R3_SPE))) {
/*
* still remain intrq
*/
goto scintr_loop;
}
scintr_exit:
return (1);
}
/*
* SCSI bus reset routine
* scsi_hardreset() is occered a reset interrupt.
* And call scsi_softreset().
*/
void
scsi_hardreset()
{
register int s;
#ifdef DMAC_MAP_INIT
register int i;
#endif
struct sc_softc *sc;
sc = sc_cd.cd_devs[0]; /* XXX */
s = splscsi();
scsi_chipreset(sc);
DMAC_WAIT0;
sc->int_stat1 = 0;
sc->int_stat2 = 0;
SET_CMD(sc, SCMD_AST_RST); /* assert RST signal */
#ifdef DMAC_MAP_INIT
if (dmac_map_init == 0) {
dmac_map_init++;
for (i = 0; i < NDMACMAP; i++) {
# if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_ctag = (u_char)i;
dmac_cmap = (u_short)0;
# endif
}
}
#endif
/*cxd1185_init();*/
splx(s);
}
/*
* I/O port (sc_ioptr) bit assign
*
* Rf_PRT3 - <reserved>
* Rf_PRT2 - <reserved>
* Rf_PRT1 out Floppy Disk Density control
* Rf_PRT0 out Floppy Disk Eject control
*/
void
scsi_chipreset(sc)
struct sc_softc *sc;
{
register int s;
register VOLATILE int save_ioptr;
s = splscsi();
#if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_cwid = 4; /* initialize DMAC SCSI chan */
*(unsigned VOLATILE char *)PINTEN |= DMA_INTEN;
dma_reset(CH_SCSI);
#endif
sc_envir = 0; /* 1/4 clock */
DMAC_WAIT0;
save_ioptr = sc_ioptr;
DMAC_WAIT0;
sc->lastcmd = SCMD_CHIP_RST;
sc_comr = SCMD_CHIP_RST; /* reset chip */
DMAC_WAIT;
(void) WAIT_STATR_BITCLR(R0_CIP);
/*
* SCMD_CHIP_RST command reset all register
* except sc_statr<7:6> & sc_cmonr.
* So, bit R0_MIRQ & R3_FNC will be not set.
*/
sc_idenr = SC_OWNID;
DMAC_WAIT0;
sc_intok1 = Ra_STO|Ra_RSL|Ra_ARBF;
DMAC_WAIT0;
sc_intok2 = Rb_FNC|Rb_SRST|Rb_PHC|Rb_SPE|Rb_RMSG;
DMAC_WAIT0;
sc_ioptr = save_ioptr;
DMAC_WAIT;
sc_moder = Rc_TMSL; /* RST drive time = 25.5 us */
DMAC_WAIT0;
sc_timer = 0x2;
DMAC_WAIT0;
sc_moder = Rc_SPHI; /* selection timeout = 252 ms */
DMAC_WAIT0;
sc_timer = SEL_TIMEOUT_VALUE;
DMAC_WAIT0;
#ifdef SCSI_1185AQ
if (sc->scsi_1185AQ)
SET_CMD(sc, SCMD_ENB_SEL); /* enable reselection */
#endif
sc->int_stat1 &= ~R2_RSL; /* ignore RSL inter request */
splx(s);
}
void
scsi_softreset(sc)
struct sc_softc *sc;
{
register VOLATILE struct sc_chan_stat *cs;
int i;
/* register int (*handler)(); */
sc->wbq_actf = NULL;
sc->wbq_actl = NULL;
sc->wbc = 0;
sc->wrc = 0;
sc->ip = NULL;
sc->ipc = -1;
sc->dma_stat = OFF;
sc->pad_start = 0;
for (i = 0; i < NTARGET; ++i) {
if (i == SC_OWNID)
continue;
cs = &sc->chan_stat[i];
cs->wb_next = NULL;
#ifndef NOT_SUPPORT_SYNCTR
sc->sync_tr[i] = 0; /* asynchronous mode */
#endif
sc->sel_stat[i] = SEL_WAIT;
if (cs->scb != NULL) {
struct sc_scb *scb = cs->scb;
if ((cs->scb->istatus & INST_EP) == 0)
cs->scb->istatus = (INST_EP|INST_HE);
cs->scb = NULL;
#ifdef __mips__
clean_k2dcache(scb);
#endif
if (cs->intr_flg == SCSI_INTEN) {
intrcnt[SCSI_INTR]++;
#if 0
handler = scintsw[i].sci_inthandler;
if (handler)
(*handler)(scintsw[i].sci_ctlr);
#endif
}
sc_done(scb);
}
}
}
/*
* RESELECTION interrupt service routine
* ( RESELECTION phase )
*/
void
sc_resel(sc)
struct sc_softc *sc;
{
register struct sc_chan_stat *cs;
register VOLATILE int chan;
register VOLATILE int statr;
register int iloop;
sc->min_flag = 0;
chan = (sc_idenr & R6_SID_MASK) >> SC_TG_SHIFT;
if (chan == SC_OWNID)
return;
statr = sc_statr;
DMAC_WAIT0;
if (statr & R0_CIP) {
if (sc->lastcmd == SCMD_SEL_ATN) {
/*
* SELECTION command dead lock ?
* save interrupt request
*/
while (sc_statr & R0_MIRQ) {
DMAC_WAIT0;
sc->int_stat1 |= sc_intrq1;
DMAC_WAIT0;
sc->int_stat2 |= sc_intrq2;
DMAC_WAIT0;
}
scsi_chipreset(sc);
}
}
cs = &sc->chan_stat[chan];
if (cs->scb == NULL) {
scsi_hardreset();
return;
}
if ((cs->scb->istatus & INST_WR) == 0) {
scsi_hardreset();
return;
}
if (sc->ipc >= 0) {
scsi_hardreset();
return;
}
sc->ip = cs;
sc->ipc = chan;
sc_intok2 = Rb_FNC|Rb_DCNT|Rb_SRST|Rb_PHC|Rb_SPE;
DMAC_WAIT0;
iloop = 0;
while ((sc->int_stat2 & R3_FNC) == 0) {
/*
* Max 6 usec wait
*/
if (iloop++ > RSL_LOOP_CNT) {
sc->sel_stat[chan] = SEL_RSL_WAIT;
return;
}
GET_INTR(&sc->int_stat1, &sc->int_stat2);
}
sc->int_stat2 &= ~R3_FNC;
sc->sel_stat[chan] = SEL_SUCCESS;
sc->wrc--;
sc->dma_stat = OFF;
sc->pad_start = 0;
cs->scb->istatus |= INST_IP;
cs->scb->istatus &= ~INST_WR;
#ifndef NOT_SUPPORT_SYNCTR
sc_syncr = sc->sync_tr[chan];
DMAC_WAIT0;
#endif
}
/*
* DISCONNECT interrupt service routine
* ( Target disconnect / job done )
*/
void
sc_discon(sc)
struct sc_softc *sc;
{
register VOLATILE struct sc_chan_stat *cs;
/* register int (*handler)(); */
register VOLATILE int dummy;
/*
* Signal reflection on BSY has occurred.
* Not Bus Free Phase, ignore.
*
* But, CXD1185Q reset INIT bit of sc_statr.
* So, can't issue Transfer Information command.
*
* What shall we do ? Bus reset ?
*/
if ((sc->int_stat2 & R3_DCNT) && ((sc_intok2 & Rb_DCNT) == 0))
return;
sc_intok2 = Rb_FNC|Rb_SRST|Rb_PHC|Rb_SPE;
DMAC_WAIT0;
sc->min_flag = 0;
dummy = sc_cmonr;
DMAC_WAIT0;
if (dummy & R4_MATN) {
SET_CMD(sc, SCMD_NGT_ATN);
(void) WAIT_STATR_BITSET(R0_MIRQ);
GET_INTR(&sc->int_stat1, &sc->int_stat2); /* clear interrupt */
}
if ((sc->int_stat1 & R2_RSL) == 0)
sc->int_stat2 &= ~R3_FNC;
cs = sc->ip;
if ((cs == NULL) || (sc->ipc < 0))
goto sc_discon_exit;
if ((sc->sel_stat[cs->chan_num] != SEL_SUCCESS)
&& (sc->sel_stat[cs->chan_num] != SEL_TIMEOUT))
printf("sc_discon: eh!\n");
/*
* indicate abnormal terminate
*/
if ((cs->scb->istatus & (INST_EP|INST_WR)) == 0)
cs->scb->istatus |= (INST_EP|INST_PRE|INST_LB);
cs->scb->istatus &= ~INST_IP;
sc->dma_stat = OFF;
sc->pad_start = 0;
sc->ip = NULL;
sc->ipc = -1;
if ((cs->scb->istatus & INST_WR) == 0) {
struct sc_scb *scb = cs->scb;
if (sc->perr_flag[cs->chan_num] > 0)
cs->scb->istatus |= INST_EP|INST_PRE;
cs->scb = NULL;
#ifdef __mips__
clean_k2dcache(scb);
#endif
if (cs->intr_flg == SCSI_INTEN) {
intrcnt[SCSI_INTR]++;
#if 0
handler = scintsw[cs->chan_num].sci_inthandler;
if (handler)
(*handler)(scintsw[cs->chan_num].sci_ctlr);
#endif
}
sc_done(scb);
}
sc_discon_exit:
sc_start(sc);
}
/*
* SCSI phase match interrupt service routine
*/
void
sc_pmatch(sc)
struct sc_softc *sc;
{
struct sc_chan_stat *cs;
register VOLATILE int phase;
register VOLATILE int phase2;
register VOLATILE int cmonr;
sc->int_stat2 &= ~R3_FNC; /* XXXXXXXX */
cs = sc->ip;
if (cs == NULL)
return;
#if defined(__mips__) && defined(CPU_SINGLE)
dma_reset(CH_SCSI);
#endif
phase = sc_cmonr & SC_PMASK;
DMAC_WAIT0;
for (;;) {
phase2 = phase;
cmonr = sc_cmonr;
DMAC_WAIT0;
phase = cmonr & SC_PMASK;
if (phase == phase2) {
if ((phase == DAT_IN) || (phase == DAT_OUT))
break;
else if (cmonr & R4_MREQ)
break;
}
}
sc->dma_stat = OFF;
sc->pad_start = 0;
if (phase == COM_OUT) {
sc->min_flag = 0;
if (cs->comflg != CF_SEND)
cs->comflg = CF_SET;
sc_cout(sc, cs);
} else {
cs->comflg = CF_ENOUGH;
sc_intok2 &= ~Rb_FNC;
if (phase == MES_IN) {
sc->min_flag++;
sc_min(sc, cs);
} else {
sc->min_flag = 0;
switch (phase) {
case MES_OUT:
sc_mout(sc, cs);
break;
case DAT_IN:
case DAT_OUT:
sc_dio(sc, cs);
break;
case STAT_IN:
sc_sin(sc, cs);
break;
default:
printf("SCSI%d: unknown phase\n", cs->chan_num);
break;
}
}
}
}
void
flush_fifo(sc)
struct sc_softc *sc;
{
register VOLATILE int dummy;
VOLATILE int tmp;
VOLATILE int tmp0;
dummy = sc_ffstr;
DMAC_WAIT0;
if (dummy & R5_FIFOREM) {
/*
* flush FIFO
*/
SET_CMD(sc, SCMD_FLSH_FIFO);
tmp = 0;
do {
do {
dummy = sc_statr;
DMAC_WAIT0;
} while (dummy & R0_CIP);
GET_INTR(&tmp0, &tmp); /* clear interrupt */
} while ((tmp & R3_FNC) == 0);
}
}
/*
* SCSI command send routine
*/
void
sc_cout(sc, cs)
struct sc_softc *sc;
register struct sc_chan_stat *cs;
{
register int iloop;
register int cdb_bytes;
register VOLATILE int dummy;
register VOLATILE int statr;
struct scsipi_xfer *xs;
if (cs->comflg == CF_SET) {
struct sc_scb *scb = cs->scb;
cs->comflg = CF_SEND;
flush_fifo(sc);
xs = scb->xs;
cdb_bytes = xs->cmdlen;
switch (xs->cmd->opcode & CMD_TYPEMASK) {
case CMD_T0:
case CMD_T1:
case CMD_T5:
break;
default:
cdb_bytes = 6;
sc_intok2 |= Rb_FNC;
break;
}
/*
* set Active pointers
*/
sc->act_cmd_pointer = (char *)xs->cmd;
cs->act_trcnt = scb->sc_ctrnscnt;
cs->act_point = scb->sc_cpoint;
cs->act_tag = scb->sc_ctag;
cs->act_offset = scb->sc_coffset;
} else {
cdb_bytes = 1;
iloop = 0;
do {
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & SC_PMASK) != COM_OUT)
return;
statr = sc_statr;
DMAC_WAIT0;
if (statr & R0_MIRQ)
return;
} while ((dummy & R4_MREQ) == 0);
statr = sc_statr;
DMAC_WAIT0;
if (statr & R0_MIRQ)
return;
}
SET_CNT(cdb_bytes);
SET_CMD(sc, SCMD_TR_INFO|R0_TRBE);
for (iloop = 0; iloop < cdb_bytes; iloop++) {
do {
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & SC_PMASK) != COM_OUT)
return;
} while ((dummy & R4_MREQ) == 0);
statr = sc_statr;
DMAC_WAIT0;
if (statr & R0_MIRQ)
return;
sc_datr = *sc->act_cmd_pointer++;
do {
dummy = sc_cmonr;
DMAC_WAIT0;
} while ((dummy & R4_MACK) != 0);
}
}
#define GET_MIN_COUNT 127
/*
* SCSI message accept routine
*/
void
sc_min(sc, cs)
struct sc_softc *sc;
register struct sc_chan_stat *cs;
{
struct sc_scb *scb = cs->scb;
struct scsipi_xfer *xs = scb->xs;
register VOLATILE int dummy;
sc_intok2 = Rb_FNC|Rb_DCNT|Rb_SRST|Rb_PHC|Rb_SPE|Rb_RMSG;
DMAC_WAIT0;
if (sc->min_flag == 1)
flush_fifo(sc);
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & R4_MREQ) == 0) {
printf("sc_min: !REQ cmonr=%x\n", dummy);
print_scsi_stat(sc);
scsi_hardreset();
return;
}
/* retry_cmd_issue: */
sc->int_stat2 &= ~R3_FNC;
SET_CMD(sc, SCMD_TR_INFO);
do {
do {
dummy = sc_statr;
DMAC_WAIT0;
} while (dummy & R0_CIP);
GET_INTR(&sc->int_stat1, &sc->int_stat2); /* clear interrupt */
} while ((sc->int_stat2 & R3_FNC) == 0);
sc->int_stat2 &= ~R3_FNC;
dummy = sc_ffstr;
if (dummy & R5_FIE) {
DMAC_WAIT;
dummy = sc_ffstr;
DMAC_WAIT0;
if (dummy & R5_FIE) {
dummy = sc_statr;
DMAC_WAIT0;
if ((dummy & R0_INIT) == 0) {
/*
* CXD1185 detect BSY false
*/
scsi_hardreset();
return;
}
}
}
dummy = sc_datr; /* get message byte */
DMAC_WAIT0;
if (sc->min_cnt[cs->chan_num] == 0) {
scb->message = scb->identify;
if (dummy == MSG_EXTND) {
/* Extended Message */
sc->min_cnt[cs->chan_num] = GET_MIN_COUNT;
sc->min_point[cs->chan_num] = scb->msgbuf;
bzero(scb->msgbuf, 8);
*sc->min_point[cs->chan_num]++ = dummy;
} else {
switch ((dummy & MSG_IDENT)? MSG_IDENT : dummy) {
case MSG_CCOMP:
scb->istatus |= INST_EP;
break;
case MSG_MREJ:
#ifndef NOT_SUPPORT_SYNCTR
if (sc->mout_flag[cs->chan_num] == MOUT_SYNC_TR)
sc->sync_tr[cs->chan_num] = 0;
#endif
break;
case MSG_IDENT:
case MSG_RDP:
sc->dma_stat = OFF;
sc->pad_start = 0;
cs->comflg = OFF;
/*
* restore the saved value to Active pointers
*/
sc->act_cmd_pointer = (char *)xs->cmd;
cs->act_trcnt = scb->sc_ctrnscnt;
cs->act_point = scb->sc_cpoint;
cs->act_tag = scb->sc_ctag;
cs->act_offset = scb->sc_coffset;
break;
case MSG_SDP:
/*
* save Active pointers
*/
scb->sc_ctrnscnt = cs->act_trcnt;
scb->sc_ctag = cs->act_tag;
scb->sc_coffset = cs->act_offset;
scb->sc_cpoint = cs->act_point;
break;
case MSG_DCNT:
scb->istatus |= INST_WR;
sc->wrc++;
break;
default:
scb->message = MSG_MREJ;
SET_CMD(sc, SCMD_AST_ATN);
printf("SCSI%d:sc_min() Unknown mes=0x%x, \n",
cs->chan_num, dummy);
}
}
} else {
*sc->min_point[cs->chan_num]++ = dummy;
if (sc->min_cnt[cs->chan_num] == GET_MIN_COUNT)
sc->min_cnt[cs->chan_num] = dummy;
else
sc->min_cnt[cs->chan_num]--;
if (sc->min_cnt[cs->chan_num] <= 0) {
#ifdef ABORT_SYNCTR_MES_FROM_TARGET
if ((scb->msgbuf[2] == 0x01) &&
(sc->mout_flag[cs->chan_num] == MOUT_SYNC_TR)) {
#else
if (scb->msgbuf[2] == 0x01) {
#endif
register int i;
/*
* receive Synchronous transfer message reply
* calculate transfer period val
* tpm * 4/1000 us = 4/16 * (tpv + 1)
*/
#define TPM2TPV(tpm) (((tpm)*16 + 999) / 1000 - 1)
#ifndef NOT_SUPPORT_SYNCTR
i = scb->msgbuf[3]; /* get tpm */
i = TPM2TPV(i) << 4;
if (scb->msgbuf[4] == 0)
sc->sync_tr[cs->chan_num] = 0;
else
sc->sync_tr[cs->chan_num] =
i | scb->msgbuf[4];
#endif /* !NOT_SUPPORT_SYNCTR */
} else {
scb->message = MSG_MREJ;
SET_CMD(sc, SCMD_AST_ATN); /* assert ATN */
}
}
}
SET_CMD(sc, SCMD_NGT_ACK);
}
/*
* SCSI message send routine
*/
void
sc_mout(sc, cs)
struct sc_softc *sc;
register struct sc_chan_stat *cs;
{
register struct sc_scb *scb = cs->scb;
register u_char *mp;
register int cnt;
register int iloop;
register VOLATILE int dummy;
VOLATILE int tmp;
VOLATILE int tmp0;
flush_fifo(sc);
if (sc->mout_flag[cs->chan_num] == 0) {
sc->mout_flag[cs->chan_num] = MOUT_IDENTIFY;
if (scb->message != 0) {
sc_intok2 = Rb_FNC|Rb_DCNT|Rb_SRST|Rb_PHC|Rb_SPE|Rb_RMSG;
DMAC_WAIT0;
if ((scb->message == MSG_EXTND)
&& (scb->msgbuf[2] == 0x01)) {
cnt = 5;
mp = scb->msgbuf;
scb->msgbuf[3] = MIN_TP;
if (scb->msgbuf[4] > MAX_OFFSET_BYTES)
scb->msgbuf[4] = MAX_OFFSET_BYTES;
sc->mout_flag[cs->chan_num] = MOUT_SYNC_TR;
} else {
cnt = 1;
mp = &scb->message;
}
SET_CNT(cnt);
SET_CMD(sc, SCMD_TR_INFO|R0_TRBE);
sc_datr = scb->identify;
DMAC_WAIT0;
for (iloop = 1; iloop < cnt; iloop++) {
sc_datr = *mp++;
DMAC_WAIT;
}
do {
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & R4_MBSY) == 0)
return;
dummy = sc_statr;
DMAC_WAIT0;
} while (dummy & R0_CIP);
tmp = 0;
GET_INTR(&tmp0, &tmp); /* clear interrupt */
if ((tmp & R3_FNC) == 0) {
(void) WAIT_STATR_BITSET(R0_MIRQ);
GET_INTR(&tmp0, &tmp); /* clear interrupt */
}
do {
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & R4_MBSY) == 0)
return;
} while ((dummy & R4_MREQ) == 0);
SET_CMD(sc, SCMD_NGT_ATN);
(void) WAIT_STATR_BITCLR(R0_CIP);
GET_INTR(&tmp0, &tmp); /* clear interrupt */
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & R4_MREQ) == 0) {
printf("sc_mout: !REQ cmonr=%x\n", dummy);
print_scsi_stat(sc);
scsi_hardreset();
return;
}
SET_CMD(sc, SCMD_TR_INFO);
sc_datr = *mp++;
DMAC_WAIT0;
} else {
dummy = sc_cmonr;
DMAC_WAIT0;
if (dummy & R4_MATN) {
SET_CMD(sc, SCMD_NGT_ATN);
(void) WAIT_STATR_BITCLR(R0_CIP);
GET_INTR(&tmp0, &tmp); /* clear interrupt */
}
iloop = 0;
do {
dummy = sc_cmonr;
DMAC_WAIT0;
if (iloop++ > CHECK_LOOP_CNT)
break;
} while ((dummy & R4_MREQ) == 0);
SET_CMD(sc, SCMD_TR_INFO);
sc_datr = scb->identify;
DMAC_WAIT0;
}
} else {
dummy = sc_cmonr;
DMAC_WAIT0;
if (dummy & R4_MATN) {
SET_CMD(sc, SCMD_NGT_ATN);
(void) WAIT_STATR_BITCLR(R0_CIP);
GET_INTR(&tmp0, &tmp); /* clear interrupt */
}
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & R4_MREQ) == 0) {
printf("sc_mout: !REQ cmonr=%x\n", dummy);
print_scsi_stat(sc);
scsi_hardreset();
return;
}
SET_CMD(sc, SCMD_TR_INFO);
sc_datr = scb->message;
DMAC_WAIT0;
}
}
/*
* SCSI status accept routine
*/
void
sc_sin(sc, cs)
struct sc_softc *sc;
register VOLATILE struct sc_chan_stat *cs;
{
register VOLATILE int dummy;
register int iloop;
flush_fifo(sc);
dummy = sc_cmonr;
DMAC_WAIT0;
if ((dummy & R4_MREQ) == 0) {
printf("sc_sin: !REQ cmonr=%x\n", dummy);
print_scsi_stat(sc);
scsi_hardreset();
return;
}
sc_intok2 = Rb_FNC|Rb_DCNT|Rb_SRST|Rb_PHC|Rb_SPE|Rb_RMSG;
DMAC_WAIT0;
SET_CMD(sc, SCMD_TR_INFO);
(void) WAIT_STATR_BITCLR(R0_CIP);
sc->int_stat2 &= ~R3_FNC;
iloop = 0;
do {
if (iloop++ > CHECK_LOOP_CNT)
break;
GET_INTR(&sc->int_stat1, &sc->int_stat2); /* clear interrupt */
} while ((sc->int_stat2 & R3_FNC) == 0);
sc->int_stat2 &= ~R3_FNC;
cs->scb->tstatus = sc_datr; /* get status byte */
DMAC_WAIT0;
}
/*
* SCSI data in/out routine
*/
void
sc_dio(sc, cs)
struct sc_softc *sc;
register VOLATILE struct sc_chan_stat *cs;
{
register VOLATILE struct sc_scb *scb;
register int i;
register int pages;
register u_int tag;
register u_int pfn;
VOLATILE int phase;
struct scsipi_xfer *xs;
scb = cs->scb;
xs = scb->xs;
sc_intok2 = Rb_FNC|Rb_DCNT|Rb_SRST|Rb_PHC|Rb_SPE;
DMAC_WAIT0;
if (cs->act_trcnt <= 0) {
sc_dio_pad(sc, cs);
return;
}
switch (xs->cmd->opcode) {
case SCOP_READ:
case SCOP_WRITE:
case SCOP_EREAD:
case SCOP_EWRITE:
i = (cs->act_trcnt + DEV_BSIZE -1) / DEV_BSIZE;
i *= DEV_BSIZE;
break;
default:
i = cs->act_trcnt;
break;
}
SET_CNT(i);
sc->pad_cnt[cs->chan_num] = i - cs->act_trcnt;
phase = sc_cmonr & SC_PMASK;
DMAC_WAIT0;
if (phase == DAT_IN) {
if (sc_syncr == OFF) {
DMAC_WAIT0;
flush_fifo(sc);
}
}
#if defined(__mips__) && defined(CPU_SINGLE)
SET_CMD(sc, SCMD_TR_INFO|R0_DMA|R0_TRBE);
#endif
#if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_ctrcl = (u_char)(cs->act_trcnt & 0xff);
dmac_ctrcm = (u_char)((cs->act_trcnt >> 8) & 0xff);
dmac_ctrch = (u_char)((cs->act_trcnt >> 16) & 0x0f);
dmac_cofsh = (u_char)((cs->act_offset >> 8) & 0xf);
dmac_cofsl = (u_char)(cs->act_offset & 0xff);
#endif
tag = 0;
if (scb->sc_map && (scb->sc_map->mp_pages > 0)) {
/*
* Set DMAC map entry from map table
*/
pages = scb->sc_map->mp_pages;
for (i = cs->act_tag; i < pages; i++) {
if ((pfn = scb->sc_map->mp_addr[i]) == 0)
panic("SCSI:sc_dma() zero entry");
#if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_ctag = (u_char)tag++;
dmac_cmap = (u_short)pfn;
#endif
}
#ifdef MAP_OVER_ACCESS
# if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_ctag = (u_char)tag++;
dmac_cmap = (u_short)pfn;
# endif
#endif
} else {
/*
* Set DMAC map entry from logical address
*/
pfn = kvtophys((vaddr_t)cs->act_point) >> PGSHIFT;
pages = (cs->act_trcnt >> PGSHIFT) + 2;
for (i = 0; i < pages; i++) {
#if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_ctag = (u_char)tag++;
dmac_cmap = (u_short)pfn + i;
#endif
}
}
#if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_ctag = 0;
#endif
if (phase == DAT_IN) {
sc->dma_stat = SC_DMAC_RD;
#if defined(__mips__) && defined(CPU_SINGLE)
/*
* auto pad flag is always on
*/
dmac_gsel = CH_SCSI;
dmac_cctl = DM_MODE|DM_APAD;
DMAC_WAIT;
dmac_cctl = DM_MODE|DM_APAD|DM_ENABLE;
DMAC_WAIT0;
#endif
}
else if (phase == DAT_OUT) {
sc->dma_stat = SC_DMAC_WR;
#if defined(__mips__) && defined(CPU_SINGLE)
dmac_gsel = CH_SCSI;
dmac_cctl = DM_APAD;
DMAC_WAIT;
dmac_cctl = DM_APAD|DM_ENABLE;
DMAC_WAIT0;
#endif
/* DMAC start on mem->I/O */
}
}
#define MAX_TR_CNT24 ((1 << 24) -1)
void
sc_dio_pad(sc, cs)
struct sc_softc *sc;
register VOLATILE struct sc_chan_stat *cs;
{
register int dummy;
if (cs->act_trcnt >= 0)
return;
sc->pad_start = 1;
SET_CNT(MAX_TR_CNT24);
SET_CMD(sc, SCMD_TR_PAD|R0_TRBE);
dummy = sc_cmonr & SC_PMASK;
DMAC_WAIT0;
if (dummy == DAT_IN)
dummy = sc_datr; /* get data */
else
sc_datr = 0; /* send data */
}
void
print_scsi_stat(sc)
struct sc_softc *sc;
{
printf("ipc=%d wrc=%d wbc=%d\n", sc->ipc, sc->wrc, sc->wbc);
}
/*
* return 0 if it was done. Or retun TRUE if it is busy.
*/
int
sc_busy(sc, chan)
struct sc_softc *sc;
register int chan;
{
return ((int)sc->chan_stat[chan].scb);
}
/*
* append channel into Waiting Bus_free queue
*/
void
append_wb(sc, cs)
struct sc_softc *sc;
struct sc_chan_stat *cs;
{
int s;
s = splclock(); /* inhibit process switch */
if (sc->wbq_actf == NULL)
sc->wbq_actf = cs;
else
sc->wbq_actl->wb_next = cs;
sc->wbq_actl = cs;
cs->scb->istatus = INST_WAIT;
sc->wbc++;
splx(s);
}
/*
* get channel from Waiting Bus_free queue
*/
struct sc_chan_stat *
get_wb_chan(sc)
struct sc_softc *sc;
{
struct sc_chan_stat *cs;
int s;
s = splclock(); /* inhibit process switch */
cs = sc->wbq_actf;
if (cs && cs->chan_num == SC_OWNID) /* needed? */
cs = NULL;
splx(s);
return cs;
}
/*
* release channel from Waiting Bus_free queue
*/
int
release_wb(sc)
struct sc_softc *sc;
{
struct sc_chan_stat *cs;
int error = 0;
int s;
s = splclock(); /* inhibit process switch */
if (sc->wbq_actf == NULL) {
error = -1;
} else {
cs = sc->wbq_actf;
sc->wbq_actf = cs->wb_next;
cs->wb_next = NULL;
if (sc->wbq_actl == cs)
sc->wbq_actl = NULL;
cs->scb->istatus &= ~INST_WAIT;
sc->wbc--;
}
splx(s);
return error;
}
void
adjust_transfer(sc, cs)
struct sc_softc *sc;
struct sc_chan_stat *cs;
{
struct sc_scb *scb = cs->scb;
u_int remain_cnt;
u_int offset, sent_byte;
if (sc->pad_start) {
sc->pad_start = 0;
remain_cnt = 0;
} else {
# if defined(__mips__) && defined(CPU_SINGLE)
remain_cnt = GET_CNT();
remain_cnt -= sc->pad_cnt[cs->chan_num];
if (sc->dma_stat == SC_DMAC_WR) {
/*
* adjust counter in the FIFO
*/
remain_cnt += sc_ffstr & R5_FIFOREM;
}
# endif
}
sent_byte = scb->sc_ctrnscnt - remain_cnt;
cs->act_trcnt = remain_cnt;
offset = scb->sc_coffset + sent_byte;
cs->act_tag += (offset >> PGSHIFT);
cs->act_offset = offset & PGOFSET;
if ((scb->sc_map == NULL) || (scb->sc_map->mp_pages <= 0))
cs->act_point += sent_byte;
}
#ifdef __mips__
static void
clean_k2dcache(scb)
struct sc_scb *scb;
{
struct sc_map *sc_map = scb->sc_map;
paddr_t pa;
int i, pages;
pa = kvtophys((vaddr_t)scb->msgbuf);
mips_dcache_wbinv_range_index(MIPS_PHYS_TO_KSEG0(pa),
sizeof(scb->msgbuf));
if (MACH_IS_USPACE(scb->sc_cpoint))
panic("clean_k2dcache: user address is not supported");
if (MACH_IS_CACHED(scb->sc_cpoint)) {
mips_dcache_wbinv_range_index((vaddr_t)scb->sc_cpoint,
scb->sc_ctrnscnt);
return;
}
if (sc_map) {
pages = sc_map->mp_pages;
for (i = 0; i < pages; i++) {
pa = sc_map->mp_addr[i] << PGSHIFT;
mips_dcache_wbinv_range_index(MIPS_PHYS_TO_KSEG0(pa),
PAGE_SIZE);
}
}
}
#endif